Exercises within a Section: 1.1-2 means Section 1.1 problem #2 etc...

&~ Watch out! To save paper and spaces, some solutions may not be in the proper order.
You should be able to find them. ( BZEEBNIEF O EEAERE LWIER - BAXRTE "ZHIR
ROt 7S o ARIRFEEE—T )

“®"You are required to reproduce or to paraphrase of the "Solution" (NOT the "Sketch") to
a problem. (EHZEBAMEEE - 2FE Solution B985 - T ARE Sketch BIZR{D ! Sketch BIED
RREHRARERN idea STE - )

‘" Do not skip over problems that you think are complicated. We can still ask you part
of the steps in a test. ( AZBEMESHIBREMNWERE  BMZABDOEEER ! )

¢ 3.1-4. Let 3 — x be a convergent sequence In a metric space and let
A={

Ty, Ta,...}U{z}.

(a) Show that A is compact.

(b) Verity that every open cover of A has a finite subcover.

Suggestion. Parts (a) and (b) might as well be done together since (b)
is the definition of compactness. ")

Solution. (a) Since the assertion in part (b) is actually the definition of
compactness, we could do both parts of the problem together by doing
(b). For interest, we present an argument for part (a) using Theorem
3.1.5. When we are all done, the reader may agree that checking the
abstract definition seems easier.

We know that the set A 1s closed from previous work. It is also totally
hounded. If £ = 0, then There is an N such that d(xp, ) < £ whenever
k> N. 5o xp € D(z,g) for such n. Since z is also in Dz, £), and
z; € D(xj, =), we have A C Dz, =) U U;’;l] D(x;,z). Thus A is totally
bounded. So A 15 a closed, totally bounded subset of the metric space
M . If we knew that M was complete, this would show that A is compact.



But unfortunately we do not know that. Thus to pursue this method we
need to show that 4 is complete even though M might not be.

Let {yn}i be a Cauchy sequence in A. So each of the points y,, is either
equal to = or to one of the z;. We need to show that this sequence
converges to some point in A. Let ¢ = 0. Then there are indices K and
N such that d(yn,p.¥n) < £/2 and d(z},x) < £/2 whenever n = N,
k= K, and p = 0. We distinguish three cases.

CASE ONE: It y, is eventually equal to zp, for some index ko, then the
sequence (y,)7° certainly converges to xy,.

CASE TWO: If all but finitely many of the y, are among the fimtely
many points {z;,xs,...zk }, then there are only finitely many different
distances involved among them. If thev are all 0, then we are in CASE
ONE. If all but finitely many are ), we are still in CASE ONE. If not,
then one of the finitely many nonzero distances must occur infimtely
often and the sequence could not have been a Cauchy sequence.

CASE THREE: If we are not in CASE ONE or CASE TWO, then there
are infinitely many indices n for which y,, is not in the set {z,,x, ... x5 }.
We can pick an index n; > N such that y,, = zy, for an index k; > K.
If n = n;, we have

d(Yn.T) = d(Yn,Un; ) + d(¥n,, ©) = d{yn. yn, ) + d(zp;, T)
<efl4e/2=-

So. in this case, y, — =. Every Cauchy sequence in 4 converges to a
point in 4. So A4 is complete. The set 4 is a complete, totally bounded
subset of the metric space M, so it is a complete, totally bounded metric
space in its own right and is compact by Theorem 3.1.5.

(b) This assertion is the definition of compactness. Suppose {Ug}scp is any
collection of open subsets of M with A € [J;_p Ug. (The set B is just
any convenient set of indices for labeling the sets.) Then there is at least
one index {3 such that r € Ug,. Since Ug, is open and x; — x, there is
an index K such that z; € Ug, whenever k = K. For the finitely many
points Iy,Tq,...,Tk 1, there are indices Ug,,Ug,, ... ,Us,_, such that
T € Ug,. So

A={z1,32,... }U{z} C Usy UUs LU, U--- U Upy_,.

Thus every open cover of A has a fimite subcover, so A 1s compact. #

o 3.1-5. Let M be a set with the discrete metric. Show that any infinite
subset of M is noncompact. Why does this not contradict the statement in
Exercise 3.1-47



Sketch. A sequence converges if and only if it 1s eventually constant. This
does not contradict Exercise 3.1-4 since the entries in such a convergent
sequence form a finite set. Y

Solution. Let A be an infinite subset of M. Since we are using the discrete
metric, single point sets are open. In fact, {z} = D(z,1/2) We certainly
have A = |J, - {z} = U, 24 D(x,1/2). This is an open cover of the set A
which uses infinitely many sets, and, since they are pairwise disjoint, we
cannot omit any of them. There can be no finite subcover. Thus A4 is not
compact.

If {xy)7° is a sequence in A converging to r, then there must be an index
K such that d{z,z;) < 1/2 whenever k > K. But since we are using the
discrete metric which only has the values 0 and 1, this forces d(z, ;) =0
and so rp = x. Thus r;, = r for all k = K and there are only fimitely many
points in the set {z;,z2...} U {z}. Such a finite set of points is compact,
and the statement of Exercise 3.1-4 is not contradicted. &

¢ 3.2-1. Which of the following sets are compact?

(a) {reR|0<z <1 and z is irrational }
(b) {(z.y) e R*|0<z <1}
(¢) {(z.¥) e B [zy =1} n{(z,y) |2* +y* < 5}

Answer. None of them.

¢

Solution. (a) No. The point 1/2 isnot intheset A={zceR|0<z <
1 and x is irrational }, but every interval around it contains irrational
numhers which are in A. The complement of 4 is not open. The set 4

is not closed. It cannot be compact.

(b) No. The set B = {(z,y) € R? | 0 < = < 1} is not bounded. It is an
infinite “vertical” strip containing the points (1/2,y) for arbitrarily large

y. Since B is not bounded, it cannot be compact.

(©) No. The st € — {(5.9) € B | 1y > 1) 0 ((5.) B2 | 2442 < 3
5/9)

iz bounded, but it is not closed. The point (4/5/2,
boundary of C' but not in C'. Since C' is not closed it cannot be compac

15 on the

t.
L

o 3.3-4. Let zp — 7 be a convergent sequence in a metric space. Let 4 be

a family of closed sets with the property that for each A € A, there is an
N such that k = N implies x}. € A. Prove that = € N.A.

Solution. Let A be one of the sets in the collection 4. Then there is
an N such that zy, TN, TN42, TN 4+3,... are all in A. Since rp — = as
k — =0, this sequence of points in A converge to x. Since A 1s closed, we

have x € A. Since this is true for every set A in the collection A, we have
r £ [].A as claimed. ¢



¢ 3.2-5. Let A be an infinite set in K with a single accumulation point in
A. Must A be compact?

Answer. No. (9]

Solution. The set might not be bounded. Consider the example
A=1{0,1,2,1/2,3,1/3,4,1/4,5,... }.

There is one accumulation point, 0, which is in 4. But A is not hounded,
s0 it is not compact.

The wording of the gquestion is a bit ambiguous. It could be taken to
allow the possibility that there was another accumulation point which was
not in 4. That would also prevent the set from being compact. That route
to noncompactness would have been eliminated by a wording something
like: “Let A be an infinite set in R™ with a single accumulation point which
15 m A. Must A be compact?” L

¢ 3.3-2. Is the nested set property true if “compact nonempty” is replaced
by “open bounded nonempty”?

Answer. No. 3

Solution. The words “compact nonempty” may not be replaced by “open
bounded nonempty” in the nested set property and still retain a valid
assertion. The modified statement would be:

Conjecture. Let F, be a sequence of nonempty open bounded subsets of
a metric space M such that F.., C Fi. for each k. Then there is at least
one point in (—, Fr.

This assertion is false. For example, we could use the sequence of open
intervals Fr. =|0,1/k[={z e R |0 <z < 1/k} for k =1,2,3,.... Each of
these is a nonempty open interval, and

FHFo2FK2F2---DF2Fn2....

But there is no real number which is in all of these intervals (Archimedean
Property). So the intersection is empty. 4



¢ 3.4-1. Determine which of the following sets are path-connected:

(a) {z € [0,1] | z is rational}

(b) {(z,y)eR? |zy=land z > 1} U{(z,y) e R? |zy <1 and z < 1}
(©) {(2.3,2) €R? | 22 + 3% < 2} U {(m,0,2) | 2% + 12 + 22 > 3)

(@) {(z.9) €R? [0 <z <1} U{(2,0) |1 <z <2)

Sketch. (a) Not path-connected. Any path between two rationals must
contain an irrational.

(b) Path-connected.
(¢) Path-connected.

(d) Not path-connected. If the point (0,1) were added, it would be path-
connected. 9]

Solution. (a) The set A = {z € [0,1] | € Q} is not path-connected.
This is probably intuitively clear since any path from (0 to 1 would have
to cross through irrational points such as 1/+/2 which are not in A.
Actually proving this is somewhat delicate. See Exercise 3.4-2.

(b) Theset B= {(r,y) e B2 |zy = land z > 1} U {(z,y) € B® | zy <
1 and = < 1} is path-connected. It consists of two solid regions linked
at the point (1,1). Sketch it.

(c) The set C = {(z,9,2) € B3 |2 + ? < 2} U{(.0,2) € B® | 2 + 12 +
z? > 3} is path-connected. It is the set of points inside the paraboloid
of revolution {(z,y,2z) € B* | 2% + y* £ 2z} lying outside the sphere
{lz,y,2) € B* | 22 + y* + 2% = 3}. Since the paraboloid extends only
above the zy-plane, z = 0, this solid set has only one piece and is path-
connected.

(d) Theset D = {(z,y) e R? |0 <z < 1} U {(z,0) e R? |1 < = < 2}
is not path-connected. The first term of the union is a wertical strip
not containing any of its right boundary line, {(z,y) | = = 1}. The
second term is the line segment along the r—axis from (1,0) to (2,0)
but not including either end. The point (1,0) is not in the union, but
any plausible continuous path from a point in the strip to a point in the
segment would have to go through it. 4



¢ 352 Is{(r,y)eR?|0<z<1}u{(z,0) |1 <z < 2} connected?

Prove or disprove.

Answer. Connected. O

Solution. let A={(z,y)eR?|0<z<1}and B={(z,0) |1 <z <
2}. Set €' = AUB. The set B is certainly path-connected, hence connected.
It I and V were any pair of open sets which proposed to disconnect C,
then B would have to be entirely contained within one of them or they
would disconnect B. Say B C V. Now the set A4 1s also path-connected.
We can get from any point (x,y) in A to any other point (c,d) in A by
proceeding horizontally from (z,y) to (z,d) and then vertically from (z, d)
to (c,d). So A is also connected and must be completely contained within
one of the sets U or V. If A C V, then we would have C = AUB C V,
so the pair {U,V'} would not disconnect €. On the other hand, if A C U,
then the point (1,0) would be in IV since it is in A. But then (z,0) would
be in U7 for = shghtly larger than 1 since U 1s open. But these points are
in B, so they are also in V. That is, for = slightly larger than 1 we would
have (z,0) e UnV NnC. Once again, the sets U and V fail to disconnect
. We conclude that ¢ must be connected. &

¢ 3.5-4. Discuss the components of

(a) [0,1]U[2,3] C R.
b) Z={...,-2,-1,0,1,2,...} CR.
(¢) {z € [0,1] | z is rational} C R.

Answer. (a) The connected components are the sets [0, 1] and [2, 3].
(b) The connected components are the single point sets {n} such that n € Z.

(¢) The connected components are the single point sets {r} such that r
Qn[o,1]. Y



Solution. {a) Let A = [0,1] U [2, 3]. Each of the intervals [0, 1] and (2, 3] is

(b)

(<)

connected. But any larger subset of 4 cannot be connected. For example,
if [0,1] € D C A, and there is a point = € DN (2, 3], then the open sets
U={reR|z<3/2}and V = {z e R | xr > 3/2} would disconnect
D. Thus [0,1] is a maximal connected subset of 4 and is one of its
connected components. Similarly, if [2,3] € D C A and there is a point
z € D [0,1], then the same two sets would disconnect D). So [2,3] is
a maximal connected subset of 4 and is a connected component of A.
Thus the connected components of A are the intervals [0, 1] and [2, 3].
Let B = Z C R. The single point sets {n} with n € Z are certainly
connected. But, if D C B has two different integers n < m 1n it, then the
opensets U={zeR|z<n+(1/2)}and V={zeR|z>n+(1/2)}
would disconnect I). So no connected subset of B can contain more than
one point. The connected components are the single point sets {n} such
that n € &.

Let C = {z € [0,1] | z € Q} C R. The single point sets {r} with r €
N[0, 1] are certainly connected. But, if D C ' has two different rational
numhbers r < sin it, then there is an irrational number z with r < 2 < s.
(z=r+(s—r)/v2 will do.) The open sets = {r € R | x < z} and
V ={reR|zr >z} would disconnect IJ. So no connected subset of
(' can contain more than one point. The connected components are the
single point sets {r} such that r € Q. ¢4

L+

3E-1. Which of the following sets are compact? Which are connected?

(a) {(z1,72) € R? | |m| < 1}

(b) {z € R" | |l=|| < 10}

(0) {z e R" 1< |lzl| < 2)

(d) Z = {integers in R}

(e) A finite set in &

(f) {x € R™ | ||z|| =1} (distinguish between the cases n = 1 and n = 2)
(g) Perimeter of the unit square in R*

(h) The boundary of a bounded set in B

(1} The rationals in [0, 1]

(j} A closed set in [0, 1]

Answer. (a) Connected, not compact.

(b) Compact and connected.

(c) n = 1: compact and not connected. n = 2: compact and connected.

(d) Neither compact nor connected.

(e) Compact, but not connected if it contains more than one point.

(f) m = 1: compact and not connected. n = 2: compact and connected.

(z) Compact and connected.

(h) Compact. Not necessarily connected.

(1) Neither compact nor connected.

(j) Compact. Not necessarily connected.



Solution. (a) The set 4 = {(z,,z5) € R* | |z;| £ 1} is an infinitely

(b)

()

(d)

(e)

long vertical strip. It is closed since it contains its boundary lines, the
verticals z; = 1 and x; = —1. It 1s not compact since it is not hounded.
It contains the entire vertical xg-axis, all points (0, z2) and the norm of
such a point is |r;|. This can be arbitrarily large.

The set B = {x € R* | ||z|| < 10} is connected since it is path-
connected. An ecasy way to establish this is to go from one point to
another first by going in to the origin along a radius and then out to the
second point along another radial path. It is bounded since its points
have norm no larger than 10, and it is closed since 1t includes the bound-
ary sphere where || x| = 10. It is a closed and bounded subset of R", so
it 15 compact by the Heine-Borel theorem.

Theset C = {z € R" |1 < || z|| < 2} is closed since it contains both
boundary spheres, the points where ||z || = 1 and those where || z || = 2.
It is bounded since all of its points have norm no more than 2. It is
a closed bounded subset of B™ and so is compact by the Heine-Borel
Theorem. If n = 2, then it is path-connected. This is fairly obvious but
not quite so easily implemented as in part (b). We cannot go all the way
in to the origin. If r and y are in C', we can proceed from z in to the
sphere of radius 1.5 along a radial line. Then we can go along a great
circle on that sphere cut by the plane containing x, y, and the origin to
the point on the same ray as y, then along that radial path to y. Thus C'
is path-connected and so connected if n = 2. If n = 1 it is not connected
since it is the union of two intervals, [—-2, —1] U [1, 2].

The set ) = Z = {integers in R} is not bounded (Archimedean Princi-
ple) so it is not compact. It is certainly not connected. The open sets
U={zeR|z<1/2}and V ={z e R |z > 1/2} disconnect it.
Suppose E is a finite set in R. Say E = {z1,22,...,2n}. If {Uslaca
is any open cover of E, then for each k there is an index «;, such that
zy € Uy,. So E C |Jp_, Uy, . Every open cover of E has a finite subcover.
So F is compact. If E has only one point then it is certainly connected. If



it has more than one, then the opensets U = {zr e B | = < (z; 4+ x2)/2}
and V ={z e R |z > (r; + x;)/2} disconnect it.

(f) Theset F = {zr € R" | || z| = 1} is closed and bounded in R" and so
compact by the Heine-Borel theorem. If n = 1, then F = {—1,1} and
is not connected. If n = 2, then we can proceed from any point x in F
to any other point y in F along the great circle cut in F by the plane
contaimming r, y and the origin. So, if n > 2, then F 1s path-connected
and so connected.

(g) Let G be the perimeter of the unit square in R*. Then & is a closed and
bounded subset of R? and so is compact by the Heine-Borel Theorem.
It is certainly path-connected. It is built as the union of four continuous
straight line paths which intersect at the corners. So it is connected.

(h) Let S be a bounded set in B and let H = bd(5). Then H is a closed
set since 1t 1s the intersection of the closure of S with the closure of its
complement. Since S is bounded, its closure is also bounded. (There is a
constant r such that |z| < r for all rin S. If y € cl(5), then there is an =
inSwith |z —y| < 1. Then |y| < |y —z|+|z| < 1+r.So |y| <r+1 for
all y in €l(5).) Since H C ¢l(5), it is also bounded. Since H is a closed
bounded subset of B!, it is compact by the Heine-Borel Theorem. The
set H = bd(S) is most likely not connected. For example, if S = [0, 1],
then H is the two point set {0, 1}, which is not connected. (Can you
figure out for which sets S we do have bd(S) connected?)

(1) Let I =@ n[0,1]. Then I is not closed. Its closure is [0,1]. So it is not
compact. It is not connected since the opensets U = {r e R |z < 1//2}
and V = {r e R | z > 1/v/2} disconnect it.

(7) Let J be a closed set in [0, 1]. Then J is given as closed, and it is certainly
bounded since |z| < 1 for every = in J. Since it is a closed bounded set
in B!, J is compact by the Heine-Borel Theorem. It will be connected
if and only if it is a closed interval. If = and y are in J and there is a
point z with # < » < y, then the open sets U = {x e R | z < z} and
V={zeR|z >z} disconnect .J. »

o 3E-2. Prove that a set 4 C E™ 1= not connected iff we can write 4 C
FiUF;, where Fi, Fs areclosed, ANFiNF =@, F1NAZ£ @, Fond £ @.

Suggestion. Suppose [/} and Us disconnect A and consider the sets F; =
M\ U, and Fo = M\ Us. ¢

Solution. By definition, A is not connected 1f and only if there are open
sets [/} and U, such that

1. UlﬂUzﬂA=ﬂ



2. Uy M A is not empty

3. Uz A is not empty
4. ACU, Uls.

But Uy and Us; are open if and only if their complements Fy = M \ U; and
Fy; = \Us are closed. Using DeMorgan’s Laws, our four conditions translate
to

. huFuM\A) =M
2. FiU A is not all of M
3. FoUuAdisnot allof M
4 M\NA2DFNnF,.

Since none of the points in A are in M % A, condition 1 is equivalent to
A C Fy UF;, Condition 4 is equivalent to AN F; N Fz = §. So, with a bit
more manipulations, our conditions become

1. ACFUF,

2. FinA=M\Uy)nA=(M\Uh)n(M\(M\A))=M\(U;u(M) A4)).
This is not empty since there are points in I7; N A and these cannot be
in U;.

3. FonA=(M\Ua)nA=(M\Uz)n(M\(M\A)) =M\ (UL (M} A)).
This is not empty since there are points in I/} M A and these cannot be
in Uz.

4. AnFinF;=0.

These are exactly the conditions required of the closed sets Fy and F5 in
the problem.
In the converse direction, if we have closed sets F; and F, satisfyving

. ACFHUF;

2. F; N A not empty
3. Fan A not empty
4. AnFynF; =0,

we can consider the open sets Uy, = M \ Fy and Uy = M ' Fy and work
backwards through these manipulations to obtain

1. Uhnlhnd= (1]

2. Uy M A 1s not empty
3. Uzn A is not empty
4. ACUhu UZ1

so that A is not connected. [ )



¢ 3E-5. Show that the following sets are not compact, by exhibiting an
open cover with no finite subcover.

(a) {zcR™ ||z <1}
(b) Z, the integers in R

Solution. (a) Suppose A = {xr € R™ | ||z || < 1}. This set is not closed,
so it should not be compact. For each integer k& > 0, let Uy, = {x € R? |
x| < k/(k+1)}. Then the sets U}, are open balls and are contained in
A. Furthermore, U, CU; C U3 C---ClUp Tl C.... 1tz e A, then
there is an integer k such that 0 < |[z| < &/(k+1) < 1. So x € Us.
Thus A = |J;Z, Ur. However, the union of any finite subcollection of
this open cover is contained in Uf:l U, = Uy for some N. If we put
r=(N/N+1))+ (1 - (N/N+1))/2, then N/(N +1) <r < 1. The
point z = (r,0,...,0) € A\ Uy. So no finite subcollection can cover A.
This open cover has no finite subcover. The set A 1s not compact.

(b) Let B = Z, the integers in B. For each integer k, let Uy be the open
interval = |k — (1/3), k + (1/3)[. Then each Uy is an open subset of R,
and BnUy = {k}. So the infinite collection {Uy, }1cz is an open cover of
B = Z C B. There can be no finite subcover since if I}, 1s deleted from
the collection, then the integer n is no longer included in the union. 4

o 3E-7. Let x; be asequence in B™ that converges to x and let Ap = {x;,
Tpy1s---f. Show that {z} = M2 cl(Ag). Is this true in any metric space?

Sketch. Start with cl(A4;) = {z} U {2k, 241, .. }. Remember to show
that if y and = are different, then y ¢ cl{ Ax) for large k. (No such xp can
be close to y since they are close to x.) Give detail. O

Solution. One can proceed directly as in the sketch or one can employ
the ideas of Exercise 3E-6. The basic idea is essentially the same. Let
Fi. = cl{A). From Proposition 2.7.6(i1), we know that = € ¢l(A). From
Exercise 2.7-2 we know that {z} U A} is closed. So Fj, = cl(Ag) = {x} U As.
From Exercise 3.1-4 (or directly) we know that Fj. = {x} U A, is compact.

Since Fry1 = {z}U{Trs1, Thesz,... } C {2} U {Th, Thyr, Ths2, ... } = Fi,
they are nested. From the nested set property, there must be at least one
point in their intersection. But we already know that since x is certainly
in the intersection.

Let = = (. Then there is a K such that d(x, r1) < /2 whenever k = K.
So, if z and w are in F} for such a k, each of them must be equal either
to z or do some x; with j > K. So d(z,w) < d(z,z) + d(z,w) < =. So
diameter(Fi) — 0 as k — oc. As in Exercise 3E-6, this implies that there
can be no more than one point in the intersection. (The distance between
two points in the intersection would have to be 0.) So {z} = [, cl(Ax)
as claimed. All the steps work in any metric space. So the assertion is true
in every metric space. L

o 3E-9. Determine (by proof or counterexample) the truth or falsity of
the following statements:

(a) (A is compact in B") = (E™\ 4 is connected).
(b) (A is connected in B") = (BR"\ A is connected).



(¢) (A is connected in B} = (A is open or closed).

(d) (A= {z€R"||jz]| <1}) = (R™\A is connected). [Hint: Check the
cases n =1 and n > 2]

Answer. (a) False; [0, 1] is compact, but &\ [0, 1] is not connected. In B™,
A={zreR"|1<|z| <2} is compact, but ™ | A is not connected.
(b) False; same examples as in (a).
(c) False; ]a,b] is connected but is neither open nor closed.
(d) False for n =1, true for n = 2. (R" \ A is path-connected if n = 2.) {

Solution. (a) Given above.

(b) Given above.

(c) Given above.

(d) If n =1, then A is the closed interval [—1, 1], and its complement R\ A4,
is the union of two disjoint open sets, | — oo, —1[U]1, 00| and is not
connected. In more than one dimension, A is the exterior of the unit ball
and is path-connected. Connect each point to the point on the same ray
from the origin on the sphere of radius 1. Then connect any two points
on this sphere by following a great circle route (a circle containing those
two points and the origin). »

o 3E-17. Let K be a nonempty closed set in E™ and = € R™\ K. Prove
that there is a y € K such that d(z,y) = inf{d(z,z) | z € K'}. Is this true
for open sets? Is it true in general metric spaces?

Sketch. As in Worked Example 1WE-2, get 2z, € K with d(z,z.) —
d(z,K) = inf{d(z,2) | = € K}. For large k they are all in the closed
ball of radius 1 4+ d(z, K') around z. Use compactness to get a subsequence
converging to some z. Then z € K (why?) and d(z,;), ) — d(z, z). (Why?)
So d(r, z) =d(x, K). (Why?) This does not work for open sets. The proof
does not work unless closed balls are compact. 9]



Solution. Let z € R™\ K and S = {d(z,z) € R | = € K}. Since K
15 not empty, neither 18 S, and 5 1s certainly bounded below by 0. So
a = inf § exists as a nonnegative real numhber. There must be a sequence
(tx)7" of points in § with £ — a, and thus a sequence (z)7® of points
in K with d(x, z:) = & — a. There is an N such that d(z,z;) < a+1
whenever k > N. So for these k we have z, € F = {2 | d(z,2) < a + 1}.
The set F i1s a closed bounded set in B™ and so i1s compact. The sequence
EK L EK 41, 2K 12, ... in F must have a subsequence converging to a point in
F. Thus there are indices k(1) < k(2) < k(3) < ... and a point = € F with
Zp(j) — 2 a8 j — oo. Since each z; isin K and K is closed, we have z € K.

From the triangle inequality we know that d{zp(;),x) £ dizg),2) +
d(z,z) and that d(z,z) < d(z,zk;)) + d(2s(5), ). So

d(z,z) — d(z, 2r(5)) < d(2k(5), T) < dl2p(5),2) +d(z, ).

Since d(z, zy(j;) — 0, we conclude (Sandwich Lemma) that d(z;y, ) —
d(z, ). But, we know that d(zy( ), r) — a. Since limits are unique, we must
have d(z,z) = a = d{x, K) as desired.

This certainly does not work for open sets. If K = {(x,y) € R? | #°49* <
1} is the open unit disk in B? and v = (1,0), then inf{d(v,w) | w € K} =0,
but there certainly is no point w in K with d{v,w) = 0 since v is not in K.

The proof just given used the fact that closed bounded sets in E™ are
sequentially compact. This is not true in every metric space, and, in fact,
there are complete metric spaces in which the assertion is false.

We will see in Chapter 5 that the space V = C([0, 1], R) of all continuous
real valued functions on the closed unit interval with the norm || f|| =
sup{|f(z)| | z € [0.1]} is a complete metric space. For k = 1,2,3,..., let
fi be the function whose graph is sketched in Figure 3-2. Then || fi. || =
1+ (1/k), and, if n and k are different, then each is ) wherever the other
is nonzero. So || f, — fi || = 1. So the f; are all smaller than 2 in norm
and form a bounded set. Furthermore the set K = { f1. f2. fa... } can have
no accumulation points and so is a closed bounded set. || fy — 0] — 1 as
k — =0, but the distance is not equal to 1 for any function in the set.

¢

o 3E-19. Let V, € M be open sets such that ¢l(V,) 1s compact, V, # @,
and cl(V,}) € V,_;. Prove N2V}, # @.

Sketch. cl(Voy1) © Vi Ccl(Vy). Use the nested set property. "

Solution. Let K, = cl(V} ), we have assumed that the sets K, are com-
pact, not empty, and that cl(V}) © Vi._, for each k. Applying this with
E=n+1 gives

S0 we have a nested sequence of nonempty compact sets. By the nested set
property, there must be at least one point rg in the intersection [}~ K. For

each n we have zp e K, — 1 € V. Thus xp ["]fﬂ V5. and this intersection
is not empty.



¢ 3E-20. Prove that a compact subset of a metric space must be closed as
follows: Let x be in the complement of A. For each y € A, choose disjoint
neighborhoods U, of y and V}, of z. Consider the open cover {Uy }y=a of A
to show the complement of A 1s open.

Solution. Suppose A is a compact subset of a metric space M, and sup-
posere M\ A Ifye A, then let r =d(z,y)/2 > 0, and set U, = D(y,r)
and V, = Dz, r). Then U, and V}, are disjoint open sets with y € U, and
r € V,. We certainly have A C | J U,. Since A is compact, this open
cover must have a finite subcover:

yeA

ACU,UU,U---UU,,.

It p=min{d(z,yr) |1 <k <N}, then
Ar

D(x,p)NAC D(z,p) N (Uy, VU, U---UU) = | J (D(x,p) NT,) = 0.
k=1

Thus D(z, p) € M\ A. This shows that M \ A is open. so A is closed as
claimed. &

o 3E-23. Let J denote the rationals in E. Show that both ) and the
irrationals B\ are not connected.

Sketch. @ <] — oo, v2[U[v2,0c[; both intervals are open, they are
disjoint. They disconnect Q. Similarly R\Q < |—oc,0[ U ]0, o[ disconnects
R\ Q. @

Solution. To show that Q € R is not connected, recall that /2 is not
rational. The two open half lines U = {x e R |z < V2} and V = {x €
R | x > +/2} are disjoint. Each intersects Q since 0 € U and 3 € V. Their
union is B {12} which contains @. Thus U and V disconnect Q.

To show that R ' @ is not connected, we do essentially the same thing
but use a rational point such as () as the separation point. Let I = {z &
R|z<0}and V ={reR |z >0} Then U and V are disjoint open half
lines. Each intersects R\ ) since —+/2 € U and +2 £ V. Their union is
R\ {0} which contains R\, Q. Thus I/ and V disconnect R\ . 4

o 3E-24. Prove that a set A C M is not connected if we can write A as
the disjoint union of two sets B and C such that BnA# @, CnAdA#a@,
and neither of the sets B or C has a point of accumulation belonging to
the other set.

Suggestion. Show cl(B) N C and cl(C') N B are empty. Show that the
complements of these closures disconnect A. G

Solution. Suppose A is a subset of a metric space M with nonempty
disjoint subsets B and C such that neither B nor €' has an accumulation
point in the other. Then cl(B) N C = @ since a point is in the closure
of B if and only if it is either in B or is an accumulation point of B.
None of these are in C'. Similarly, cl(C)nB = 0. Let U = M cl(B) and

V =M\ cl{C). Then U and V are open since they are the complements of



the closed sets cl(B) and ¢l(C'). Since Bnel(C) =0, we have B C V', and
since C'Nel(B) =0, we have C C U. In fact:

(1) UnV n A= To see this compute

UNnV =(M\d(B)n(M\d(C)) = M\ (cI(B) u(C))
C M\ (BUC) =M\ A.

(2) BCV,s0 ANV is not empty.
(3) CCU,s0 ANU is not empty.
() A=BuCcCcUUV.

So the open sets U7 and V' disconnect 4.
For a related result, see Exercize 3E-21. +

o 3E-27. Let A C K be a bounded set. Show that A is closed iff for every
sequence r, € A, msupz, € A and liminf z, € A.

Sketch. If x € cl(A), there is a sequence ()7 in A converging to x. If
the condition holds, then x € A. (Why?) So cl(4) € A, and A is closed.
For the converse, if A is closed and bounded, the lim inf and lim sup of a
sequence in A are the limits of subsequences, so they are in A. &

Solution. First suppose A is a bounded set in B and that limsup z,, and
liminf x,, are in A for every sequence (r,)7 of points in A. I = € cl{A4),
then there is a sequence (r,)]” of points in A converging to x. Since the

limit exists, we have

T = “linL Iy = le ial:_{f T = limsup x,.

By hypothesis, this is in A. This is true for every = in cl(4). So cl(A4) C A4,
and A is closed.

For the converse, suppose 4 is a closed, bounded set in B and that {z )
15 a sequence in A. Since A4 1s a bounded set, the sequence i1s bounded and
a = liminf x,, and b = lim sup x,, exist as finite real numbers. Furthermore,
there are subsequences r,,;) and xy(; converging to a and b respectively.
Since A is closed, the limits of these subsequences must be in A. ]



¢ 3E-30. Let U, be a sequence of open bounded sets in B™. Prove or
disprove:

(a) UgZ, Uk is open.

(b) Mi—, Uy is open.

(¢) Mie, (R™"\Uk) is closed.
(d) Ml (R™\U) is compact.

Answer. (a) Yes.

(b) Not necessarily.

(c) Yes.

(d) Not necessarily. O

Solution. (a) The union of any collection of open subsets of ™ is open,
so in particular | J;—, U} is open.

(b) The intersection of an infinite collection of open sets need not be open.
Boundedness does not help. Let U, = {v € B® | ||v|| < 1/k}. Each of
the sets Uy is open and bounded. But [,—, Uz = {0} which is not open.

(c) The sets R™\ U are closed since the Uy are open. The intersection of any
family of closed subsets of R™ is closed, so in particular (),_, (R™\ U)
is closed.

(d) As in part (c) the intersection is closed, but it need not be bounded. Let
Ui be the sets defined in part (b). Then U, 2 U, 2 U320 2.... S0

R\ U1) C (R"\U2) C (R"\Us) C....

Thus -
[ R\ Up) =R*\ U1 = {v e R*|||v| = 1}.
k=1
This set 1s not bounded and so 1s not compact. 4

¢ 3E-35. Let a € K and define the sequence a;,as,... in B by a; = a,

and a, =a2 | —a,_;+1if n > 1. For what a € R is the sequence

(a) Monotone?
(b) Bounded?
(e} Convergent?

Compute the limit in the cases of convergence.



Answer. (a) All a. If a =0 or 1, the sequence is constant.

(b)
(<)

0<a<1.
0<a<l. O

Solution. Let f(zr) = 2 — r + 1. Our sequence is defined by a; = a
and ap4 = flag) for n =1,2.3, ..... The graph of y = f(x) is a parabola
opening upward. Its vertex is at the point x = 1/2, y = 3/4.

(a)

(b)

For each n = 1 we have
__ 2 _ 2
Gn41 —Gp =dp —2ap, +1=(a, —1)" = 0.

So the sequence is monotonically increasing (or at least nondecreasing),
no matter what the starting point is. If a = 1, then the differences are
always 0 and the sequence is constant. If a = 0, then a; = 1, and the
sequence 1s constant beyond that point.

Ipe] = ay if and only if a, = 1, so the sequence is strictly increasing
unless there is some n with a, = 1. But a, = 1 if and only if a,_,
is either 1 or 0, and 0 has no possible predecessor since the equation
r? — r 4+ 1 = 0 has no real root. Thus the sequence is increasing for all
a and strictly increasing unless a =0 or a = 1.

The function f(x) = z* — x + 1 defining our sequence has an absolute
minimum value of 3/4 occurring at x = 1/2. Also f(0) = f(1) =1, and
0 <z<1, then3/4 < fzr) < 1. 0 < a; < 1, this shows that
0< flag) =ar1 = 1. If0 < a =a; <1, then it follows by induction
that 00 < a, <1 for all n, and the sequence is bounded.

It ap = 1, then ay, > a; > 1 for all m > k by part (a). Furthermore,

'[ﬂ-m+z - 'lm+1:| - '[ﬂ-m+l — ﬂm} = [ﬂm+1 - 1]2 - '[ﬂm - 1]2

= |:1":""a3'1't+1 _gﬂ'm+1 + 1] _{am - E':""rrt +1:|

=y — G — 2ams1 — am)

= (@m+41 +@m — 2)(Bm41 — Qm)
= 0.

So the differences between successive terms is increasing. The terms
must diverge to +o0o.

If a =a, = 1, then this analysis applies directly and the sequence must
diverge to +o00.

Ifa=a; <0, thena; = f(a1) = fla)=a* —a4+1=a*+|a|+ 1> 1.
So the analysis still applies and the sequence must diverge to +oc.
Combining these observations, we see that the sequence 15 bounded if
and only if 0 < a < 1.



(c) From parts (a) and (b}, we know that if 0 < a < 1, then the sequence is
a bounded monotone sequence in R and must converge to some A € K.
From part (b), we know that if a is not in this interval, then the sequence
diverges to 4+o0. Thus the sequence converges if and only if 0 < a < 1.
If the limit A exists, then apy7 — A and a2 —ap +1 — A% — A+ 1. Since
a1 = a2 —a, +1 and limits are unique, we must have A = A2 — A — 1.
So0=X—-2A+1= (A —1]2. Thus we must have m,, ... a, = A= 1.

The action of f on a to produce the sequence (a,}{ can be very effectively
illustrated in terms of the graph of the function y = f(z). Starting with a;
on the r-axis, the point (ay, f(a;)) is located on the graph of f. The point
iip..1 is then located on the r-axis by moving horizontally to the line y = x,
and then vertically to the z-axis. The fixed point 1 occurs when the graph
of f touches the line y = x. Repetition produces a visual representation of
the behavior of the sequence. See the figure.

(Sorry, no figure is provided. See if you can reproduce it on your own).

The iteration of the function f to produce the sequence {a,)7® from
the starting point a is an example of a discrete dynamical system. The
sequence obtained is called the orbit of the point. The study of the behavior
of sequences obtained from the iteration of functions is a rich field with
many applications in mathematics and other fields. It can lead to nice clean
behavior such as we have seen here or to much more complicated hehavior
now characterized by the term “chacs”™. A couple of nice references are:

An Introduction to Chaotic Dynamical Systems, Robert L. Devaney,
Addison-Wesley Publishing Company.

Encounters with Chaos, Denny Gulick, McGraw-Hill, Inc. ]

¢ JE-37. Let A,B c M with A compact, B closed, and An B = @.

(a) Show that there is an ¢ > 0 such that d(z,y) > = for all x € A and
ye B.
(b) Is (a) true if A, B are merely closed?

Sketch. (a) For each x € A there is a d; such that D(z, ;) € M\ B;
apply compactness to the covering {D(z,4,/2) |z € A}.

(b) No; let A be the y-axis and B be the graph of y = 1/x. &

Solution. (a) If either A or B is empty, then the assertion is vacuously
true for any = > 0. Otherwise for x € A, let A, = inf{d(x,y) | y € B}.
Then there is a sequence of points y;, Y2, Y3, ... in Bwithd(z, y.) — A,.
If A, = 0, this would say that y,. — z. Since B is closed, this would
say that x € B. But it is not since An B = . Thus A, > 0. We have



(b)

d(y,r) = A, for every y € B. If we pick any 4, with 0 < é; < A, then
we have d(y,z) > 8, for every y € B and r € D(x,6,) C M " B. So

AC UD(.T%T) C M\ B.

A

This open cover of the compact set A must have a finite subcover, so

there are points =, z2, T3, ... ay in A such that
le ‘51'1 'STN
ACD EI1T D Il,? U---uD .'I.'N,T f;;‘l«f\E
Let

and suppose r € A and y € B. Then thereisanindex jwith 1 < j < N
and r € D(z;,6,,/2) € M\ B. S0 d(z;,y) < d(z;,z) +d(z,y). This
gives

d(z,y) = d(x;,y) — d(z;,x) > 8; —d(z;,x) > d; — % - % - E

Sod({r,y) >cforallrin A and y in B as required.

This is not true if we only assume that both A and B are closed. Let
A={(0,y) eR* |yeR}and B={(z,1/r)eR* |z > 0}. Then A isa
straight line (the y-axis), and B is one branch of a hyperbola (the graph
of y = 1/z for x = 0). Each of these sets is closed and their intersection
is empty. But d((0,1/x),(x.1/r)) = — 0 as r — (. So no such £ can
exist for these sets. &



