Qualifying Examination 2012 Statistical Inference

- 1. State (a) Basu's Theorem
 - (b) Rao-Blackwell Theorem

(10%)

- 2. Let X_1 , X_2 , ... X_n be i.i.d. $n(\theta, 1)$.
 - (a) Find the UMVUE of θ , θ^2 and θ^3 .
 - (b) Can they attain the Cramer—Rao lower bound? Why?

(20%)

- 3. Let X_1 , X_2 , ... X_n be i. i. d. $n(\theta, 1)$. $g(\theta) = P(X_1 \le \xi)$, ξ is a constant. Find the UMVUE of $g(\theta)$.
- 4. Let X_1 , X_2 , ... X_n be $U(0, \theta)$, $\theta > 0$,
 - (a) Find the UMP level $\,\alpha\,$ test for testing $\,H_0\colon\,\theta\,\leq\,\theta_0\,$ v. s. $\,H_1\colon\,\theta\,>\,\theta_0.$
 - (b) Find the power function $\beta(\theta)$, show that it is increasing in θ . (20%)
- 5. Let $X_1, X_2, ... X_n$ be i. i. d. $n(\theta, 1)$. Find the UMP unbiased α -level test for testing H_0 : $\theta \in [\theta_1, \theta_2]$ v.s. H_1 : $\theta \notin [\theta_1, \theta_2]$ (10%)
- 6. Let X_1 , X_2 , ... X_n be i. i. d. beta $(\theta, 1)$, assume θ has a gamma (γ, λ) prior pdf. Find a 1- α Bayes credit set for θ . (10%)
- 7. Find a pivotal quantity based on a random sample of size n from a $n(\theta, \theta)$ population, where $\theta > 0$. Use the pivotal quantity to set up a 1- α confidence interval for θ .

(10%)