Exercises within a Section: 1.1-2 means Section 1.1 problem #2 etc...

&~ Watch out! To save paper and spaces, some solutions may not be in the proper order.
You should be able to find them. ( BZEEBNIEF O EEAERE LWIER - BAXRTE "ZHIR
AUt o HARIREEE—T )

“®"You are required to reproduce or to paraphrase of the "Solution" (NOT the "Sketch") to
a problem. (EHZEBAMEEE - 2FE Solution B985 - T ARE Sketch BIZR{D ! Sketch BIED
R ERARERN idea BHE - )

‘" Do not skip over problems that you think are complicated. We can still ask you part
of the steps in a test. ( AZBEMESHIBREMNWERE  BMZABDOEEER ! )

< 4.1-1. (a) Let f: B — R, r— z° Prove that f is continuous.
(b) Let f:R* = R, (z,y) — z. Prove that f is continuous.

Suggestion. Forxp e B and = = 0, try 6 = min(1,=/(1 + 2 |xg]}). ¢
Solution. (a) To find the form of the solution, compute the gquantity
which 1s to be made small. For x5 € B we have
|f(z) — flzo)| = |z* — .1§| = |z + zo| |z — 0|

If |v —xp| < 4, then |z 4+ x| < |v—xp| + |22g] £ 0+ 2|xg). If 6 = 1,
this leaves us with |f(x) — f(xo)| < (1 4+ 2|xo|) |r — xo|. So, if we take §
to be the smaller of the two numbers 1 and =/((1 4 2 |zo|), we have

flx) — flxa)

[

(8 4+ 2|xol) |z — xo| = (1 + 2|x0l) |z — zo|

(Pl
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Thus f is continuous at xg. Since xy was an arbitrary point in B, we
conclude that f is continuous on all of E.

(b) Solution One: If v = (a,b) € K, then f(v) = a. This is called projection
onto the first coordinate. If (x,y) is another point, then

flz,y) — fla,b)| =z —a| </ (z—a)* + (y—b)?* = || (z,y) — (a,b) | .

Let = = 0. If we take § = &, we find that if || (z,y) — (a,b) || < 4, then

|£(z,9) — f(a,b)| < || (z,9) — (a.b) || < 6 =.

Thus f is continuous at (a, b). Since (a, b) was an arbitrary point in R?,
we conclude that f is continuous on R2.

Solution Two: Another way to handle this exercise is to use the charac-
terization of continuity in terms of convergent sequences given in Theo-
rem 4.1.4(ii) together with facts we already know about the convergence
of sequences in R?. Let (zg, yx) — (a, b)) in R2. We know from Chapter 2
that this happens (with respect to the usual Euclidean distance in E?) if
and only if z. — a and yi. — bin K. In particular, f((ze, y)) = or — a.
Since this happens for every sequence in B* converging to (a,b), Theo-
rem 4.1.4(ii) says that f is continuous at (a, b). Since (a,b) was arbitrary
in B2, we conclude that f is continuous on R2.



The function studied in part (b) is called the projection of R* onto the
first coordinate. It is sometimes denoted by m;. The projection onto the
second coordinate is defined similarly: ma((z, y)) = y. This notation might
or might not be a good idea, but it is fairly common. It 1s one of the very
few times when it is permissible to use the symhbol “7” for something other
than the ratio of the circumference of a circle to its diameter.

For related material, see Exercise 3E-15. +

o 4.1-5. Give an example of a continuous function f : B — R and an open
set U7 — | such that f(I7) is not open.

Sketch. f(z) =1, U = any open set;

0, fx<0
f@) =4z, if0<s<1, U=]-12; f(U)=[0,1]isclosed. 0
1, ifz>1.

Solution. For a very easy example, take the constant function f(z) =1
for all z € R. If a € B and =, — a, then flx,) = fla) = 0 for every k.
So we certainly have f(ry) — f(a). Thus f is continuous at a by 4.1.4(ii),
and, since a was an arbitrary point in B, f i1s continuous on E. If IV 1s any
nonempty open subset of R then f{U') = {1}. This one point set is not an
open subset of K.

For a slightly more imaginative example, we could take

0, fz<0
flz)={z if0<zr<i
1, ifz=1.
Then if ' =] — 1,2[, we have f(U) = [0,1], which is closed. (Show f is

continuous. )

o 4.2-1. Let f : B — R be continuous. Which of the following sets are
necessarily closed, open, compact, or connected?

(a) {zrR| f(z) =0}

(b) {zeR| f(z) =1}
(c) {f(z)cR|z =0}
(d) {flzx)eR|0<z<1}

Answer. (a) Closed, not necessarily compact or connected.
{(b) Open, not necessarily compact or connected.
(c) Connected, not necessarily compact, open, or closed.
{d) Compact, closed, and connected; not necessarily open. )

Solution. (a) If A ={z € R | f(z) = 0}, then A = f~'({0}). Since the

one point set {0} is closed in B, and f is continuous, A must be closed
by Theorem 4.1.4(iv).
If we use the function f(z) =0 for all x, then f is continuous on all of
. One way to see this is to let ©p € B and = > 0. If z € B, we have
|f(z) — flzg)| =|0—0] =0 < =. So we can let § be any positive number
toget |[r— x| < 8§ = |f(z) — flzp)| < . Thus [ is continuous at zq,
and, since xp was arbitrary in &, f is continuous on K. For this function
we have f~'({0}) = R which is not bounded and not compact. So A
need not be compact.



Now consider f(x) = z? — 1. For this function we have 4 = f~1({0}) =
{%1}, a two point set which is not connected. To see that f is continuous,
note that |f(z) — f(zo)| = |2? — zZ|. Given £ > 0, select § > 0 as in
Exercise 4.1-1(a). Thus A need not be connected.

(b)) f B={zxeR| f(z) > 1}, then B = f}U) where U = {y € R |
y > 1}. Since U is open in R and f is continuous, B must be open by
Theorem 4.1.4(iii).

To see that B need not be compact, consider the constant function
flz) =2 for all x € K. Modify the argument in part (a) slightly to show
that f is continuous on R. Since 2 > 1, we have B = f~!(U) = R which
is not compact.

To see that B need not be connected, let f(z) = z% — 1. Then f is
continuous as in part (a). f(r) > 1 = |r| > V2, so B={z R |
x< —/2}U{r e R |z > v2}. Since B is the union of two disjoint,
nonempty open sets, it 1s not connected.

(¢) HC = {fix) € R |z = 0}, then C = f(J) where J is the closed half
line {x € R |z > 0}. Since J is path-connected it is connected. Since f
is continuous on J, € = f{J) must be connected by Theorem 4.2.1.

To see that f{J) need not be open, consider the function f(z) = 0 for all
z used in part (a). We know that f is continuous, and C' = f(.J) = {0}.
This one point set 1s not open i K.

To see that €' need not be closed, consider the function f(z) = 1/{x2+1)
for all z £ K. The arithmetic of limits allows us to conclude from 4.1.4(ii)

that f is continuous. If xp — a, then 2§ — @, and 2 +1 — a?+1 = 1.
So f(x) = 1/(zf + 1) — 1/(a* + 1) = f(a). This shows that f is
contimious at a, and, since a was an arbitrary point in B, that f is
contimous on B. f z e B, then 1 € 22 +1 < o0, 50 0 < f(z) < 1.
On the other hand, if 0 < y < 1, then we can put = = /(1 —y)/y
and compute that f(z) = y. So f(J) is the half-open interval 0, 1].
This is not closed since 0 £ ¢l(]0,1])Y ]0, 1]. This supplies the required
counterexample.

Since the half-open interval ]0,1] is not closed, it is not compact, and
the same example as in the last paragraph shows that €' need not be
compact.

(d) T D ={f(z)eR|0<z <1}, then D) = f(K) where K is the closed
unit interval [0,1]. Since K is compact, the image D = f(K) must be
compact by Theorem 4.2.2. Since it is a compact subset of B, the set D
must be closed. Since the interval K is connected, the image D = f(K)
must be connected by Theorem 4.2.1.

To see that I need not be open, use the function f(xr) = z for all z.
Then f is continuous by Example 4.1.5, and D = f(K) = K = [0,1].
The image D 1s not open since 0 € D but no small interval around 0 1s
contained in 1. +

« 4.2-3. Give an example of a continuous map f : B — B and a closed
subset B < I such that f(B) is not closed. Is this possible if B is bounded

as well?

Answer. It is not possible if B 1s closed and bounded since then it 1s
compact. s

Solution. An example is given in part (c) of Exercise 4.2-1. B = {z €
R |z =0}, and f(z) = 1/(z* + 1). Then f(B) =]0, 1] which is not closed.

If B is a subset of B, which 1z both closed and bounded, then it is
compact. Theorem 4.2.2 says that f(B) would also be compact. It would
thus be a closed subset of R. L]



o 4.2-5. Let A and B bhe subsets of B with B not empty. If A x BCR? is
open, must 4 be open?

Answer. Yes. O

Scolution. Since B 1s not empty, there is a point b € B. It a £ A,
then (a,b) € A x B. Since 4 x B is open, there is an r > 0 such that
Viz—aF +(y—b? < r implies (z,y) € A x B. If |[r—a| < r, then
Vvieg—a)E+(b—b)2=|r—a|l <r so(zxb) € Ax B Thus r € A. For
each a € A there is an r = 0 such that r € A whenever |z —a| < r. So 4
15 Open. 4

< 4.3-1. Where are the following functions continuous?

(a) f(x)= zsin(z?).
(b) f(z) = (@ +3%)/(z* — 1), 2° # 1, (1) =0.
(¢) f(z) = (sinz)/z, 7 0, £(0) = 1.

Answer. (a) Everywhere.
(b) f is continuous on B {—1.1}.
(c) Everywhere. )

Solution. (a) If f(x) = xsin(z?), then f is the product of the continuous
function z — z (Example 4.1.5) with the composition z — sin(z?). The
function = — x? is continuous. This was seen directly in Exercise 4.1-
1{a). We now have an easler indirect proof since it is the product of
x = x with itself. The final fact we need is that @ — sin ¢ is continuous.
How this is proved depends on just how the sine function is defined. We
will just assume it here. Since products and compositions of continuous
functions are continuous, this function is continuous everywhere.

(b) The numerator and denominator of f(z) = (z + z°)/(z* — 1) are con-
tinuous everywhere since products and sums of continuous functions are
continuous. Since quotients are continuous except where the denomina-
tor is (0, the only possible discontinuities are at 1 and —1. The limit at
1 does not exist, and the limit at —1 is 1/2 since

.1.'+;r2__ z(x+1) _ B r -1 _1
T2 —1 ezt )@ —1) re-1z-1 -1-1 2

Since 1/2 # 0 = f(—1), f is not continuous at —1. Thus f is continuous
on R {1}

(c) Again we assume the the sine function is continuous everywhere. So the
numerator and denominator of f(r) = (sinz)/r are continuous every-
where. The only possible discontinuity is at & = 0 where the denominator
is 0. But the numerator is also () there. We know from L'Hopital’s Rule
that

; 0
lim f(z) = lim e — lim —— = = =1 = f(0).

r—0 T r—o 1 1

So f is continuous at (. It is thus continuous everywhere. ]



o 4.3-3. Let A={z R |sinz = 0.56}. Show that A is a closed set. Is it
compact?

Suggestion. Use the fact that {0.56} is closed and sin z is continuouns. A
1s not compact. &

Solution. Again we assume that the function f{r) = sinr is continuous.

Then A = {z € R | sinz = 0.56} = f~'({0.56}). Since the one point set

{0.56} is closed in I and f is continuous, A must also be closed. It is not
compact since if x; is any one point in 4, then xy + 27k is also in A for
every integer k. Thus A is not bounded and cannot be compact. ]

o 4.4-1. Give an example of a continuous and bounded funetion on all of
R that does not attain its maximum or minimum.
Answer. One possibility is f(z) = z/(1 + |z|). Q

Solution. If welet f(z) =x/(1 + |z|) for all z £ B, then the numerator
and denominator are continuous everyvwhere and the denominator is never

0, so f is continuous everywhere on R. Furthermore, |f(z)| = |z| /(1+|z]) <
1. S0 —1 < f(z) < 1 for all r £ K. Finally

1
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So sup{ f(z) | r € R} =1 and inf{ f(z) | z € B} = —1 and neither of these
15 attained anywhere in B. See Figure 4-3. +

o 4.4-5. Is a version of the maximum-mimmum theorem valid for the func-
tion f(z) = (sinz)/z on |0, 0c[? On [0, 0c[?

Sketch. sup(f(]0,oc[)) = 1is not attained on |0, so[. Extend by f(0) =1
(continuous?) to get it on [0, o[. O

Solution. If f(z) = (sinz)/x for = not 0, then we know from calculus or
elsewhere that lim._.n f(z) = 1. So if we define f(0) to be 0, we obtain a
continuous function on B. f'(z) = (zcosz — sinx)/z?. This is 0 only when
r = tanz. This occurs at x = 0 in the limit and not again until |z| > 7.
See Figure 4-5.

We have f(xw) =0, fiir) > 0 for —m < = < 0, and f'{z) < 0 for
0 < z < 7 Consequently, 0 < f(z) < lim,_., flx) =1 = f(0) for 0 <
r < . For |r| > 7, we have |f(x)| = |sinz|/|z| < 1/|z| < 1/7. Thus
sup{f(z) | z € R} = 1 = f(1) and inf{f(z) | # € R} occurs at the two
points with /2 < |r| < m at which the derivative is 0. The supremum is
attained on [0, o[, but not on |0, so[. See Figure 4-6.

What is going on might be summarized by something like the following.



Proposition. If [ is a continuous real valued function on the closed half
line [a,cc[ and

limsup f(z) < sup{ f(z) | = € [a,00[ } < oo,

then there is at least one point x, € [a,cc| at which f(x,) =sup{f(z) |z €

. 0e} 27 .
liminf £(z) > inf{(z) | € [a,00[} > —o0,

then there is at least one point x5 € [a,oc[ at which f(z,) = inf{f(z) |z €
[a, o0[ }.

The hypotheses say that there is a number B > a such that f(x) is
smaller than sup{f(z) | z € [a,c¢[} and larger than inf{f(z) | z € [a, oc[}
for z = B. The supremum and infimum over [a,cc| are thus the same as
those over the compact interval [a, B]. We can use the maximum-minimum
theorem to conclude that they are attained at points in that interval. &

o 4.5-3. Let f:[0,1] — [0,1] be continuous. Prove that f has a fixed point.

Suggestion. Apply the intermediate value theorem to g(x) = flx) — =

Solution. For z € [0,1], let g(z) = f(z) — x. Since f is continuous and
T +— —r is continuous, g is continuous. We have

g(0) = f(0)—0=f(0)>0 and g(1)=f(1)—1<1-1=0

By the intermediate value theorem, there must be at least one point ¢ in
[0,1] with g(e¢) = 0. For such a point we have f(c) — ¢ = 0. So f(c) = c.
Thus ¢ is a fixed point for the mapping f as required.

See Figure 4-T. L ]

¢ 4.5-5. Prove that there is no continuous map taking [0, 1] onto |0, 1.
Sketch. f([0,1]) would be compact, and |0, 1[ is not compact. O
Solution. The interval [0, 1] is a closed bounded subset of R and so it is
compact. If f were a continnous function on it, then the image would have
to be compact. The open interval |0, 1[ is not compact. So it cannot be the
image of such a map. 4

o 4.6-2. Prove that f(z) = 1/z is uniformly continmuous on [a, s[ for a = 0.

Suggestion. Compare to Exercise 4.6-1. o

Solution. We are asked to show that the function f{zr) = 1/ is uniformly
continuous on the half line [a, oc[ if 0 < a. To do this we compute

1o _ k-l =yl
Ty eyl — a?

If = >0, let § = a%:. If x and y are in [a, 0] and |z — y| < &, then the last
computation shows that

1)~ fwl = |2 -

|

The same § works everywhere on [a, o[, so f is uniformly continuous on

that domain. $



¢ 4.6-1. Demonstrate the conclusion in Example 4.6.3 directly from the
definition.

Sketch. |(1/z) —(1/y)| = |(x —y)/zy| < |z — y| /a®. Take 6 =a=.

Solution. We are asked to show that the function f(x) = 1/z is uniformly
continuous on the interval [a,1] if 0 < a < 1. To do this we compute

Lo

Lot _ =yl =yl
E

If £ =0, let § = a’c. If x and y are in [a,1] and |z — y| < 4, then the last
computation shows that

T — aZe
lz—ul .

=< —
a? a?

Ty

E.

f() - 1) = 1‘

The same § works everywhere on [a,1], so f is uniformly continuous on
that domain. 4

o 4.6-3. Must a hounded continuous function on B be uniformly continu-
ous?

Sketch. No. Consider f(x) = sin(z?). ¢

Solution. To get a bounded continuous function which is not uniformly
continuous, we want a function whose derivative stays large over nontrivial
regions. If we put f(z) = sin(z?), then f'(z) = 2z cos(z?). So f has a large
derivative near x = +/2wn for integer n. See Figure 4-8.

The function f is continuous. To show that it is not uniformly continuous,
we take = = 1/2, and show that for any § = 0 there are points = and y

with |z —y| < & and |f(x) — f(y)| = 1/2. To this end let x = /27n and
y=+/2mn+ (7/2). Then

(2mn 4+ %) —2mn ~ m/2
Va2mn+ 5 +42mn 24 omn
Since this tends to 0 as n Increases, we can pick n large enough so that
|y — x| < 4. But |f{y) — flz)| = |sin(2an) — sin({2an + (7 /2))| = |0 - 1| =
1. So no choice of § > 0 can work everywhere in B. So f is not uniformly
continuous on K. [ )

y—x= 27:n+%—v21m=

¢ 4.7-2, Does the mean value theorem apply to f(z) = /7 on [0, 1]? Does
it apply to g(z) = /|z| on [-1,1]?

Solution. The function f(x) = /7 is continuous on the closed interval
[0,1]. (See Exercise 4.3-4.) and differentiable on the interior [0, 1]. (To see
this, you can use the Inverse Function Theorem 4.7.15. f is the inverse of
the differentiable function & — z°.) So the mean value theorem does apply.

The function g(z) = /|z| i5 continuous on [—1,1]. (Again, see Exer-
cise 4.3-4.) But it is not differentiable at the point 0 in the interior of that
interval. So the mean value theorem does not directly apply. The theorem
can be applied separately on the intervals [—1,0] and [0,1]. With some
care about how the function joins together at 0, the same conclusion can
be drawn even though the theorem cannot be applied directly. 4



¢ 4.7-3. Let f be a nonconstant polynomial such that f(0) = f(1). Prove

that f has a local minimum or a local maximum point somewhere in the
open interval |0, 1[.

Sketch. [ attains both maximum and minimum. (Why?) If both are at
ends, then f is constant. (Why?) ]

Solution. Polynomials are continuous everywhere, so the function f is
certainly continuous on the compact domain [0, 1]. By the maximum-mini-
mum theorem, it must attain both its maxitmum and its minimum on that
set. Since f(0) = f(1), the only way that both of these can be at the
ends is for the maximum and mimimum to be the same. f would have to
be constant, but it has been assumed to be nonconstant. At least one of
the maximum or minimum must occur in the interior and thus be a local
extremum. $

o 4.7-5. Let f be continuous on [3,5] and differentiable on |3, 5[, and sup-
pose that f(3) = 6 and f(5) = 10. Prove that, for some point zy in the
open interval |3, 5[, the tangent line to the graph of f at zg passes through
the origin. Illustrate your result with a sketch.

Suggestion. Consider the function f(x)/z. &

Solution. The equation of the line tangent to the graph of f at the
point (zp, f(zo) 18 ¥y = f(xo) + f'(ze)(z — zo). For this to pass through
the origin we must have 0 = f(xy) — zf'(zp). A medium sized amount of
meditation and a bit of inspiration might remind one that this looks like the
numerator of the derivative of the funetion g(x) = f(x)/r computed by the
quotient rule. This function is continuous and differentiable on [3, 5], and
g(3) = g(5) = 2. So Rolle’s Theorem applies and says that there is a point
xy in the interval at which g'(zo) = 0. But g'(z) = (zf(z) — f(z))/z*. For
g'(zo) = 0, we must have zof'(zo) = f(zo). This is exactly the condition
we needed. See Figure 4-9. 4

o 4.8-T. Let f:[0,1] = R, f(z)=1ifz=1/n, n an integer, and f(z) =0
otherwise.

(a) Prove that f is integrable.
(b) Show that [, f(z)dz = 0.

Sketch. L(f,P) = 0 for every partition of [0,1]. (Why?) Now take a
partition with the first interval [zo, z1] = [0, v'2Z/n] and the others of length
no more than 1/n?. Show that U(f, P) < (v2/n) + (n — 1)/n?. ¢

Solution. Let P={0=1xy < 1, < 7y < --- < 7,,, = 1} be any partition
of [0,1]. Since f(z) = 0 except at the isolated points 1, 1/2, 1/3, ..., there
are points in every subinterval where f(x) = 0. Since f(x) is never negative,
we have m; = inf{f(z) | € [z;_,,x;]} =0 for each j =1,2,3,.... So

0=L(1.P) < [ fo)dn



Now let n be any integer larger that 3 and @ = {xp < 7y < 30 < -+ <
Tm} be a partition of [0,1] with o =0, 7 = v2/n, ,, = 1, and z; —
x;_q < 1/n? for j = 2,3,...,m. The points 1/n,1/(n+1),1/(n +2),...
are all located in [zo,z:1]. So My, = sup{f(z) | * € [re,z:1]} = 1, and this
subinterval contributes an amount M, (z; — zq) = v2/n to the upper sum.
Outside this interval, f is nonzero only at the points 1,1/2.1/3....,1/(n—
1). There are n—1 of these points, and the subintervals in which they occur
each have length no more than 1/n?. So the total contribution to the upper
integral from these subintervals is no larger than (n — 1)/n”. Thus

vZ n

e
| s <U(r.Q) < 224 2

2
Since this tends to () as n increases, and the inequality holds for every
n = 3, we conclude that

'J=L[f-.PJ*=_i_£ f{sr)dxiﬁ f(@)de < U(£.Q) < 0.

The upper and lower integrals must both be (. Since they are equal, f is
integrable on [0, 1], and

fnlf(mjdz=£f(z}dx=ff{:r)dx=ﬂ. .

o 4.8-8. Let f: [a,b] — R be Riemann integrable and |f(z)] < M. Let
Fizr) = f: f(t)di. Prove that |F(y) — F(z)| < M |y — z|. Deduce that F
is continuous. Does this check with Example 4.8.107

Solution. Using Proposition 4.8.5(iv}, we have

f:f(r}d:_ff(c)dr [f{:)dr'.

If ¢ < y, this is | [Y f(t)de]. Il y < z, then it is |—j: f{t]dt|. In either

[F(y) — Flz)| =

max(F,y)
case, it is f f(t) rjt‘, From the ohservation at the top of page 207

min|z,y)
of the text following Proposition 4.8.5, we have

max(e,y) max(z,y)
[ rwa < [ i) ae

min(®,y) min{z,i)

[Fy) — Flz)| =

But | f{t)] < M for all . With this, 4.8.5(iii), and the result of Exercise 4.8-
4, we have

max(T,u) max(r,y)

If(t)] dt < f M dt

min(z,y)

|ﬂm—Fun£/

min(z,u)
< M{max(x,y) — min(z,y}) = M |z — y

as claimed.

This inequality holds for all  and y in [a,b]. So F satisfies a Lipschitz
condition on [a, b] with constant M. This implies f is uniformly continuous
on [a,b]. If M = 0, then F must be constant and is certainly uniformly
continuous. If M > 0 and £ > 0, put § = /M. If = and y are in [a, b
and |r—y| < 4, we have |F(z)—F(y)| <« M|z—y| <« Md == 5o F is
uniformly continuous on [a, b].



In Example 4.8.10 we had

0, Dszr<1 o, <zt
ﬂr}_{L ler<? “dF{IJ_{z—L lez<?

Although f is not continuous on [0, 2], the indefinite integral F(z) is. See
Figure 4.8-3 of the text. 4

o 4E-2. (a) Prove that if f: A — R™ is continuous and B C A, then
the restriction f|B is continuous.

(b) Find a function g : 4 — R and a set B C A such that g|B is
continuous but g is continuous at no point of A.

Solution. (a) Suppose £ = 0 and x; £ B. Then ry € A, so thereisa d = 0
such that || f(xr) — f(zp) || < £ whenever r € A and ||z —xy || < 6. If
re B, thenitisin 4, so

(reBand ||z -z <) = [ flz) - f(zo) |l

So f 15 continuous at xg. Since xp was arbitrary in B, f 1s continuous

on B,

(b) Let A =K, B =, anddefineg: A - RBEbyg(zx)=1itxr € Q
and g(x) = 0 if x ¢ ). The restriction of g to B = [ is constantly
equal to 1 on B. So it is continuous on B. (See Exercise 4E-1(h).)
But, if 4 € K, then there are rational and irrational points in every
short interval around z;. So g takes the values 1 and 0 in every such
interval. The values of g(x) cannot be forced close to any single value
by restricting to a short interval around xp. So, as a function on &, g 1s
not continuous at xp. This is true for every z; € E. +

o 4E-T. Consider a compact set B C B™ and let f : B — E™ be continu-
ous and one-to-one. Then prove that f~! : f(B) — B is continuous. Show
by example that this may fail if B is connected but not compact. {To find
a counterexample, it is necessary to take m > 1.

Sketch. Suppose C' is a closed subset of B. Then €' is compact. {Why?)
So f(C) is closed. (Why?) Thus f~! is continuous. (Why?) For a counterex-
ample with n = 2 consider f : [0,27]— R* given by f(t) = (sint,cost).

o

Solution. FIRST PROOF: We use the characterization of continuity in
terms of closed sets. To show that f~!: f(B) — B is continuous on f(B),
we need to show that if C 1s a closed subset of the metric space B, then
(f~1)7Y(C) is closed relative to f(B). Since B is a compact subset of R", it
is closed, and a subset ' of it is closed relative to B if and only if it is closed
in [E™. Since it is a closed subset of the compact set B it is closed. (In B™ this
follows since 1t 1s closed and bounded. However, it 1s true more generally.
See Lemma 2 to the proof of the Bolzano-Weierstrass Theorem, 3.1.3, at
the end of Chapter 3: A closed subset of a compact space is compact.) Since
(' 18 a compact subset of B and f is continuous on B and hence on ', the
image f(C') is compact. Since it is a compact subset of a metric space, it
is closed. (See Lemma 1 to the proof of 3.1.3.) But since f is one-to-one,
fIC) = (f~Y)~"HC). Thus (f~1)~1(C) is closed for every closed subset C
of f(B). The inverse f~' is thus a continuous function from f(B) to B.



SECOND PROOF: Here is a proof using sequences. Suppose y € f(B)
and (y);° is a sequence in f{B) with yr — y. We want to show that z; =
f~Yyr) — = = f~'(y) in B. Since B is compact, there is a subsequence
Ti(1): Thiz)s Th(a), - - - CONVErging to some point & € B. Since f is continuous
on B, we must have yr(;) = f(zrz)) — f(Z). But yr;) — y. Since limits
are unique in the metric space f(H), we must have y = f(z). But y = f(xr)
and f 1s one-to-one, so r = . Not only does this argument show that there
must he some subsequence of the xp converging to @, it shows that z is the
only possible limit of a subsequence. Since B is compact, every subsequence
would have to have a sub-subsequence converging to something, and the
only possible “something” is z. Thus 7, — = as needed.

If the domain is not compact, for example the half-open interval B =
[0, 27, then we can get a counterexample. The map f : [0,27[— R? given
by f(t) = (sint,cost) takes [0, 27| onto the unit circle. The point (0, 1) has
preimages near () and near 27. So the inverse function is not continuous at
(0,1).

It turns out that a continuous map from a half-open interval one-to-one
into I must have a continuous inverse. Challenge: Prove it. $

< 4F-8. Define maps s : B® x B® — R™ and m : R x E® — R"™ as addition
and scalar multiplication defined by s{z,y) = = + y and m(A,x) = Az
Show that these mappings are continuous.

Solution. fr =z, 2y....,2,) and y = (¥y,¥2,....¥n). Then s(z, y) =
r4+y=(r1+y.T2+ V2. .. Tn+Yn), and m(A, x) = (Azy, Aza,. .., Azn).

We compute
Il s(z,y) — s(u,v) [lgn = || (z + ¥) — (u+v) |gn = || (& — u) + (¥ — v} ||g=

Sz —ullgn + 1y —vllgn

2 2
<0 /lz—ulEn +ly—vEe
<2 (@ — 1,y — ) |lgenge = 21 (@ 1) — (1) [lgn g -

So, if || (z,y) — (u,v) |lgn wgn < £/2, then || s(z,y) — s{u,v) ||gn < =. So s is
continuous.
Fix (p,u) € B x ™. We have
z 2 2 2
(A 2) — (1) llmnsmn = (A = g2 — ) [[gnscpn = (A—p)" + |7 — [z -
Thus if || (A, z) — (p.u) ||gn ygn < & then |A —p| < and ||z —u |z, < 4.
I m(A,2) = m(js,u) lgn = A2 — it lgm = || A2 — A+ At — ru g

<Az — Auflgn + || Au —pulgn = A |z — ullgn + [A — p| [| 2 ||gn
SIAS 40| ullgn = (|p] +0)0 + 46| ulgn -

If we require that 4 < 1 and & < =/2(|p| + 1) and & < =/2(]|u|| + 1), we
have

[m(A, x) — m(p, u) [lgn < (lu] +6)d + 3| ullgn
= (lpl +1)

4 : ful <=
2pl+1)  2([u]l +1) '

Thus m is continuous. 4



o 4E-9. Prove the following “gluing lemma”: Let f : [a.b] — R™ and
g: [byc] — R™ be continuous. Define h: [a,c] — R™ by h = f on [a,b] and
h=g on [be. If f(b) = g(b), then h is continuous. Generalize this result
to sets A, B in a metric space.

Suggestion. Show that If F is closed in R™, then h='(F) = f~(F) U
g~ '(F) and so is closed.

Solution. Put A = [a.b] and B = [b,c|. Let yo = f(b) = g(b). Then the
function h is well-defined since it makes no difference whether we use f or

g to define h at the point b in A N B. and suppose F is a closed set in E™.
Then

Y F)=h " {F)n(AuB)= (Y (F)nA)u(h ' (F)nB)
= (' (F)nA)u(g ' (F)nB)

Since f and g are continous and F, [a,b], and [b,¢] are closed, this set is
closed. The inverse image of every closed set 1s closed, so h is continuous.

For the generalization, suppose A and B are closed sets in B™ and that
f:A—R"and g : B — R™ are continuous and that f(z) = g(x) for
r € AN B. Define h on AU B by putting hi(r) = f(r) for r £ A and
h{x) = glx) for x € B. After observing that h is well-defined since f and g
agree on the intersection, the proof of continuity is the same.

Note that some sort of assumption needs to be made about the sets A
and B. Otherwise we could take something like 4 = @) and B = R, 0.
If we put f(z) =1 for all v in A and g(z) =0 for all x in B, then, since
AnB =0, his still well-defined, but h is not continuous at any point of
E=AuUB. 4

« 4E-12. (a) Amap f: A CR" — R™ is called Lipschitz on A if there
is a constant L. = 0 such that || f(z) — fly)|| < L]z —y]|. for all
z,y € A. Show that a Lipschitz map is uniformly contimious.

Solution. (a) Suppose f: 4 C R™ — R™ and there is a constant L > 0
such that || f(z) — f(y)|| < L||z —y| for all z, y € A. If L = 0, then
I flz)— fly)|| =0for all x and y in A. f must be a constant function
on A and so is certainly uniformly continuous. If L = 0 and £ > 0, put
d=c/L.Ifx and y are in A and ||z — y|| < & we have

[ flz)—fw) I =Lfz—yll<Ld=-

So f is uniformly contimous on A.

o 4E-14. (a) Find a function f: E? — R such that

iLT%LJ_T}}]f[I:y) and ;1_5511 lim f(z.y)

exist but are not equal.

(b) Find a function f : B* — R such that the two limits in (a) exist and
are equal but f is not continuous. [Hint: f(z,y) = zy/(z® +3*) with
f=0at (0,0)]

(¢) Find a function f : B* — R that is continuous on every line through

the origin but is not continuous. [Hint: Consider the function given
in polar coordinates by rtan(f/4), 0 <r <oo, 0 < 8 <27 ]



Solution. (a) Let f(0,0) = 0, and for other points, put f(z,y) = =% /(z*+
y?). For fixed nonzero = we have lim,_.q f(z,y) = z%/2% = 1.

—0

lim (;1_1"1}] f[:r:..y]) = _PEII (0)=1.
For fixed, nonzero y, we have lim,__q f(z,y) = 0/y* = 0. So

lim (lim f(z.y)) = lim (0) = 0.
(b) Let f(0,0) = 0, and for other points, put f(z,y) = zy/(z? + y?). For
fixed nonzero x we have lim, . f(z,y) = 0/2* = 0. So

iy (i f(.9) ) = Ji (0) =0,

—0

For fixed, nonzero y, we have limy .o f(x,y) = 0/y* = 0. So

lim (lim f(z,y)) = lim (0) = 0.
But, if we look at the values of f along the line y = x, we find f(z, x) =
z?(r? +2?) = 1/2. Since there are such points in every neighborhood of
the origin, and f(0,0) =0, f is not continuous at the origin.

(c) Let f:R? — R be given in polar coordinates by rtan(?/4),0 < r < cc
and 0 < ¢ < 27. Any line through the origin can be parameterized as
4(t) = {tcosdy, tsinvy) for —oo < t < oo and fixed ¥ with —w/2 <
8y < w/2. Along such a line, the values of f are given by ftan(d,/4)
which is a continuous function of t. So f is continuous along every line

o 4E-15. Let f,,....fy be functions from 4 < R" to K. Let m; be
the maximum of f;, that is, m; = sup( fi(4)). Let f = 3} fi and m =
sup( f(A)). Show that m <} m;. Give an example where equality fails.

Suggestion. For an example with inequality, try fi(z) = x and fo(z) =
1 —zon [0,1].

Solution. If x € A, then fi(z) < sup{fu(z) | = € A} = my for each
E=1,2....N.So

f(z) = filz) + falz) + -+ fn(z)
< m+ fa(z) + - + fn(x)
<my4me 4+ fy(T)

Smy+mz+ec+my.

This holds for every x € A, som =sup{f(z) |r € A} < m;+my+---+my
as claimed.

The inequality can be strict. Let A = [0,1] C R, and set fi(x) = = and
f2(z)=1—z. Thenm; =sup{z |z [0,1]} =1 and mz =sup{l—z |z €
[0,1]} =1.Som, +m, = 2. But f(z) = fi(z)+ faolz) =z +(1—2) =1 for
all z. So m = sup{f(z) | z € [0,1]} = 1. This is strictly less than 2. ]

through the origin with the value 0 at the origin. However, if you fix
rg = 0 and move counterclockwise around the circle of radius ry, the
values of f start at 0 on the horizontal axis at (rp.0). As you move
around the circle, the values are rptan(d?/4. As you get close to (rp,0)
from below the horizontal axis. ¥/4 — /2, so the values of f tend to
+a0. Thus f is not continuous across the positive horizontal axis. 4



o 4E-18. Let A © M be connected and let f: A — R be continuous with
flz) # 0 for all r € A. Show that f(x) > 0 for all x € A or else f(z) < 0
for all x € A.

Solution. If there were a points r; and z» with f(ry) < 0 and f(x2) = 0,
then by the intermediate value theorem, 4.5.1, there would be a point z in
A with f(z) = 0. By hypothesis, this does not happen. So f{x) must have
the same sign for all z in A. $

< 4E-19. Find a continuous map f : E™ — B™ and a closed set 4 C E"
such that f(A) is not closed. In fact, do this when f : R — R is the
projection on the r—axis.

Sketch. A= {(z,y) eR? |zy=1}; f(A)={z R |z #0}. o

Solution. For (z,y) € B2, let f(z,y) = m(z,y) = z. Then f is a contin-
uous map from B? to R (Exercise 4.1-1(h)). Let A = {(z,y) € R? | zy = 1}.
This hyperbola is a closed set in R*, but f(A) = R\ {0} which is not closed.

For a second example, let A C B? be the graph of y = tanz for —7w/2 <
x < w/2. The curve A is a closed set in B2, but f(A) is the open interval
| — 7/2,7/2[ which is not closed. ¢

+ 4E-21. Which of the following functions on B are uniformly continuous?

(a) flz) =1/(z* +1).
(b) f(z) =cos’z.

() flz) ==2%/(z*+2).
(d}) f(z)=zsinz.

Answer. (a) Yes.

(b) Yes.

(c) Yes.

{d) No. O

Solution. Parts (a), (b), and (c) can all be handled using Example 4.6.4.
Each is differentiable everywhere on RE.

(a) If f(r) = 1/(z® + 1), then f'(x) = —2z/(z* + 1)*. The denominator is
always at least as large as 1. So, if |z| < 1, then |f'(z)| < 2. If |z| > 1,
then |f'(x)| < |2z/2*| = 2/ |73 < 2. S0 |f'(z)| <2 for all z € R, and f
is uniformly contimious on B by Example 4.6.4.

(b) If f(z) = cos®z, then |f'(x)| = |-3cos? rsinz| < 3 for all real z since
|sinz| < 1 and |cos x| < 1 for all real x. Again, f is uniformly continuous
on B by Example 4.6.4.

(¢) If f(z) = 2%/(z® +2), then

(=) =

T
= .
;r4+c11:2+4'_ I2+1‘

The denominator is always at least as large as 1, so, if |z| < 1, then
[f(z)] < 1. If 2 = 1, then |f'(z)| < |J:I,"$2| =1/|z| < 1. So |f'(z)] <1
for all z € R, and f is uniformly continuous on B by Example 4.6.4.



(d) The function f(r) = rsinr is contimous on B but not absolutely con-
tinuous. Let £ = 1. We will show that no 4 = 0 can satisfy the defini-
tion of uniform continuity everywhere in E. Let a be any number with
0 < a < min(d, m/4). Then sina > 0. Pick an integer & large enough so
that 2krsina > 1. Let x = 2kr and y = 2kmr 4+ a. Then |r —y| =a < 4,
but

| fly) — flx)| = [(2k7m 4+ a) sin(2k7 + a) — sin{2kT)|
= (2km + a) sin(a)
= 1.

Nosingle & > 0 can work for £ = 1 in the definition of uniform continuity
everywhere in K. So f 15 not umformly contimious on R. +

+ 4E-23. Let X be a compact metric space and f : X — X an isometry:
that is, d{f(zx), fly)) = d(z,y) for all z, y € X. Show that f is a bijection.

Sketch. Toshow “onto” suppose y; £ A" f(A') and consider the sequence
y2 = flwn), ya = flye), --- . o

Solution. If f(z) = f(y). then 0 = d(f(z), f(y)) = d(x,y). s0 = = .
Thus f is one-to-one. If = = 0, let § = =. If d(x, y) < &, then d{ f(x), f(y)) =
d(x,y) < 6 = =, so [ 1s continuous, in fact uniformly continuous, on A
It remains to show that f maps A onto A Since A is compact and f is
continuous, the image, f(A') is a compact subset of the metric space X
So it must be closed. Its complement, A\ f(A") must be open. If there
were a point x in A"\ f(A), then there would be a radius r > 0 such that
Dz, r) C AN f(A). That is, y £ f(A) implies d{y,r) > r. Consider the
sequence defined by = = r and =, = f(r,) for n = 0,1,2,.... For

positive integer k, let f* denote the compaosition of f with itself k times. If
n and p are positive integers, then

d(Tnsp, Tn) = d(f* o fP(z), f*(2)) = d(fP(z),2) > T

since fP(x) € f(X). The points in the sequence are pairwise separated by
distances of at least r. This would prevent any subsequence from converg-
ing. But A" 1s sequentially compact by the Bolzano-Welerstrass Theorem.
So there should be a convergent subsequence. This contradiction shows
that there can be no such starting point = for our proposed sequence. The
complement A\ f(A") must be empty. So f(A) = & and f maps & onto
X as claimed. +

o 4E-28. Let f:]0,1[ — R be uniformly continuous. Must f be bounded?
Answer. Yes. O

Solution. If f were not bounded on |0, 1], we could inductively select a
sequence of points (zz)7 in |0,1[ such that |f(zes)| > |flze)] + 1 for
each k. In particular, we would have |f(zi) — f(z;)| = 1 whenever k # j.
But the points z;. are all in the compact interval [0, 1], so there should be
a subsequence converging to some point in [0, 1]. This subsequence would
have to be a Cauchy sequence, so no matter how small a positive num-
ber & were specified, we could get points zp and x; in the subsequence
with |x) — ;| < 4 and |f(x;) — f(x;)| > 1. This contradicts the uniform
contimiity of f on ]0,1[. So the image f(]0, 1[) must, in fact, be bounded.
It we knew the result of Exercise 4E-24(c), then we would know that
f has a unique continuous extension to the closure, [0,1]. There is a con-
tinuous g : [0,1] — R such that g(z) = f(z) for all z in |0, 1[. Since g is
continuous on the compact domain [0, 1], the image g([0, 1]) is compact and
hence bounded. So f(]0,1[) = g(]0,1[)} € g([0, 1]) is bounded. +



o 4E-30. (a) Let f:[0,0c] — R, f(z) = /z. Prove that f is uniformly
continuous.

(b) Let £ > 0 and f(z) = (z — z*)/log x for 0 < = < 1 and f(0) =0,
f(1) =1 — k. Show that f: [0,1] — R is continuous. Is f uniformly

contimous?

Suggestion. (a) Use Theorem 4.6.2 to show that f is uniformly continu-
ous on [0, 3] and Example 4.6.4 to show that it is uniformly continuous
on [1,00[. Then combine these results.

(b) Use L'Hopital's Rule. &

Solution. (a) Let = = 0. We know that f(z) = /r is continuous on [0, s/,
so it is certainly continuous on the compact domain [0, 3]. By the uniform
continuity theorem, 4.6.2, it is uniformly continuous on that set. There
is a & > 0 such that |f(z) — f(y)| < = whenever = and y are in [0, 3]
and |z — y| < 4.

We also know that f is differentiable for z > 0 with f'(z) = 1/(2\/T).
So |f'(z) = 1/2for x = 1. As in Example 4.6.4, we can use the mean
value theorem to conclude that if d = 2=, and = and y are in [1,00]
with |z — y| < &2, then there is a point ¢ between x and y such that
(@) — F)| = |F )z — )] < (1/2)(2¢) = =.

Now take advantage of the overlap of our two domains. If x and y are
in [0,o¢[ and |z — y| < § = min(1, 4;,42), then either » and y are both
in [0,3] or both are in [1, o[ or both. If they are both in [0, 3], then
|f(z) — fly)| < = since |z —y| < &,. If they are both in [1, 0|, then
|flz) — fly)| < = since |z — y| < d2. In either case, |f{z) — fly)| < =
So f is uniformly continuous on [0, o[ as claimed.

(b) Suppose k is a positive integer and f(z) = (z—x%)/logz for 0 < = < 1,
f(0) =0, and f(1) = 1 — k. The numerator,  — x*, is continuous for all
z. The denominator, log x, 1s continuous for x > 0. So f 1s continuous
on x > [ except possibly at x = 1 where the denominator is (), However,
the numerator is also 0 at £ = 1. To apply L'Hopital’s Rule, we consider
the ratio of the derivatives

1 — kxF? .

1z =zr—kz* —1-k=f(1) as =z— L
By L'Hépital’s Rule, lim, . (x — z%)/logz = lim, . f(7) also exists
and i= equal to f({1). So f is continuous at 1. As r — 07, the numerator
of f(x) tends to 0 and the denominator to —oc. So lim._o+ f(z) =
0 = f(0). So f is continuous from the right at 0. So f is continuous on
[0, 5[ and on the smaller domain [0, 1]. Since the latter is compact, f is
uniformly continuous on it by the uniform continuity theorem, 4.6.2. 4

o 4E-34. Assuming that the temperature on the surface of the earth is a
continuous function, prove that on any great circle of the earth there are
two antipodal points with the same temperature.

Solution. View the great circle as a circle of radius B in the xy-plane.
It ¢ is a real number, then (Rcost, Rsint) and (Hcos(t + 7), Rsin(t + 7))
are antipodal points (at opposite ends of a diameter). Let f(t) be the
temperature at (Rcost, Rsint), and g(t) = f(t) — f(t + 7). We want to
show that there is a t; with g(t;) = 0. But g(t+7) = f(t+7)— f(t+27) =
flt+7) — f(t) = —g(t). If g(t) is not zero, then g(t) and g(t + 7} have
opposite sign. Since f is continuous, so is g, and the intermediate value
theorem guarantees a point fy at which g(to) = 0 just as we need. 4



¢ 4E-36. Show that {(z,sin(l/z)) | = = 0} U ({0} x [-1,1]) in R? is
connected but not path-connected.

Solution. Let A = {(z,sin(1/z)) | = > 0} and B = {0} x [-1,1] =
1(0,y) | =1 < y < 1}. Let C = AU B. We are asked to show that C is
connected but not path-connected.

Each of A and B are path-connected, and so connected, subsets of RZ,
Suppose 7 and V' were open sets with ' contained in their union and
UnvVnC =0T AnNU and A NV were both nonempty, then IV and V'
would disconnect A. But A is connected. So one of these must be empty.
Similarly, one of BN U and BNV must be empty. Say BNV = @ and
B CU. Since U is open and (0,0) € U, the point (1/27n.0) is also in U for
large enough integer n. But these points are in 4. So A N U is not empty.
So AnV isempty, and A CU. So C = AU B C U. The sets '’ and V¥
cannot disconnect C'. So O must be connected.

Suppose v : [0,1] — C were a contimious path with 4(0) = (1/2x,0)
and (1) = (0,0). Since 7 is continuous on the compact domain [0, 1], it
would be uniformly continuous, and there would be a § = 0 such that

0<s<t<4implies ||7(s) —~(t)| < 1/2. But this gets us into trouble.
As the path moves from (1/2m,0) to (0,0), it must pass through the points
vp = (1/27n,0) and w, = (1/(2rn+(7/2)).1). We could inductively select
preimages () = 5y <) < 53 < {3 < s3 < .-+ — 1 such that (s;) = v, and
*(tn) = wn. For large enough n, both s, and t, are within 4§ of 1, so their
images should be separated by less than 1/2. But || v, — w, || = 1. So there
can be no such path. 4

o A4E-44. Let f:[0,1] — R be Riemann integrable and suppose for every
a,bwith0 <a<b<1thereisac a<c<b with f(c) = 0. Prove
fnl f=0. Must f be zero? What if f is continuous?

Suggestion. Show that the upper and lower sums are both 0 for every
partition of [0,1]. Consider a function which is 0 except at finitely many
points. &

Solution. Since f is integrable on [0, 1], the upper and lower integrals are
the same and are equal to the integral. Let P={0=zp < 2y < 22 < --- <
&, = 1} be any partition of [0, 1]. For each subinterval [x; ;,x;] there is a
point ¢; in it with f{c;}) =0. So
m; =inf{f(z) |z € [x;-1,35]} < 0 < sup{f(z) | 7 € [x;_1,25]} = Mj.
So
L(f,P) =Y mj(z; —z;-1) <0< Mj(z; — zj-1) = U(f, P).
j=1 i=1

This is true for every partition of [0, 1]. So

fulf(rldr=£ﬂrldr= sip L(f,P)<0

P a partition of [0,1]

< inf U(f,P) =ff(z)dz=fulf(x;dx.

T P a partition of [0,1]

So we must have [ f(z)dz = 0.



The function f need not be identically 0. We could, for example, have
f(z}) =0 for all but finitely many points at which f(x) = 1.

It f is continuous and satisfies the stated condition, then f must be
identically 0. Let = € [0,1]. By hypothesis there is, for each integer n = 0,
at least one point ¢y, in [0, 1] with z—(1/n) < ¢, < z+(1/n) and f(c,) = 0.
Since ¢, — 0 and f is contimnous, we must have 0 = flc,) — f(r). So

f(z) =0.



