Exercises within a Section: 1.1-2 means Section 1.1 problem #2 etc...

&~ Watch out! To save paper and spaces, some solutions may not be in the proper order.
You should be able to find them. ( BZEEBNIEF O EEAERE LWIER - BAXRTE "ZHIR
AUt o HARIREEE—T )

“®"You are required to reproduce or to paraphrase of the "Solution" (NOT the "Sketch") to
a problem. (EHZEBAMEEE - 2FE Solution B985 - T ARE Sketch BIZR{D ! Sketch BIED
R ERARERN idea BHE - )

‘" Do not skip over problems that you think are complicated. We can still ask you part
of the steps in a test. ( AZBEMESHIBREMNWERE  BMZABDOEEER ! )

o 2.1-4. Let B C R be any set. Define C = {z € R™ | d(x, y) < 1 for some
y € B}. Show that C' is open.

Suggestion. The set ' is a union of open halls. o

Solution. Let A = Uy-EU )y, 1).5ince each of the disks D(y,1) is an
open subset of B™ and A is their union, we know that A is an open set
by Proposition 2.1.3(i1). We will show that €' is open by showing that
C=A.lfye B and r is any point in R" with ||z —y| < 1, thenz € C
by the definition of the set C. So D(y,1) € C for every y in B. Thus

A= Uy-:H D(y,1) € C. In the other direction, if x € C, then there is a
point yin B withd(z,y) = ||z —y|| < 1.Sox € D(y,1) € A. Thus ' C A.
We have containment in both directions, so €' = A. Thus C is an open set

as claimed. ]

-'J - - 3
¢ 2.1-6. Show that E* with the taxicab metric has the same open sets as
it does with the standard metric.

Sketch. The key idea i1s that each “taxicab disk” centered at a point P
contains a “Fuclidean disk” centered at P and also the reverse. O

Solution. Recall that the “taxicab metric” on B2 is defined for points
P = (a,b) and @ = (z,y) by d1(Q,P) = |z — a| 4 |y — b|. The Euclidean
metric is defined by d2(@Q, P) = /(z — a)? + (y — b)2. Euclidean disks look
like the interior of a usual Euclidean circle, while a “taxicab disk”™ looks like
the inside of a “diamond”. The key idea is that each taxicab disk centered
at P contains a Euclidean disk centered at P and each Euclidean disk
centered at P contains a taxicab disk centered at P. See the figure.




di(Q. P =(lz—a|+|y—b|)* = (x—a)* +2|z —a| - |y — b + (y — b)°
> (z—a)’+ (y—b)? =do(Q, P)?

On the other hand, we know that for any real s and ¢ that 2st < s* +t2
since 0 < (s — )2 = s — 2st + t2. With s = |z —a| and t = |y — b|, this
gives

di(Q. P =(lz—a|+|y—b|)* = (x—a)* +2|z —a| - |y — b + (y — b)°
<2((z —a)? + (y— b)?) = 2ds(Q, P)?

Taking square roots gives
d2(Q, P) < di(Q, P) < V2d(Q,P) (+)

for every pair of points P and @ in B2, Denote the Euclidean and taxicab
disks around P of radius p by

Ds(P,p) = {P e R* | da(P. Q) < p}
Dy(P,p) ={P € R* | di(P.Q) < p}.

If di(P, Q) < p. then by the first part of (*), we also have da(P, Q) < p.
So Dy(P.p) € Do(P, p). If do(FP, Q) < r, then by the second part of (=),
we also have dy(P, Q) < v2r. So Do(Pr) C Dl[F,\.-"ﬁr}. Equivalently
Ds(P, p/v2) € Dy(P, p) for each p > 0.

Now Let § € B? and suppose that S is open with respect to the usual
Euclidean distance. Let P € S. Then there is an p > 0 such that Da(P, p) C
S. But then P € Dy(F,p) € Ds(P,p) € 5. So § contains a taxicab disk
around each of its points and must be “taxicab open”. On the other hand,
if we assume that S is open with respect to the taxicab distance and P €
S, then there is an r > 0 such that P € ID4(P,v) € 5. The argument
above then shows that P € Dy(P,r/v2) C Dy(P,r) € 5. So S contains a
Euclidean disk around each of its points and is open in the usual sense. We
have shown

S “Euclidean open” =— & “taxicab open”,

and that
S “taxicab open” =— & “Euclidean open”.

So the “open sets” are the same no matter which of the two metrics we
choose to use for measuring distance between points in the plane. 4

o 2.2-4. Isit true that int(4) Nint(B) = int(A N B)?
Answer. Yes.

Solution. First suppose x € int (AN B). Then there is an r > 0 such

that r € D(r,r) C ANB. Since ANB C A, we have r € D(z,r) C A
Soreint(Ad). Alko ANBC B,sox € Diz,r) C B and r € int (B).
Thus x € int (A) Nint (B). Since r was an arbitrary point in int (4 N B),



this shows that int (AN B) Cint (4) Nint (B). (Notice that we could also
employ the result of Exercise 2.2-3 to obtain this inclusion. )

Now suppose that y € int (A) Nint (B). Then y € int (A), so there is an
r1 > 0 such that z € D(z,m) C A. Also y € int (B). So there is an r > 0
such that y € D(y,r2) € B. Let r be the smaller of ry and r9 so that r < ry
and r < ry. Then D(y,r) C D(y,ry) € A, and DNz, r) € D(y,r) € B. So
ye Diy,r) € AnB. Thus y € int (AN B). Since y was an arbitrary point
in int (A) Nint (B), this shows that int (4) Nint (B) C int (4 N B).

We have inclusion in both directions, so int (A N B) = int (4) Nint (B)
as claimed. &

¢ 2.2-5. Let (M,d) be a metric space, and let zyp € M and r > 0. Show
that

DNrg,r) cint{y e M | d{y,x0) <7}

Suggestion. Show more generally that if I7 is open and 7 € A, then
U Cint (A). (See Exercise 2E-3 at the end of the chapter.) )

Solution. Let A={ye M |d(y,zq) <r}and U = D{zg,r)={yc M|
d{y,zo) < r}. Then we certainly have IV C A, and we know that U is open
from Proposition 2.1.2. So the desired conclusion follows immediately from
this observation.

Proposition. [IfU is an open set and U C A, then U Cint (A4).

Proof: If = in U, then U is open and x € U C A. So r satisfies the
definition of an interior point of 4 and = € int (A). Since x was an arbitrary
point in U7, this shows that I/ C int (4) as claimed. [ )

o 2.7-3. Let ACR™, z, € A, and x,, — z. Show that = € cl(4).
Sketch. Use Proposition 2.7.6(1i). O

Solution. This is exactly one direction of the equivalence in Proposition

2.7.6(i1) with M =R™. L

o 2.8-2. Let (M,d) be a metric space with the property that every bounded
sequence has a convergent subsequence. Prove that M is complete.

Sketch. Use parts (ii) and (iii) of Proposition 2.8.4. O

Solution. To show that M 1s complete we need to show that every
Canchy sequence in M converges to a limit in M. So let (z,,}7° be a Cauchy
sequence in M. By Proposition 2.8.4(i1), the sequence 1s bounded. By hy-
pothesis, this means that it must have a subsequence converging to some
point x € M. But then by 2.8.4(i11), the whole sequence converges to x.
Thus every Cauchy sequence in M converges to a point in M, so M is
complete. #



¢ 2.3-5. Let 8§ ={r e R|xisirrational}. Is S closed?
Answer. No. ¢

Solution. The point [ is in the complement of S, but is r = {, then the
open interval | —r, r[ around 0 must contain irrational points such as v2 /n
for large integer n. Thus B\ S = (J is not open. So S is not closed.

More generally, it 1s not too difficult to show using the irrationality of
v2 and the Archimedean Principle, that both the rationals and irrationals
are scattered densely along the real line in the following sense.

Proposition. If a and b are real numbers with a < b, then there are a
rational number r and an irrational number 2 such that

a<r<h and a <z < b

Proof: The first is accomplished by noting that b —a > 0. By the
Archimedean principle there is an integer n such that 0 < 1/n < b—a. By
another version of the Archimedean principle there are positive integers k
such that a < k/n. By the well-ordering of the positive integers, we may
assume that k is the smallest such. Then

EoE—-1 1 1
(1 —= +=<a+—=—<a+(b—a)="
n n n

s

So r = k/n is a rational number meeting our requirements.

Now use the argument just given twice to obtain a pair of rational num-
bers r and s with a < r < s < b. Since v2 > 1, we have

s—r
a<r<r4+—<r4(s—r)=s5

V2

The number z = r + (s — r)/v2 cannot be rational, for if it were, then
V2 = (s —1)/(z — r) would also be rational. But it is not. The number z
is an irrational number which meets our requirements. +

¢ 2.4-6. Let M be a set with the discrete metric and A € M be any subset.
Find the set of aceumulation points of A.

Answer. A" =1{. &

Solution. If x5 € M then the ball of radius 1/2 around xy contains
no points other than xp since all distances between unequal points are 1.
D{xp,1/2) = {xo}. Nonetheless, this “ball” is an “open set”. Thus no set
in M can have any accumulation points. +



¢ 2.3-6. Give an alternative solution of Example 2.3.6 by showing that B
is a union of finitely many closed sets.

Solution. Example 2.3.6 asserts that if d is a metric on a set M, and A is
a finite subset of M, then theset B = {x € M | d(z,y) < 1 for some y € A}
is closed. For each fixed y in M, let Cy, = {r € M | d(z.y) < 1}. Then
B = UyEA C'y. Since A is a finite set, this expresses B as the union of a
finite number of sets of type €. If we knew that all of these were closed
we would have B closed since 1t would be a finite union of closed sets.

We proceed to show that for each fixed y the set 'y is closed. The argu-
ment is essentially the same as that given for Example 2.3.4 as illustrated
in Figure 2.3-3 of the text. We simply need to write it down for a general

metric space instead of B2,
Suppose z € M\ Cy. then d(z,y) > 1. Set r=d(z,y) -1 >0.lfwe M
and d{w,z) < r, then

d[zry} = d[z H.?} +d[w1 y} =T +d{w,y} = EEI:Z y} -1 +d{w1 y}:

so 1l < d(w,y) and w e M\ Cy. Thus D(z,r) € M\ Cy. The set M\ Cy
contains a disk around each of its points and so is open. Thus C, is closed
as we needed. &

¢ 2.4-3. Find the accumulation points of the following sets in R2:
(a) {(m,n) | m,n integers}
(b) {(p.q) | p, g rational}

(c) {(m/n,1/n) | m,n integers, n # 0}
(d) {(1/n+1/m,0) | n,m integers, n # 0,m # 0}

Answer. (a) 4" =1

(b) B'=R2
(c) C" = the z — axis.
(d) D' = {(1/n,0) € B? | n is a nonzero integer } U {0}. O

Solution. (a) All points are isolated. If (m,n) € A, then D{(m,n),1/2)nN
A = {(m,n)}. There can be no accumulation points. 4" = .

(b) As we have seen before, there are rational numbers in every short interval
of the real line. So if (xr,y) is any point in B? and £ > 0, there are
rational points closer than = to (r,y) which are not equal to (z,y). We
need only select rational numbers s and t with 0 < |s — x| < £/v/2 and
0< |t —y| <=/V2

(¢) As m and n run over the integers (with n not 0), the fraction m/n
runs over all of (. As n increases, we get more and more points along
horizontals coming close to the ¢ — axis. The result is that all points
on the ¥ — axis are accumulation points. No others are. Consider Figure

2-10. So €’ = {(z,0) | z € R}.



(d) If we let m = n, we see that all of the points 1/2n for integer n are

in D). Since these converge to 0, this must be an accumulation point.
If we hold n fixed and let m — oo, we find that 1/n 4+ 1/m — 1/n.
So 1/n is an accumulation point. For m and n large, 1/n + 1/m moves
away from all other points, so there are no other accumulation points.
D' = {1/n | n is a nonzero integer } U {0}. 4

o 2.5-4. (a) For A C R", show that cl(A) \ A consists entirely of accu-
mulation points of A.

(b) Need it be all of them?

Suggestion. Estahlish first the following general observation: If 4 and
B are sets then (AU B)\ A C B. Apply this with B = A’. For part (b) the
answer 15 “‘No”. What might happen if 4 1s a closed set? O

Solution. (a) From Proposition 2.5.2 we know that cl{4) = AU A", So
cl(A)y A=(Au A\ A.

We estahblish the following general observation:
Lemma. IfA and B are sefs then (AUB)\ A C B.

Proof: Suppose x € (AU B)\ A. Then r must either be in A or B since
it is in AU F. But it is not in 4 since the points of A have been deleted.
Thus x must be in B.

Apply this with B = A’ to obtain

d(A)\A=(AuA)\AC A

as desired.

(b) The answer 1s “No”. Some or all of the accumulation points might be

in the set A. If A is closed they all are. For example, if A =[0,1] C R,
then A’ = A = cl(4) = [0, 1], but cl(4) \ A = 0.
Challenge: For what sets is it true that cl(4)\ 4 = A"? 4

o 2.5-5. In a general metric space M, let A C D(z,r) for some = € M and

r = 0. Show that cl(4) C B(z,r)={y e M |d(z,y) <r}.

Sketch. Theset B(z,r) = M"\{y|d(y,z) > r}isclosed and A C B(z,r).
Socl(A) C B(zx,r). O

Solution. We know that the set UV = {y | d(y,z) > r} is open so that
B = {y | dly,z) < r} is closed. (See the solution to Exercise 2.3-6 or
Example 2.3.4 and Figure 2.3-3 of the text for essentially the same thing
in B.) We certainly have A € D(x,r) = {y | d(y, z) < r} € B(x,r) since
diy,z) <r = d(y,z) = r. 50 A C B. We have that B is a closed set
with A € B, socl(A) C B as claimed. #

2.6-5. Let 4 € K be bounded and nonempty and let x = sup(A). Is
r € bhd(A)?

Answer. Yes. &



Solution. Let = = 0. Since x = sup A, there must be an element y in A
with r — = < o < x. Every short interval around x contains points of A, so
x € cl{A). On the other hand, the upper half of such an interval, |z, x + =[

consists entirely of points in B\ A since x is an upper bound for 4. Thus
recRYA) Thus z e cl{A)ncl(RY A) = bd(A) as desired. 4

& 2.6-6. Prove that the boundary of a set in B? with the standard metric
is the same as it would be with the taxicab metric.

Suggestion. Review Exercise 2.1-6.

Solution. From Exercise 2.1-6, we know that the open sets are the same

for these metrics. Since the closed sets are just the complements of the
open sets, the closed sets are also the same n the two metrics. The closure
of a set 1s just the intersection of all the closed sets which contain it, so
the closure of a set i1s the same whichever metric we use. The boundary
of a set is the intersection of the closure of the set with the closure of its
complement. Since the closures are the same, the boundaries are the same.

L

2.7-2. Let z, — = in R™. Show that 4 = {z,, |n = 1,2,...} U {z} is
closed.

Sketch. Let B = {z;,79,...}, and show that 4 = cl(B). O

Solution. Let B = {xj,x9,...}. We are given that x,, — =z, so for each
£ =0, z, € D(x,=) for large enough n. Thus = £ cl(B). On the other
hand, if y € cl(B), then either x € B or there is a subsequence which
converges to y. To see this suppose y is not in B. There is an index n;

with ||y — zn, | < 1. Since y is not among the x,, there is an index na,
necessarily larger than ni, such that

1y — 2o || < min(lly — 2 |- |y — Zng [)/2-
Continuing inductively, we get indices
T <- T3 < Mg < ...
such that
1Y =Ty | < min (g =1 oo |y = Zny, ||) /5 < lly =1 || /R — 0.

So this subsequence converges to y. But it is a subsequence of a sequence
which converges to x, so we must have y = . Thus the only points which
can be in cl(B) are the points z, and z. So cl(B) = BU {z} = {z, |
n=1,23,...}UJ{z}. Thus this set is closed since the closure of any set is
closed. &



¢ 2.8-5. Suppose that a metric space M has the property that every bound-
ed sequence has at least one cluster point. Show that M i1s complete.

Sketch. If (r,){" is a Cauchy sequence it is bounded. It has a cluster
points and hence a convergent subsequence. So the whole sequence con-
verges. (Why?) )

Solution. Toshow that M is complete we need to show that every cauchy
sequence in M converges to a limit in M. So let (x,)7° be a Cauchy sequence
in M. By Proposition 2.8.4(ii), the sequence is bounded. By hypothesis it
must have at least one cluster point x. By 2.8.7(ii) there is a subsequence
which converges to x. Finally, by Proposition 2.8.4(iii), the whole sequence
converges to x. Every Cauchy sequence in M converges to a point in M,

so M is complete. &
o 2.9-4. Test for convergence
3 —n
mn=
Suggestion. Try the ratio comparison test. O

Solution. The 1dea of the solution 1s that for large n, the exponentials
2" and 3" dominate the n terms and the series should behave much like
the series 3 (2™/3") = 3(2/3)™. We know this last series converges since
it 18 a geometric series with ratio less than 1. So we conjecture that our
original series converges. To establish this we will use the ratio comparison
test. The dominance mentioned 1s embodied in the following observation.

Lemma. Ifr > 1, then lim iﬂ = 0.

n—oo T

Prootf: Let = = (). Then

n T
— < £ +— N < Er
.r'T-I.

— logn < loges +nlogr

| —logs
— lﬂgr}u.

The left side of the last inequality 1s positive since r > 1, and the right
side tends to 0 as n — oo by L’Hopital’'s Rule. So the inequality 1s valid
for large n, and we have our limit as claimed.
Now to solve the problem, let a,, = gn L and b, = i—ﬂ Then
—n

an _ 24n 3 14 (nf2") 140 _

b 3"—m2* 1—(n/3") 1-0

1

= M 4n ) Ly A
By the ratio comparison test, the series and — = —
' prbon s oS g end S =3 (3)
either both converge or both diverge. We know the latter converges since
it 1s a geometric series with ratio less than 1. So our series converges also.

L



(s u}
n!
& 2.9-5. Test for convergence Z T

n=0

Answer. Does not converge. §

Solution. We know that 3" /n! converges to () as n — oo (Exercise 1.2-2).
So n!/3" — oo. In particular, the terms do not converge to (). According
to Exercise 2.9-3, the series cannot converge.

To avoid reference to §1.2, one can simply note that if n = 3, then
n!/3" = 2/9. The terms remain larger than 2/9 and the partial sums must
become arbitrarily large. The sum diverges to 4o0ao. ]

o 2E-T. LetU be open in a metric space M. Show that U = cl(U7)\ bd(L7).
Is this true for every set in M7

Answer. It is not true for every subset of M. Try I = [0, 1] C R. O

Solution. Let UV be an open subset of a metric space M and suppose that
r € U. Since U is open, M\ U 1s closed. So cl{M\U') = M\ U. In particular,
r is not in cl(M '\ U}, so it is not in bd(I/) = (M \ U) Nnecl(U). On the
other hand, since U C ¢l(A), we do have x € cl(U). Thus = £ l(I7)\ bd(L7).
This shows that U C el(U) \ bd(U').

Now suppose x € cl(U/} \ bd(U). We want to show that x must be in UV,
Since 1t 1s in the closure of U7 but not in the boundary of U, it must not be
in the closure of the complement of U7. But [ 15 open, so the complement
of [ is closed and so equal to its closure. Thus x is not in the complement
of U and so it must be in U.

We have proved inclusion in both directions, so the sets are equal as
claimed.

The equality 1s not true for every set. Consider for example, M = R and
U = [0,1]. Since U is closed, cl(U) = U = [0, 1]. But the boundary of I/ is
the two point set {0, 1}. So ¢l(I7) \ hd(U7) is the open interval |0, 1].

A good discussion question: Does this characterize open sets? Is it pos-
sible that U/ is open if and only it U = cl(U) \ bd(L7)? 4

o 2E-9. Show that

(a) intB = B\ bdB, and
(b) el{A) = M "\ int(M \ A).



Answer. Use Proposition 2.6.2 to get (a). Then use (a) to get (b). ¢

Solution. (a) Let B be a subset of a metric space M, and suppose that
xr € int(B). Then there is an £ > 0 such that x € D{x,=) € B. (See
Exercise 2E-5.) This disk is contained in B and so cannot intersect
M\ B. By Proposition 2.6.2, x cannot be in bd(B). On the other hand,
since int(B) € B, r is certainly in B. Thus x € B\ hd(B). This shows
that int(B) € B\ bd(B).

Now suppose that r € B\ bd(B). We want to show that r must be an
interior point of B. Since x € B, every disk centered at = intersects B
(at least at x if nowhere else). If all such disks also intersected M \ B,
then x would be in bd{E) by 2.6.2. But we have assumed that r is not
in bd(B). So there must be an £ > 0 such that D(z,=)n (M \ B) = 0.
This forces x € D{x, =) € B. So x € int(B). (See Exercise 2E-5.) This
holds for every such x, so B ' bd(B) C int(8).
We have proved inclusion in both directions, so int(B) = B '\ bd(B) as
claimed.

(b) Let A be a subset of a metric space M and set B = M\ A.So A = M\B.
Using the result of part (a) we can compute:

M\ int(M \ A) = M \ int(B) = M \ (B \ bd(B))
= M\ [Bn (M \ bd(B))]
= [M\ B] u [M\ (M \ bd(B))]
— AUbd(B) = AUbd(M \ A) = A Ubd(A).

Since bd(M \ A) = cl(M \ A) Necl(4) = cl(A) Ncl(M \ A) = bd(A). We

are done as soon as we establish the following:

Proposition. If A is a subset of a metric space M, then cl{Ad) =
AuUbd(A).

Proof: First of all, bd(A4) = cl{A)nel(M '\ A) € cl{4), and A C cl(A4). So
AuUbd(A) C cl(A). For the opposite inclusion, suppose that = € cl(A).
It x £ A, then it is certainly in A U bd(A). I x 1s not in 4, then it
is in M\ A and so in cl(M \ A). Since we have assumed that it is in
cl(A), we have x € cl(A)necl(M '\ A) = bd(4) € AUbd(A). In either
case, r € AU hd(A). So cl{4) € AUbd(A). We have inclusion in both

directions, so the sets are equal as claimed. 4

< 2E-10. Determine which of the following statements are true.

(a) int(cl(4)) = int(A).
(b) cl(4)NA = A.
(c) el(int(4)) = A.



(d) bd(cl(A4)) = bd(A).
(e) If A is open, then bd(A) Cc M\ A.

Answer. (a) May be false.

(b) True.

(c) May be false.

(d) May be false.

(e) True. O

Solution. (a) The equality int(cl(4)) = int(A) is not always true. Con-
sider the example A = [-1,1]\ {0} € R. Then cl(A) is the closed interval
[-1,1], and int(cl{A4)) is the open interval | -1, 1[. But int(4) is the open
interval with zero deleted. int(A4) =] — 1,1\ {0}.

(b) True: Since A C cl(A), we always have cl(4)n A = A.

(¢) The proposed equality, cl{int(A4)) = A, is not always true. Consider the
example of a one point set with the usual metric on B. Take A = {0} C
F. Then [A =0. So cl(int(A)) = 0. But A is not empty.

(d) The proposed equality, bd(cl{A)) = bd(A). is not always true. Consider
the same example as in part (a). 4 = [-1,1]} {0} C R. Then cl{A4) is
the closed interval [—1,1] and bd(cl(A)) is the two point set {—1,1}.
But bd(A) is the three point set {—1,0,1}.

(¢) The proposed inclusion, bd(4) € M\ A, is true if A4 is an open subset
of the metric space M. The set A is open, so its complement, M ' A, is
closed. Thus

bd(A) = cl(A) Ncl(M\ A) = cl(A)n (M \ A) S M\ A

as claimed. &



¢ 2E-12. Prove the following properties for subsets 4 and B of a metric
space:

(a) int(int(4)) = int(A).
(b) int(A U B) > int(A) U int(B).
(c) int(4 N B) = int(A4) N int(B).

Solution. (a) For any set €' we know that int(C') € C, so, in particular,
int(int{A)) € int{A). For the other direction, suppose x € int(A). Then
there is an openset U such that re UCA. fye U, thenye U C A,
so y € int(A). Thus I/ C int(A). We have z € U C int(A), so = £
int(int{A)). This shows that int(4) C int{int(A4)). We have inclusion in
both directions, so int(A) = int(int(A4)) as claimed.

Notice that in the middle of the argument just given, we established:

Proposition. IfU is open and U C A, then U C int(A).

This was Exercise 2E-3.
(b) Suppose x € int(A) Uint(B). Then r € int(A) or = € int(B).

CASE 1: If = € int{A), then there is an open set U withz e U C A C
AUB. 50 reint(AUB).

CASE 2: If = € int(B), then there is an open set U withz e U C B C
AUB. 50 reint(AUB).

Since at least one of cases (1) or (2) must hold, we know that =
int(AUE). This holds for every = in int(A)Uint(B), so int(A4)Uint(B) C
int(A U B) as claimed.
The inclusion just established could he proper. Take as subsets of the
metric space R the “punctured” open interval 4 =] — 1, 1[}{0}, and the
one point set B = {0}. Then A is open, so int{A4) = A, and int(B) = 0.
So int{ A)Uint(B) = A. But AU B is the unbroken open interval | — 1, 1[.
So int(A U B) =] — 1, 1]. We see that 0 € int(A U B) " (int(A) Uint(B)).
(c¢) This is the same as Exercise 2.2-4. &

¢ 2E-13. Show that cl(A) = A Ubd(A).

Suggestion. Compare with Exercise 2E-9.

Solution. First of all, bd(A) = cl{A)nel(M\ A) C cl(A), and A C cl(A4).
So AuUbd(A4) C cl{A). For the opposite inclusion, suppose that = € cl(A).
If + € A, then it is certainly in A U bd(A). If x is not in A, then it is
in M A and so in cl(M ' A). Since we have assumed that it is in cl(A4),
we have = € cl(A) nel(M\ A) = bd(A) € AU bd(A). In either case,
r € Aubd(A). So cl{A) € Aubd(A4). We have inclusion in both directions,
socl(d) = Aubd(4) as claimed. 4



¢ 2E-14. Prove the following for suhsets of a metric space M:

(a) cl(cl(4)) = cl(A).
(b) cl(AUB) =cl(4) Ucl(B).
(c) cl(AnB) c cl(4) ncl(B).

Solution. Let's make explicit a few lemmas about closure.

Lemma. Suppose A, B, and C' are subsets of a metric space M.

(1) cl(A) is a closed set.

(2) ACclA).

(3) If C is closed and A C C, then cl(A) € C.
(4) If A C B, then cl(A) C cl(B).

(5) A is closed if and only if A = cl(A).

Proof: Since cl(A) is defined as the intersection of all closed subsets of
M which contain A and the intersection of any family of closed sets is
closed, (Proposition 2.3.2(i1)), we see that cl(A) must be a closed set. Since
A is contained in each of the sets being intersected, it is contained in the
intersection which is cl(A). For part (3), if ' is closed and A C C, then C
is one of the sets being intersected to obtain cl{A4). So cl(4) C C.

For part (4), if A C B, then we know from part (2) that A C B C cl(B),
and from part (1) that cl(B) is a closed set. So cl(B) is a closed set which
contains A. By part (3) we conclude that cl{A) C cl(B) as desired.

Finally, it A = «cl(4), then it is closed by part (1). We always hawve
A C cl{A) by part (2). Of course, A C A, so if A is closed, then we also
have cl(A) C A by part (3). With inclusion in both directions, we conclude
that A = cl(A4) as claimed.

(a) If A is any subset of a metric space M, then cl(A) is a closed set by part
(1) of the lemma. So cl(cl(A)) = cl{A) by part (5).

(b) It A and B are subsets of a metric space M, then 4 € AU B and
B C Au B. So, by part (4) of the lemma, cl(4) C cl{A U B) and
cl(B) C cl(AUB). So cl(A)ucl(B) C cl{AUB). On the other hand, using
part (2) gives 4 C cl(A4) C cl(A)Ucl(B). and B C cl(B) C cl(A)Ucl(B).

So AUB C cl(A)ucl(B). Each of the sets cl(A) and cl(B) is closed, so
their union is also. Thus cl(A) Ucl(B) is a closed set containing AU B.
By part (3), we have cl(A U B) C cl(A) U cl(B). We have inclusion in
both directions, so cl(AU B) = cl(A) U cl(B) as claimed.

(c) It A and B are subsets of a metric space M, then AN B C A and
An B C B. By part (3) of the lemma we have cl{A N B) € cl{A) and
c(An B) C cl(B). So cl{An B) € cl{A) Nnecl(B) as claimed.

Note: The inclusion established in part (b) might be proper. Consider,
for example, the open intervals A =10,1[ and B =]1,2[ as subsets of R.
Then cl{An B) = cl(@®) = 0. But cl(A)nel(B) = [0,1]n[1,2] = {1}. ¢



¢ 2E-15. Prove the following for subsets of a metric space M:

(a) bd(A)=hd(M A).

(b) bd(bd(A)) C bd(A).

(c) bd(AUB) c bd(A) Ubd(B) c bd(AUB)UAU B.
(d) bd(bd(bd(A))) = bd(bd(A)).

Sketch. (a) Use M\ (M A) = A and the definition of boundary.
(b) Use the fact that bd(A) is closed. (Why?)
(¢) The facts cl(AUB) =cl{A)Ucl(B) and (AN B) C cl(A) Ucl(B) from
Exercise 2E-14 are useful.

(d) One approach is to show that cl(M \ bd(bd(A4))) = M or, equivalently,
that int(bd(bd(A4))) =@, and use that to compute bd(bd(bd(4))). ¢

Solution. (a) If A4 is a subset of a metric space M, we can compute

bd(M\ A) = (M \ A) Necl(M \ (M \ A)) = cl(M \ A) Ncl(A)
= cl(A) Nel(M \ A) = bd(A)

as claimed.

(b) Since bd(A) i1s the intersection of c¢l{A) and cl(M ' A), both of which
are closed, it is closed. In particular, cl(bd(A)) = bd(A), and we have

bd(bd(A)) = cl(bd(A)) N cl(M \ bd(A)) = bd(A4) N cl(M \ bd(A)).

Since bd(bd(A)) is the intersection of bd(A) with something else, we
have bd(bd(A4)) € bd{A) as claimed.

(¢) A key to part (c) are the observations that cl(A U B) = cl{A) U cl(B)
and cl(ANB) C cl(A)Ucl(B) for any subsets 4 and B of a metric space



M. (See Exercise 2E-14.) Using them we can compute

bd{AUB) =c{AUB)nec(M}\ (AUB))

cd{AuB)nc((M\ A)n (M B))

cd{AuB)nc(M\ A)ncl(M \ B)

[cl(A)uel(B)] nel(M\ A)ncl(M\ B)

[cl(A) nel(M Y\ A) ncl(M \ B)]

U [el(B)nel(M\ A) necl(M \ B)]
C [el(A)nel(M Y\ A)] U [c(B) nel(M \ B)] =bd(A) Ubd(B).

This is the first inclusion claimed. Now suppose z € bd(A)Ubd(B). Then
r ecl(d)orz ecl(B). 5oz €c{A)ucl(B) = cl{AUB). If  is in neither
Anor B, thenz e (M\A)Nn(M\B) =M\ {AUuB) C((M\[AUB)).
Since we also have r € cl(A U B), this puts z in bd(A U B). So =
must be in at least one of the three sets A, B, or bd(AU B). That is,
bd{A)Ubd(B) C bd(AUB)U AU B as claimed.

(d) From part (a) we know that bd(bd(C')) € bd(C') for every set C. So, in
particular, bd(bd(bd(A4))) € bd(bd(A)). But now we want equality:

1l

bd(bd(bd(A))) = cl(bd(bd(A4))) N cl(M \ bd(bd(A)))
= bd(bd(A)) Ncl(M \ bd(bd(4))).

But

cl(M\ bd(bd(A4))) = cl(M (cl{bd(A)) Nnel(M ' bd(A4))))

(
cl{ M\ (bd(A) necl(M \ bd(A))))
cl((M\ bd(A)) U (M \ cl(M ' bd(A))})
( )
)

cl(M \ bd(A4)) U cl(M \ cl(M \ bd(A)))
cl(M \ bd(A)) U cl(M \ (M \ bd(4)))
C (M \ bd(A)) U (M \ (M \ bd(4))) = M.

im

Combining the last two displays gives
bd(bd(bd(4))) = bd(bd(A)) " M = bd(bd(A))

as claimed.
Remark: The identity in the next to last display is equivalent to the
assertion that

int(bd(bd(A))) = 0. *



¢ 2E-20. For aset A in a metric space M and x € M, let

d(z, A) = inf{d(x,y) | y € A},

and for £ > 0, let D(A,2) = {z |d(z,A4) < =}.

(a) Show that D(A,=) is open.
(b) Let A ¢ M and N_ = {z € M | d(z,A) < £}, where = > 0. Show

that N; is closed and that A4 is closed iff A =1 {N. | = = 0}

Suggestion. For (a), show that I){A4,¢) 1s a union of open disks. For the
first part of (b), consider convergent sequences in N(A4, =) and their limits

in M. )

Solution. (a) First suppose r € D(A,=). Then d(z, A) = inf{d(z,y) |y €

(b)

A} = r < =. So there is a point y € A with r < d(z,y) < =. Thus
x € D(y.=). This can be done for each x € DA, =). We conclude that

D(4,¢) € | ] D(y.2).

wed

Conversely, if there is a y In A with x € D(y,=). then d(z,y) < =.
So d(zx,A) = inf{d(z,y) | y € A} < =, and = € D(A,<). This proves
inclusion in the other direction. We conclude that

D(4,2) = | D(w.9).

yed

Each of the disks D(y, =) is open by Proposition 2.1.2, so their union,
D(A, =) is also open by Proposition 2.1.3(i1).

To show that N (A, ) is closed we will show that it contains the limits of
all convergent sequences in it. Suppose (r;){® is a sequence in N (A, )
and that rp — x € M. Since each xp € N(A, =), we have d(z, A) < = <
£+ (1/k). So there are points y;. in A with d{zg,yx) < =+ (1/E). Since
x) — x, we know that d{z,z.) — 0, and can compute

1
dlz,yr) < d(x,zp) +dlze, ye) < dz,z) + =+ T e as k — nc.

Thus
d(,A) = inf{d(x,y) | y € A} < =.

So x € N(A,=). We have shown that if (z;)7 is a sequence in N(A4,e)
and rp — r € M, then x € N(A, ). So N(A,=) 1s a closed subset of M
by Proposition 2.7.6(1).

We have just shown that each of the sets N( A, =) is closed, and we know
that the intersection of any family of closed subsets of M is closed. So
if A=[,.gN(A,¢), then A is closed.

Conversely, if A is closed and y € M \ A, then there is an r > 0 such
that D(y,r) M\ A since the latter set is open. Thus y is not in
N({A,r/2). So y is not in [, N(A, ). This establishes the opposite
inclusion (.., N(A,5) C A

If A is closed, we have inclusion in both directions, so 4 =)
as claimed.

e=0"

N(A,z)
L



¢ 2E-25. Prove that a set 4 ¢ M is open iff we can write 4 as the union
of some family of =-disks.

Sketch. Since =—disks are open, so is any union of them. Conversely, if
A is open and r € A, there is an £, > 0 with x € D(r,=,) C A. So
A:U:‘EA _Dl:I.IE_T:I. {)

Solution. Tosay that A is a union of =—disks is to say that there is a set of
points {zg | # € B} C A and a set of positive radii {rg | 3 € B} such that
A = gep Plzg.rg). (B is just any convenient index set for listing these
things.) We know from Proposition 2.1.2 that each of the disks D{x5,r3)
is open. By 2.1.3(ii), the union of any family of open subsets of M is open.
So A must he open.

For the converse, suppose A is an open subset of 4. Then for each = in
A, there is a radius ry > 0 such that D{z,r;) C A. Since z € D(z,r;) C A,

we have
A= |J{=t € | D(z,ra) C A
reA TEA

So we must have A = |J ., D(x,rz), a union of open disks, as required.

4

¢ 2E-31. Let A’ denote the set of accumulation points of a set A. Prove
that A" is closed. Is (A") = A’ for all A?

Sketch. What needs to be done i1s to show that an accumulation point

of A" must be an accumulation point of A. (A’)" need not be equal to A’
Consider 4 = {1/2,1/3,...}. O

Solution. To show that A’ is closed, we show that it contains all of its
accumulation points. That is, (A")’ € A’. Suppose z is an accumulation

point of A', and let I/ be an open set containing . Then U/ contains a
point y in A" with y not equal to z. Let V = U\ {z}. Then V is an open
set containing y. Since y € A’ there i1s a point = in V M A4 with 2 not equal
to y. Since x 15 not in V', we also know that z 1s not equal to z. Since
V C U, we know that z € U. Every neighborhood IV of z contains a point
z of A which 1s not equal to . So x 15 an accumulation point of A. This
works for every z in A". So (A"}’ € A" Since the set A" contains all of its
accumulation points, 1t 1s closed as claimed.

Although we now know that (A")’ C A’ for all subsets of a metric space
M, the inclusion might be proper. Consider 4 = {1,1/2,1/3...} C K.
Then A" = {0}. and (A")" = 0.



¢ 2E-35. Show that any family of disjoint nonempty open sets of real
numbers is countable.

Suggestion. FEach of the sets must contain a rational number. O

Solution. Let {U/, | ® € A} be any family of disjoint open subsets of H.
That is, each U, is open, and U, N Uz = @ if & and 3 are different. Since
each U, is open, there are open intervals |a,, by[ € U,. We know that the
rational numbers are scattered densely in R in the sense that if a, < b, is
any such pair of reals there is a rational mumber r, with r, € |aa, ba| C Us.
Since different o and # have U, NUz = @, we must have r, and rg different.
But there are only countably many different rational numbers. So there are
only countably many different sets U, in the collection.

Remarks: (1) Without too much effort we can see that points (rq,7r3,....7,)
with rational coordinates are dense in B™ in the sense that any open ball
I)v, €) must contain such points. Furthermore,  x --- x Q=" C R" 1s
a countable set of points in B™., With these facts in hand we can conclude
in exactly the same way that every family of disjoint open subsets in B"
must be countable.

(2) If we combine the results of Exercises 2E-30 and 2E-34, we obtain

Proposition. Fach open set in | is the union of countably many disjoint
open intervals.

(3) This also has a generalization to B". We saw that in Exercise 2E-
30 that the appropriate sets to look at are not the direct generalization of
intervals to “rectangles”. We need to loosen this to “connected sets”. These
are those sets which are “all in one piece”. We will find the right way to
formulate this in Chapter 3.

Proposition. Fach open subset of B™ is the union of a countable number
of disjoint connected subsets.

The connection is that a subset of R is connected (all one piece) if and
only if it is an interval. Here the term “interval” is intended to include half
lines and the whole line. &

o 2E-37. For A ¢ M, a metric space, prove that
bd(A) =[A N (M 4)] U [cl(4)) A].

Sketch. [ANcl(M\ A)]Ucl(A)\ A] = [AU (cl(A)\ A)] N [cl(M\ A) U

(cl(A)\ A)] = cl(A) N [el(M \ A) U (cl(A) \ A)]. Why is this bd(A4)?

Solution. Ifx ecl{A4)\ A, then it is not in A and must be in M \ A. So

it is certainly in cl(M Y A). Thus cl{4)\ A C cl(M ' A), and
cl(M\ A)u (cl(A)\ A) =cl(M\ A).
We compute

[Anc(M\ A)]Ucl(4)\ A] = [AU (el(4)\ A)] N [cl(M \ A) U (cl(A4) \ A)]

= cl(A) N [cl(M \ A) U (cl(A) \ A)]
= cl(A) Ncl(M \ A)
= bd(4)

as claimed ¢



¢ 2E-39. Let S C R be bounded above and below. Prove that sup(5) —
inf(S) =sup{z—y|r e S and y € S}.

Suggestion. First show that sup(S)—inf(S5) is an upper bound for {z—y |
x € Sand y € §}. Then consider = and y in S very close to sup(S5) and
inf(S5). &

Solution. lLetT ={z—y |z < Sandy € S}. If z and y are in 5, we
know that < sup S and inf5 < y. So —y < —int S, and

r—y<=r—inf5 <supS —infS.

Thus sup S — inf § 15 an upper bound for T'. If £ = 0, there are r and y 1s
S withsupS — (=/2) < r <supS,and inf S <y <t 5+ (=/2). So

(supS —inf §)—= =sup 5 —(=/2) — (inf S+ (=/2)) < x—y <supS—inf 5.

Thus (sup S —inf §) — = is not an upper bound for T'. This holds for every
g =0, so sup & — inf § is the least upper hound for T as claimed. 4

o 2E-44. Aset ACR"issaid tobe densein BC R it BCcl(A). If A
is dense in B™ and [V is open. prove that A N7 is dense in U7, Is this true
if U7 1s not open?

Sketch. It need not be true for sets which are not open. £

Solution. Let 4 be dense in B™ and U7 is an open subset of B™. We
want to prove that I C cl(AnU). If z € U, we need to show that every
neighborhood of > intersects ANL. So, suppose V' is an open set containing
x. Then = € V N U which is an open set. So there 1s an r > 0 such that
re D(z,r) CUNV. Since A is dense in R", there 1s a

yeAND(z,r) CAN(VNU)=Vn(AnD).

Since this can be done for every neighborhood V of z, we have x € cl(ANU).
Since this is true for every x € U, we have U C cl{ANU). Thus ANU is
dense in IV as claimed.

If the set U is not open, this can fail. Consider U = () C R and A =
R\ Q C R. Each of the sets U and A is dense in R, but ANU =0 and is

dense nowhere. #



o 2E-51. (a) fu, =0, n=1,2,..., show that

Uni1

P e el . . .
lim inf ;’H < hminf #u, < imsup u, < limsup ;
T T

(b) Deduce that if hm(un41/us) = A, then limsup §i,, = A.

(c) Show that the converse of part (b) is false by use of the sequence
U2n = Unyl = 277,

(d) Calculate limsup vn!/n.

Answer. (d) 1/e. O

Solution. (a) There are three inequalities to prove:

lim inf “;“ < liminf {/a, (1)
liminf Wig < hmsup 3uy (2)

Un41 ) [3]

limsup #u,, < limsup

n—oo n—oo Up



Of these the second 1s true for every sequence, so we need only work on

the first and third.

Proof of (1): We know that u, > 0 for each n. So uny1/u, > 0 and
iy, = 0. Therefore liminf{u,41/u,) = 0 and liminf g, = 0. If
lm inf{u, . /u,) = 0, then inequality (1) is certainly true. So we may
assume that lminf(upq/us) = 0. If @ < Iminf{unsq/un), we can
select a number r with a < r < liminf(u,41/uy). Then there is an
integer V such that w, i /u, > r whenever n = N. Since u,, > 0, we
have up1 = ruy for n = N. Applying this repeatedly we find

UN4+1 2 TUN
UN+2 E T.N+1 E Tzuhr

Uni3 = T2 2 Tuy

UNsk 2 TN4k—1 = Truy

1/(N+E
N TR > Ry = ek VR VR

Now we need two facts about exponential functions: »* — ras r — 1
and ¢ — 1 as ¢ — 0 for positive constants r and ¢. Applying this to
the rightmost expression in the last display, we find

. 1/ (N+k
NN TR > kaliﬁ’“ﬂuh{{ R L rsa as k— oo,

So MUy g > a for sufficiently large k. That 15, pu, > a for sufli-
ciently large n. Thus liminf p7, = a. This is true for every a smaller
than liminf u, 1 /u,. So

liminf wn 41 /uy < limint Ju,

as claimed.

Proof of (3): The argument for the third inequality is similar to that
for the first but with the inequalities reversed. If hmsup(u,4q1/un) =
+00, then inequality (3) is certainly true. Therefore we may assume
that imsup(u,1/u,) < 4+oc. If b = limsup(u,1/u,), we can select
a number r with b > r > limsup(t,41/us). Then there is an integer
N such that upyq/u, < r whenever n = N. Since u, > 0, we have



(b)

Up41 < rig for n = N. Applying this repeatedly we find

UN41 = TUN
UN42 STN41 < rluy

Uyia < Ty <ruy

UN 1k S TNkt S TRuy

So
N h < ”*{/r’f_uhr _ ,.-‘-‘f{h’+k}ui{(’"‘r+k:l sreb
as k — oo. So METNTE < b for sufficiently large k. That is, pfu, < b

for sufficiently large n. Thus lim sup §u, < b. This is true for every b
larger than lim sup un41 /.. So

limsup §un, < imsupupyg /g

as claimed.

We know from Proposition 1.5.7(ix), that the limit of a sequence exists
if and only if the limit inferior and the limit superior are the same and
equal to that limit. Since lim,,_, . (u,1/u,) has been assumed to exist
and be equal to A, we know that

uﬂ-l—l . A
Uy ‘

1
A= liminf ::1 < liminf Fu, < hmsup Yu, < imsup

S0 we must have
liminf pfu, = imsup pfu, = A.

So limp o U, exists and is equal to A by 1.5.7(ix).
If the sequence u, is defined by wsp, = w31 =2 " forn=0,1,2,...,
then the first few terms are

111111 1 1

lslrﬁrﬁrz:E:E:E:"*igrﬁs"“

The ratios of succeeding terms, w4 /1y, are

1,11
-1 =1,= ...

27727779

So liminfu, {/u, = 1/2 while limsupu,;/u, = 1. But if & = 2n,
then

1,

ViR = X2 =2 9 12 — 1//3.



(d)

While if £ =2n + 1, then
yig = /A = 9/ @n) 912 _ 1/\/3

So
likminf Hup = imsup up = &lim Eup = lf\.-"@
—r 0 I — O

So liminf ¥y and lim sup #%; are the same while lim inf(ugy /ug) and
lim sup(ug1/u;) are different. The converse of the result of part (b) is
false.

Let a, = ﬁffr?fn and u, = n!/n". Then pu, = a,. We compute

Upypy  (n+1)! n® n+l n \" 1 1
un, o nl ntl\nti) " (1+1) e

(To get the last limit, take logarithms and use L'Hopital’s Rule to show

that (1 4 (1/n))" — e.) Since this limit exists, we conclude from part
(b) that lim 3/, also exists and is 1 /e. Thus lim,, . Wl /n exists and
is equal to 1/e. #



