Exercises within a Section: 1.1-2 means Section 1.1 problem #2 etc...

&~ Watch out! To save paper and spaces, some solutions may not be in the proper order.
You should be able to find them. ( BZEEBNIEF O sEAERE LWIER - BBAXRTE "ZHIR
ROt 7S o ARIRFEEE—T )

“®”You are required to reproduce or to paraphrase of the "Solution" (NOT the "Sketch") to
a problem. (EHZEBAMEE - 2FE Solution B985 - M AZE Sketch BIZR{D ! Sketch BIED
RREHRARERN idea STE - )

‘" Do not skip over problems that you think are complicated. We can still ask you part
of the steps in a test. ( AZHIBREERPEREHNEE - HOEZBARIDIBEZEZM ! )

o 1.1-2. In a field, show that if b &£ 0 and d # 0, then

+r:._ad—|—bc
bd

=

a
b

Solution. Recall that division is defined by i = ry~'. We compute:

% — 5 = (% ~ é) ((bd)(bd) ") multiply by one
— ((% + %) (bd]l) {bd)_l associative law
= ((ab™' +ed™ )(bd}}{ba’)_l definition of division
= ((ab™ ) (bd) + (ed™")(bd))(bd) ™! distributive law
= ((ab=1)b)d + (ed1)d)b)(b )_1 assoc. and comm. laws
= ((a(d~'b))d + (e(d ld)}b) bd)~ associative law
= ((a(1))d + (e(1 )}b) (bd)™ reciprocals
= (ad + ¢b)(bd) ' = (ad + bc)(bd)~"  property of one
ad + be

definition of division

bd

as claimed. '



¢ 1.1-5. Give an example of a field with only three elements. Prove that it
cannot be made into an ordered field.

Sketch. Let F = {0,1,2} with arithmetic mod 3. For example, 2-2 =1
and 1+ 2 = 0. To show it cannot be ordered, get a contradiction from (for
example) 1 >0s014+1=2>0s0142=0>0. ¢

Solution. Let F = {0, 1,2} with arithmetic mod 3. For example, 2-2 =1
and 1 + 2 = 0. The commutative associative and distributive properties
work for modular arithmetic with any base. When the base is a prime, the
result is a field. In particular in arithmetic modulo 3 we have

1-1=1 and 2-2=1.

Thus 1 and 2 are their own reciprocals. Since they are the only two nonzero
elements, we have a field.

To show it cannot be ordered, get a contradiction from (for example)
1>0801+1=2>0s801+2=0 > 0. We know that 0 < 1 in any ordered
field. So 1 < 1+ 1 = 2 by order axiom 15. Transitivity gives 0 < 2. So
far there is no problem. But, if we add 1 to the inequality 1 < 2 obtained
above, we find 2=1+1<2+1=20. S0 2 < 0. Thus 0 = 2. If we multiply
by 2, weget 0 =0-2=2-2=1. So 0 =1. But we know this is false. ¢

Note: The following exercise is not new, you should know how to compute the limit from first year calculus:

¢ 1.2-3. Let x, = vn? + 1 — n. Compute lim,,_. z,.
Answer. 0. O

Solution. Let z, = v'n? + 1 — n, and notice that
(VnZ4+1—mn)-(vVn2+14n)=n?+1)—-n?=1.
Thus we have
1 1
D<z, =vn?+1—n= < = _— <
B vl +1+n = Vn2+n 20

We know that 1/n — 0, so £, — 0 by the “Sandwich Lemma” 1.2.2. ¢

1

S| =



¢ 1.2-4. Let z,, be a monotone increasing sequence such that z,,, —r, <
1/n. Must z, converge?

Answer. No, not necessarily. ¢

Solution. If we put #; =1 and suppose that 2,11 = 2, + (1/n), then

1
1?2:1+T
T3 =1 —|—l—1+1+1
3TRTY T AT
:r—m—l—l—1—|—1+1+1
1T Ty T T T
1 1 1 1 1

Since we know that the harmonic series diverges to infinity, we see that the
sequence (rn)7° cannot converge. ¢

o 1.3-5. Let § C [0,1] consist of all infinite decimal expansions
r = 0.a1aza3 - -- where all but finitely many digits are 5 or 6. Find sup S.

Answer. sup(S5)=1. ¢
Solution. The numbers z,, = 0.99999...9995555555... consisting of n

9's followed by infinitely many 5's are all in S. Since these come as close to
1 as we want, we must have sup S = 1. ¢



¢ 1.3-4. Let A c B and B C R be bounded below and define A + B =
{r+y|ze Aand y € B}. Is it true that inf(A4 + B) = inf A + inf BY

Answer. Yes. O

Solution. First suppose z € A + B, then there are points z € A and
y € B with 2 = = + y. Certainly inf A < = and inf B < y. So

infA+infB<r+4+y=-=2.

Thus inf A + inf B is a lower bound for the set A + B. Soinf A +inf B <
inf(A + B).

To get the opposite inequality, let £ > 0. There must be points = € A
and y € B with

infA<z< ian+§ and  infB<y<infB+

B0 I

Since = + y € A + B we must have
inf(A+B)<z+y<infA+ - +infB+_ =infA+infB+e

Since this holds for every = > 0, we must have inf(A + B) < inf A + inf B.
We have inequality in both directions, so inf(A+ B) =inf A+inf B. ¢

o 1.7-3. Put the inner product { f,g) = ful f(z)g(z)dx on C([0,1]). Verify
the Cauchy-Schwarz inequality for f(z) =1 and g(z) = =.

Sketch. /{7.7) =1 (g.9) =1/V3.and (f.g) = 1/2.50|(f.g)| <
VI T) -V (g.9) is true. 0

Solution. +/{f.f)= (ful{f(ﬂ:)}? d’r) v (ful 1 da:) v 1,

Voo = (Re@rda)” = (fa2a)” = 1/v3,
and (f,9) = [} f(z)g(x)dz = [, zdz =1/2.
So [(£.9)] < T 1) - /(9.9 is true. 0




¢ 1.4-4. Let x, be a Cauchy sequence. Suppose that for every ¢ > 0 there
is some n > 1/¢ such that |z, | < . Prove that z,, — 0.

Discussion. The assumption that (z,,)5° is a Cauchy sequence says that
far out in the sequence, all of the terms are close to each other. The second
assumption, that for every £ > 0 there is an n > 1/¢ such that |z,| < e,
says, more or less, that no matter how far out we go in the sequence there
will be at least one term out beyond that point which is small. Combining
these two produces the proof. If some of the points far out in the sequence
are small and all of the points far out in the sequence are close together,
then all of the terms far out in the sequence must be small. The technical
tool used to merge the two assumptions is the triangle inequality. O

Solution. Let = > 0. Since the sequence is a Cauchy sequence, there is
an N1 such that |z, — zi| < £/2 whenever n > Ny and k > N;.

Pick Ny > N, large enough so that 1/N; < £/2. By hypothesis there is
at least one index n > 1/(1/Ny) = N, with |z,| < 1/Ns.

If & = Ny, then both k and n are at least as large as NV; and we can
compute

1
N ©

Thus z; — 0 as claimed. ¢

|z = |28 — 20



¢ 1.4-5. True or false: If x, is a Cauchy sequence. then for n and m large
El'liiﬂ_lgh._. d(mn-l—l: -Tm+1} < d{ﬂ?ne Tm}

Answer. False. &

Solution. If this were true, it would hold in particular with m selected
as m = n + 1. That is, we should have d(z, 1, Zn42) < d(z,,2,4q) for
large enough n. But this need not be true. Consider the sequence

1 1 1 1
1,0,0,=,0,0,=,0,0,=,0,0,=,....
0,0,3,9,0,3,8,0, 7,00, %,
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This sequence converges to 0 and is certainly a Cauchy sequence. But the
differences of succeeding terms keep dropping to 0 and then coming back
up a bit. ¢+



¢ 1.5-4. Let limsup z, = 2. True or false: If n is large enough, then z, >
1.99.

Answer. False. O

Solution. The largest cluster point is 2, but this need not be the only
cluster point. Consider for example the sequence

1,2,1,2,1,2,1,2... ..
where
1. if n is odd
rn = . .
2, if n is even
In this example we have z,, < 1.99 for all odd n. ¢

¢ 1.5-5. True or false: If limsup »,, = b, then for n large enough, =, <b.
Answer. False. O

Solution. A counterexample is easy to give. For example, the sequence

g
| =
e

converges to a limit of 0. So the lim sup and the lim inf are both equal to
0. All terms of the sequence are larger than the lim sup. ¢

o 1.6-1. If||z+y| =|=z| +| v, show that = and y lie on the same ray
from the origin.

Sketch. If equality holds in the Cauchy-Schwarz or triangle inequality,
then 2 and y are parallel. Expand ||z +y||* = (||| + || ¥||)? to obtain
lz| -y = (z,y) = ||z]| - ||y]| - cos(?!). Use this directly or let u =
y/ ||yl and 2 = = — {(x,u)u. Check that (2,u) = 0 and that ||z ||2 =
|2)|* + |(z.u)|” = ||z |°. Conclude that 2 =0 and = = ((z,7) /|y |*)y-
Q

Solution. If either x or y is 0, then they are certainly on the same ray
through the origin. If ¥ is not the zero vector, we can let u be the unit
vector u = (1/|y||)y. The projection of x in the direction of y is then



v={(zu)u= ((z,y)/|y|°)y. We claim that this is equal to =. Let
z=x—v. 50 = 2+v. But 2 and v are orthogonal.

(z,v)y=(z—v,v)=(z,v)— (V,V)
)

= (z,u)® —(z,u)? (u,u) =0

Since
lz+yl*=Uzl+ 1y =lzI®+2 0zl Nyl +1yl*
we have
(z,2)+2(z,y) +(yy)=(z,2)+2 | z| [|ly]+(v.y)
and
(z.y) =zl Iyl
So (z,u) = |||
lzl* = (z+v,24v) = (z,2) +2(z,0) + (vo) = | 2|+ || v’
=z [*+ (zu)" = |l 2|I" + | =]
We must have || z|| = 0. So z =0 and = v as claimed.

Notice that we have written the proof for a real inner product space.
Exercise: what happens with a complex inner product ? ¢



¢ 1.6-5. Find the equation of the line through (1,1,1) and (2, 3,4). Is this
line a linear subspace?

Answer. z=(y+1)/2=(2+2)/3.0r P(t) = (14, 1+2¢, 1+ 3t). This
line is not a linear subspace since (0, 0,0) is not on it. ¢

Solution. Let A =(1,1,1) and B = (2, 3,4). The vector from A to B is
v=B-A=<1,23 > Foreachreal t, the point P(t) = A+tv = (14¢,1+
2t,1 + 3t) will lie on the line through A and B. This is a parameterization
of that line. Note that P(0) = A and P(1) = B. If f is between 0 and 1,
then P(t) is on the straight line segment between A and B.

Relations among z, y, and z along the line can be derived from the
parameterization.

y=14+2t=1+t+t=2+(r—1)=22—1.

2=143t=14+t+2t=2+2(xr—1)=3z—2.

or
(y+1)/2=2=(2+2)/3.

¢

¢ 1.7-4. Using the inner product in Exercise 1.7-3, verify the triangle in-
equality for f(r) = x and g(z) = x2.

Solution. Direct computation gives

1 1
||f+9||2:£ (ﬂ*ﬂ*z}zﬂ’-fzﬁ (2% +22% +2%) do
1 1 1 10+15+6 31

3725 30 ~ 30
So || f+g|l = /31/30. Also
2 ' 2 ]' 2 ! 4 ].
7= L di":g and lgll” = T dggzg_
0 0

So | fll+llgll=1/v3+1/v5=(V5+3)/v15. The triangle inequality

becomes
31 _V5+V3  VI0+V6
30 V15 /30
This is equivalent to v/31 < v/104++/6 or, squaring, to 31 < 10426046 =
16 + 41/15. By subtracting 16, we see that this is equivalent to 15 < 4y/15
which is equivalent to /15 < 4 or 15 < 16. This is certainly true, so the
triangle inequality does indeed hold for these two functions. ¢




Exercises for Chapter 1

o 1E-1. For each of the following sets 5, find sup(S) and inf(S) if they
exist:

(a) {z € R|2* <5}
(b) {z€R|2%>T)
(c) {1/n | n, an integer, n > 0}
(d) {—=1/n|n an integer, n > 0}
(e) {.3,.33,.333,...}

Answer. (a) sup(S) = /5; inf(§) = —/5.
(b) Neither sup(S) nor inf(S) exist (except as +oc).
() sup(S) =1; inf(5) = 0.
(d) sup(S) = 0; inf(5) = —1.
(e) sup(S) =1/3; inf(5) =0.3.

o
Solution. (a) A={reR|z* <5} =] —v5,v5[. s0 inf A = —/F and
sup A = +/h.
(b) B={z e R |2 >T}=]—- oo, —+T[U]VT,o0[. The set is bounded
neither above nor below, so sup B = oo, and inf B = —sc.

() C={1/n|neZn>0}={1,1/21/3,1/4....}. All elements are
positive, so inf € = (), and they come arbitrarily close to 0, so inf C' = 0.
The number 1 is in the set and nothing larger 1s in the set, so sup C' = 1.

(d) D={-1/n|ne@n=0}={-1,-1/2.—1/3,—1/4....}. All elements
are negative, so sup D) < (), and they come arbitrarily close to 0, so
sup ' = 0. The numher —1 is in the set and nothing smaller is in the
set, so inf O = —1.

(e) E = {0.3,0.33,0.333,...}. The number 0.3 is in the set and nothing
smaller is in the set, so iInf E = 0.3. The elements of the set are all
smaller than 1/3, so supFE < 1/3, and they come arbitrarily close to
1/3,sosupE =1/3.

L

o 1E-3. (a) Let = > 0 be a real number such that for any £ > 0, x < =.
Show that z = 0.

(b) Let § =]0,1[. Show that for each = > 0 there exists an r £ S such
that = < .

Suggestion. (a) Suppose r > 0 and consider = = x /2.



(b) Let = min{=/2,1/2}. ,

Solution. (a) Suppose x = 0 and that = < = for every ¢ > 0. If z > 0,
then we would have /2 > 0 so that 0 < = < z/2 by hypothesis.
Multiplication by the positive number 2 gives 0 < 2x < x. Subtraction
of  gives —r < x < 0. We are left with x > 0 and x < (), so that z =0
Thus the assumption that x is strictly greater than 0 fails, and we must
have =z = (.

Notice that the argument given for part (a) shows that if x = 0, then
0<zr/2<randif x>0, then 0 < z/2 < r

(b) Suppose S =]0,1[,and = = 0. If ¢ = 1, let + = 1/2. Then = € S, and
r<elfeclletz=c>2.Thenl<r=:5/2<=z<1.S0recS, and
T < £. So in either case we have an x with x € S, and = < =.

L

¢ 1E-T. For nonemptysets A BC R, let A+ B={z+4+y|rcAandyec
B}. Show that sup(A + B) = sup(A) + sup(B).

Sketch. Since sup(A) + sup(B) is an upper bound for A + B (Why?7),
sup(A4 + B) < sup(A) + sup(B). Next show that elements of A + B get
arbitrarily close to sup(A) + sup(B). O

Solution. Suppose w € A + B. Then there are r in A and y in B with
w=uxr+y. So
w=r+y<r+supB <supA+supB.
The number sup A+sup B is an upper bound for the set A+ B, so sup(A+

B)<supA+supB.
Now let £ = (). Then there are x in 4 and y in B with

supAd —=/2<xr and supB-—=/2<y.
Adding these inequalities gives
supAd+supB —s<zr+ye A+ B

So supA + sup B — £ is not an upper bound for the set A + B. Thus
sup(A+ B) > sup A 4+sup B—=. This is true for all £ = 0, so sup(A+ B) =
sup A + sup B.

We have inequality in both directions, so sup(A + B) = supA + sup B
as claimed. L]



o 1E-8. For nonempty sets A, B < R, determine which of the following
statements are true. Prove the true statements and give a counterexample
for those that are false:

(a) sup(A N B) < inf{sup(A),sup(B)}.
(b) sup(A N B) = inf{sup(A),sup(B)}.
(c) sup(A U B) = sup{sup(A4),sup(B)}.
(d) sup(A U B) = sup{sup(A),sup(B)}.

Solution. (a) sup(An B) < inf{sup A, sup B}.

(b)

()
(d)

This is true if the intersection is not empty.

Ifre ANB,thenx € A, s0x < supA. Also, r € B.sox < sup B. Thus x
is no larger than the smaller of the two numbers sup A, and sup B. That
is, r < inf{sup A, sup B} for every x in A M B. Thus intf{sup A,sup B}
is an upper bound for A N B. So sup(A N B) < inf{sup A, sup B}.

Here 1s another argument using Proposition 1.3.3. We notice that sup(An
B) C A, so by Proposition 1.3.3 we should have sup(4 N B) < sup A.
Similarly, sup(A N B) < sup B. So sup(A N B} is no larger than the
smaller of the two numbers sup A and sup B. That is

sup(A N B) < inf{sup A, sup B}.

There is a problem if the intersection is empty. We have defined sup({)
to be +oc, and this is likely to be larger than inf{sup A,sup B}.

One can make a reasonable argument for defining sup()) = —occ. Since
any real number 1s an upper bound for the empty set, and the supremum
is to be smaller than any other upper bound, we should take sup(@l) =
—n0. (Also, since any real number is a lower bound for @), and the infimum
is to be larger than any other lower bound, we could set inf(l) = +oc).
If we did this then the inequality would be true even if the intersection
were empty.

sup(A N B) = inf{sup A, sup B}

This one need not be true even if the intersection is not empty. Consider
the two element sets 4 = {1,2} and B = {1,3}, Then An B = {1}. So
sup(ANB)=1. But supA = 2 and sup B = 3. So inf{sup A,sup B} =2
We do have 1 < 2, but they are certainly not equal.

We know that sup(An B) < inf{sup A,sup B}. Can we get the opposite
inequality?

sup(A U B) = sup{sup A,sup B}

sup(A U B) = sup{sup A,sup B}

Neither A nor B nor the union is empty, so we will not be troubled with
problems in the definition of the supremum of the empty set.
IfrismaUB,thenze Aorre B.lfxrc A, thenzx <supA.lfxr e B,
then = < sup B. In either case it 1s no larger than the larger of the two
numbers sup A and sup B. So = < sup{sup A, sup B} for every z in the
union. Thus sup{sup 4,sup B} is an upper bound for AU. So

sup(A U B) < sup{sup A, sup B}

In the opposite direction, we note that A C AU B, so by Proposition
1.3.3, we have sup A < sup(A U B). Similarly sup B < sup(4 U B). So
sup(A U B) is at least as large as the larger of the two numbers sup A
and sup B. That is



sup(A U B) = sup{sup 4, sup B}

We have inequality in both directions, so in fact equality must hold.
¢

¢ 1E-10. Verity that the bounded metric in Example 1.7.2(d) is indeed a

metric.

Sketch. Use the basic properties of a metric for d(x,y) to establish those
properties for p(r,y). For the triangle inequality, work backwards from
what you want to discover a proof. &

Solution. Suppose d is a metric on a set M, and p is defined by p(x,y) =
li oy We are to show that this is a metric on M and that it is bounded

by 1.

(1) Positivity: Since d(x,y) = 0, we have 0 < d(z,y) < 1 +d(zr,y). So
d(z,y)

[ = ——m—

=TT dz.y)

Notice that this also shows that p 1s bounded by 1.

(i1) Nondegeneracy: If x = g, then d(z,y) = 0, so p(z.y) = 0 also. In the
other direction, we know that 1 + d(z,y) is never 0, so

d(z,y) _
1+d(x,y)
= d(z,y) =0

< 1 forevery z and y in M.

plz.y) =0 —

= r=y
(1i1) Symmetry: Since d(y, r) = d(x, y), we have
dy.x) _ _d{z.y)
1+d(y,z) 1+d(z.y)
(iv) Triangle Inequality: Suppose z, y, and 2 are in M. Then
d(z, d(x,z d(z,
plzy) < plz,2) +pl2,y) = 1 +{d£,}y; =1 +{cs|;x.,} SR +{d(3 _.}y}
= d(z,y)(1+d(z,2)(1 +d(zy)) < d(,2)(1 +d(z.y)(1 +d(z v)
+d(z,y)(1 +d(z,y))(1 + d(z, 2))
= d(x,y) +d(r,y)d(z,z) +dlz,y)d(z,y) +d(x,y)d(z, 2)d(z,y)
<d(z,z)+d(zx, z)d(z,y)+drz)d(zy) +dz,y)dz,z)d(zy)
+d(z,y) +d(z y)d(r,y) + d(z.y)d(z, z) + d(x,y)d(x, 2)d(z, y)
= d(z,y) = d(z,z) +d(z,y) + 2(d(x, 2)d(z,y) + d(z, y)d(z, z)d(z, y))

ply,z) = = plz,y).

This last line is true since d(z,y) < d(y,z) + d(z,y) by the triangle
inequality for d and the last term is non-negative.

The function p satisfies all of the defining properties of a metric, so it 1s
a metric on the space M.



¢ 1E-12. In an inner product space show that

(a) 2= * + 2]yl == +yl*+ [z —y|* (parallelogram law).
() lz+yll lz—yl<lzl®+ Iyl
(e) dz,y)= ||z +y|’ - ||[x—y]|® (polarization identity).

Interpret these results geometrically in terms of the parallelogram formed
by = and y.

Solution. In all of these, the key is to use the relationship between the
inner product and the norm derived from it: || f ||2 ={f.f).



(a) We compute

lz+ylP+llz—yl|*=(z+yz+y)+{z-y.z—y)
={z+yz)+{z+yy)+{z—yz)+{x—y,—V)
=(z,z+y)+{y.z+y) +{z.z—y)+(-v.z—y)
=(z )+ (zy}+ vz} +{v.y)
+i{zz)+{z,—y)+(—w.z)+{-v.-y)
={z,z}+(z 9} +(y.z) + (v, y)
+{zr)+(z,—y)—(y.x) —(y.—¥)
=(z )+ (zy}+ vz} +{v.y)
+{zo)+{(-y,x)—(y,x) - (—-w¥)
={z,z}+(z, 9} +(y.x) +(y,y)
+i{z,z)— () —(y,z)+{n,¥)
={z,z)+ (x4} +(v.x)+ (v ¥)
+{z,z)—(z,y) — (v, z) + {1, ¥y)
=(z,z} +(yy) +(z,z} + (. ¥)
=2|z|*+2|v|?

as desired.
(b) Using the result of part (a), we compute

2
0= (llz+yll—llz—wul)
2 2
<llz+yl -2z +y|lz—yl|+z—y]
2 2
<2z|"=-2lz+yll lz—wl+2]¥l

Sollz+yllllz—yll <z’ +Ily|” as desired.
(c) The computation is like that of part (a), but with some sign changes.

lz+yl> - lz—y|*=(z+yz+y)—{z—y.z—y)
={z+yz)+{z+py)—(z-yz)—(T—U,—V)
=(zr+y)+{y.z+y)—(z.2-y)—-(-y. -y}
={z,z}+(z, 9} +(v.x) +(v,y)
—(zxy—(z,—y) —(—wzx}—(—v.—y)
={z,z)+ (x5} +(y.x) + (¥ ¥)
—(zz) —(z,—y) +(y.2) +(¥.—¥)
(voz}+ (v.y)
(—=yz)+{y,z)+(—vy)

={z,z}+(z,9) +(y.x) + (¥, ¥)
—(z,z) +(y,z) +(y.z) — (1, ¥)
={z.z}+ (1. 9) + (2. ¥) + (¥ ¥)
—(z,z) +{z,y) +{z,¥) — (%, y)
=4(z,y)

as desired.



¢ 1E-15. Let z, be asequence in R such that d(zn, Tn41) < d(zn—1,Tn)/2.
Show that x,, 15 a Cauchy sequence.

Sketch. First show that d(z,, z,41) < d(x1,22)/27 1, then that
d(T,, Tpyk)/27 2. o

Solution. There is nothing particularly special about the number 1/2 in
this problem. Any constant ¢ with 0 < ¢ < 1 will do as well. The key is the
convergence of the geometric series with ratio ¢. 35—, ¢* = 1/(1 — ¢).

Proposition. [f (x,)7" is a sequence in B such that there is a constant
cwith) < c <1 and d(zn,Tn4) < cd(zn_1,2,) for every inder n, then
(xn)]" is a Cauchy sequence.

Proof: First we show that d{rn, rm) < cm_ld{;rl,;rgj for each m =
1,2.3,.... by an informal induction

d{-'rm-. -Tm+lj < Cd{zm—l: -Tm]

< Czd(;rm—zs -I:'rrt—l,l:I

< cm_ld{;rl,;rzz}

Now we use this to establish that (z,)7° is a Cauchy sequence in the form:
For each £ > 0 there is an N such that d{r,,z,,p) < £ whenever n = N
and p = 0.

The first step 15 a repeated use of the triangle inequality to get an ex-
pression in which we can use the inequality just established.

d(Ty, Tpyp) < d(Tn, Tyn) +d(Trin, Tniz) + - d(Trip 1 Tnyp)

(et e+ 4 TP d (2, )

< H(ltet+ ) d(r,72)

Eﬂ-—l

[
—

d'{;r:h .1'2}.

—C

Since 0 < ¢ < 1, we know that ¢™ — 0 as n — oo. If £ > 0, we can
N—1

select N large enough so that S—d(x;,x2) <. If n = N and p > 0, we
conclude that

Cn—l CN_I

d[In1Iﬂ+PJ < 1 _ Cd(‘Tl:IEJ = 1_ ¢

d(xy,T2) < £.

Thus (z,)]" 18 a Cauchy sequence as claimed.

This solution has been written in terms of the metric d(r,y) between
r and y instead of |r — y| to emphasize that it works perfectly well for a
sequence (r,)7" in any metric space provided there is a constant ¢ satisfying
the hypothesized inequality. In this form the exercise forms the key part of
the proof of a very important theorem about complete metric spaces called
the Banach Fired Foint Theorem or the Contraction Mapping Principle.
We will study this theorem and some of i1ts consequences in Chapter 5. #



o 1E-22. (a) If z,, and y, are bounded sequences in I, prove that

limsup(zy + Yn) < limsup x, + lim sup y,.

(b) Is the product rule true for lim sups?

Suggestion. Show that if = = 0, then =, +y, < imsup z, +limsup y, +=
for large enough n. G

Solution. (a) Let 4 =limsupz, and B = limsupy,. Then A and B are

(b)

both finite real numbers since (z,)7" and (y, )" are bounded sequences.
Suppose £ > 0. There are indices Ny and Ny such that =, < A+ /2
whenever n = N} and y, < B + =/2 whenever n = N,. Let N =
max(Ny, N2). If n = N, we have

In+iyn<tn+B+s/2<A+B+e

Since this can be done for any = > 0, we conclude that x,, + y, can have
no cluster points larger than A+B. Thus

lmsup(r, + yn) < A+ B = limsupz, + imsupy,

as claimed.

We cannot guarantee equality. The inequality just established could be
strict. For example, consider the sequence defined by z, = (—1)" and
yn = (—1)""'. Then limsupz, = limsupy, = 1, but z, + y, = 0 for
each n, so limsup(z, + y) = 0.

There does not seem to be any reasonable relationship which can be
guaranteed between the two quantities lim sup(z,y,) and (limsupx,) -
(limsup y, ). Each of the possibilities “<", “=", and “>" can occur:
Example 1. Let {z;)7° be the sequence (1,0,1,0,1,0,...) and {y,}7° be
the sequence (0,1,0,1,0,1,...). Then limsupz, = limsupy, = 1. But
Tnyn = 0 for all n. We have

limsup(z,y,) =0< 1= (limsupz,) - (imsupy,).

Example 2. Let z,, = y, = 1 for each n. Then limsup z, = limsupy, =
1. But z,y, = 1 for all n. We have

limsup(rpysn) =1 = (limsupx,) - (lmsup y, ).

Example 3. Let {z,)7" be the sequence (0,—-1,0,—-1,0,-1,0,...} and
{yn)7" be the sequence (0,-1,0,-1,0,—-1,...). Then limsupz, =
limsupy, = 0. But z,y, = 0 is the sequence (0,1,0,1,0,1,...). We
have

limsup(z,y,) =1> 0= (limsupx,) - (limsupy, ).



¢ 1E-25. We say that P < @ if for each x € P, there is a y € Q with
T = y.

(a) If P < (), then show that sup(F) < sup((}).
(b) Is it true that inf(P) < inf(Q)?
(c) H P<Qand Q < P, does P = Q7

Solution. (a) If x € P, then there is a y € ) with z < y < sup(@Q. So
sup () is an upper bound for P. Thus sup P < sup () as claimed.

(b) Not necessarily. It is possible that inf P > inf Q. Consider P = [0, 1] and
@ = [-1,1]. Then P < @ but inf P > inf Q.

(c) Again, not necessarily. It is possible that P and () are different sets even
it P <@ and @ < P. Consider, for example, P=R\ Q, and @ = Q.
Here is another: P = {1} and ¢ = {0,1}. Then P < @ and @@ < P, but
P # Q.

L

o 1E-26. Assume that A ={a,,|m=123,... andn=1,23,...} 1s
a bounded set and that am, n = ap , whenever m > p and n = ¢. Show that

lim ag,, = sup A.
T —O

Solution. Since A 15 a bounded, nonempty subset of B, we know that
¢ = sup A exists as a finite real number and that a; ;. < ¢ for all j and k. For
convenience, let b, = a, ,. If n < k, we have b, = a,, ,, < aj; = b.. So the
sequence (b,)7" is increasing and bounded above by c. So b = lim, ... b,
exists and b < ¢. Let d < ¢, then there s a ag; in A withd < ai; < c. It
n > max(k, j), then

d<ap;<tpp="by <b, ., =....

So b =lim b, > d. This is true for every d < ¢, so b = ¢. We have inequality
in both directions, so

lm a,, = lim b, =b=c=supA

TL—+ 20 T— 20

as claimed. +*



o 1E-28. Let r, be a convergent sequence in B and define A,, = sup{z,,
Tpy1,---} and B, = inf{z_ .z . ,,...}. Prove that A, converges to the
same limit as B, which in turn is the same as the limit of z,,.

Solution. Suppose x, — a € R. Let £ = (. There is an index N such that
a—s < 1 < a+cwhenever k > N. Thus ifn > Nwehavea—=s < & < a+=
for all z in the set S,, = {r,,Tn4+1,Tn4o, ... }. Thatis, a—e is a lower bound
for 55, and a + £ i1s an upper bound. Hence

a—zs< By=mfS; <supS, =4, <a+-=.

So
|4, —a| <« and |B, —a| <=

whenever i = N. We conclude that

Im A, =a= lim B,

T— Fi—s O

as claimed. &

o 1E-30. Let V be the vector space C([0,1]) with the norm || f||.. =
sup{|f(z)| | = € [0,1]}. Show that the parallelogram law fails and con-

clude that this norm does not come from any inner product. (Refer to
Exercise 1E-12.)

Solution. Let f(r) = z and g(z) = 1 — x. Both of these functions are
in C([0, 1)), and || f|., = sup{ | z € [0,1]} = 1 and || g |, = sup{l — |
r € [0,1]} = 1. For the sum and difference we have, (f + g)(z) = 1 and
(f —g9)(z) =2z~ 1. So

[ f+gl.+If-gll.=1+1=2

while
2| FIIZ + 292 =2-12+2-12 =4,

Since 2 and 4 are not the same, we see that this norm does not satisfy the
parallelogram law. If there were any way to define an inner product (-,-)
on C([0,1]) in such a way that || h||>, = (h,h) for each h in the space, then
the parallelogram law would have to hold by the work of Exercise 1E-12(a).
Since 1t does not, there can be no such 1inner product.

Another example which is useful for other problems also is shown in the
figure. We let f and g be “tent functions” based on intervals which do not

overlap. For example we can use the subintervals [0,1/2] and [1,/2,1] of the
unit interval as illustrated in the figure.

Ignore the figure!

For these choices of f and g, we have

I flle=lglle=If+gll.=1f-gll.=1
S0
2 2
If+all 2+1f-gll =2
while
20 flloo” +2l gl = 4.



Since 2 is not equal to 4, the parallelogram law fails for these functions
also. )



