
Problem 2. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be uniformly
continuous functions, and tfku8

k=1 converges uniformly to f : A Ñ N on A. Show that f is
uniformly continuous on A.

Proof. Let ε ą 0 be given. Since tfku8
k=1 converges uniformly to f on A, there exists N ą 0

such that
sup
xPA

ˇ

ˇfk(x) ´ f(x)
ˇ

ˇ ă
ε

3
@ k ě N .

Since fN is uniformly continuous on A, there exists δ ą 0 such that
ˇ

ˇfN(x) ´ fN(y)
ˇ

ˇ ă
ε

3
@ |x ´ y| ă δ and x, y P A .

Therefore, if |x ´ y| ă δ and x, y P A,
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ď
ˇ

ˇf(x) ´ fN(x)
ˇ

ˇ+
ˇ

ˇfN(x) ´ fN(y)
ˇ

ˇ+
ˇ

ˇfN(y) ´ f(y)
ˇ

ˇ ă ε

which suggests that f is uniformly continuous on A. ˝

Problem 4. Complete the following.

(a) Suppose that fk, f, g : [0,8) Ñ R are functions such that

1. @R ą 0, fk and g are Riemann integrable on [0, R];

2. |fk(x)| ď g(x) for all k P N and x P [0,8);

3. @R ą 0, tfku8
k=1 converges to f uniformly on [0, R];

4.
ż 8

0
g(x)dx ” lim

RÑ8

ż R

0
g(x)dx ă 8.

Show that lim
kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx; that is,

lim
kÑ8

lim
RÑ8

ż R

0

fk(x)dx = lim
RÑ8

lim
kÑ8

ż R

0

fk(x)dx .

(b) Let fk(x) be given by fk(x) =

"

1 if k ´ 1 ď x ă k ,

0 otherwise.
Find the (pointwise) limit f of

the sequence tfku8
k=1, and check whether lim

kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx or not. Briefly

explain why one can or cannot apply (a).

(c) Let fk : [0,8) Ñ R be given by fk(x) =
x

1 + kx4
. Find lim

kÑ8

ż 8

0
fk(x)dx.

Proof. 1. First we note that since |fk(x)| ď g(x) for all x P [0,8), |f(x)| ď g(x) for all
x P [0,8). Let ε ą 0 be given. Since

ż 8

0
g(x)dx ă 8, there exists L ą 0 such that

ż 8

L

g(x)dx ”

ż 8

0

g(x)dx ´

ż L

0

g(x)dx = lim
RÑ8

ż R

L

g(x)dx ă
ε

3
.



Let In =
ż n

0
g(x)dx and Fn ”

ż n

0
f(x)dx. Since tInu8

n=1 is increasing and convergent,
tInu8

n=1 is Cauchy; thus tFnu8
n=1 is also Cauchy since

|Fn ´ Fm| ď |In ´ Im| .

Therefore, lim
nÑ8

ż n

0
f(x)dx exists. Denote the limit by F . We then have

|Fn ´ F | = lim
mÑ8

|Fn ´ Fm| ď
ε

3
if n ě L.

Claim: lim
RÑ8

ż R

0
f(x)dx = F .

Proof of claim: Since
ż R

0

f(x)dx =

ż [R]

0

f(x)dx+

ż R

[R]

f(x)dx ,

we find that for R ě L,
ˇ

ˇ

ˇ

ż R

0

f(x)dx ´ F
ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

ż R

0

f(x)dx ´

ż [R]

0

f(x)dx+

ż [R]

0

f(x)dx ´ F
ˇ

ˇ

ˇ

ď

ż R

[R]

ˇ

ˇf(x)
ˇ

ˇdx+
ˇ

ˇ

ˇ

ż [R]

0

f(x)dx ´ F
ˇ

ˇ

ˇ

ď

ż R

[R]

ˇ

ˇg(x)
ˇ

ˇdx+
ˇ

ˇF[R] ´ F
ˇ

ˇ ď
2

3
ε ă ε .

Therefore, lim
RÑ8

ż R

0
f(x)dx = F . Similarly, lim

RÑ8

ż R

0
fk(x)dx exists.

For this particular L, since tfku8
k=1 converges uniformly to f on [0, L],

lim
kÑ8

ż L

0

fk(x)dx =

ż L

0

f(x)dx ;

thus there exists N ą 0 such that
ˇ

ˇ

ˇ

ż L

0

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
ă

ε

3
@ k ě N .

As a consequence, if k ě N ,
ˇ

ˇ

ˇ

ż 8

0

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
= lim

RÑ8

ˇ

ˇ

ˇ

ż R

0

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ż L

0

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
+ lim

RÑ8

ż R

L

(
|fk(x)| + |f(x)|

)
dx

ď

ˇ

ˇ

ˇ

ż L

0

(
fk(x) ´ f(x)

)
dx

ˇ

ˇ

ˇ
+ 2

ż 8

L

g(x)dx ă ε .

2. We show that the pointwise limit of tfku8
k=1 is zero. Let a P R. Then a ă N ´ 1 for

some N = N(a) P N. Therefore,
ˇ

ˇfk(a) ´ 0
ˇ

ˇ = 0 @ k ě N .



Clearly this convergence is not uniform (since the number N depends crucially on a).
However, for any R ą 0, tfku8

k=1 converges uniformly to 0 on [0, R].

Moreover,
ż 8

0

fk(x)dx = 1 but
ż 8

0

f(x)dx = 0 ;

thus lim
kÑ8

ż 8

0
fk(x)dx ‰

ż 8

0
f(x)dx.

We cannot apply (a) since we cannot find a function g satisfying 2 and 4 simultaneously.

3. Let xk P [0,8) be such that fk(xk) = sup
xP[0,8)

fk(x). In fact, since

f 1
k(x) =

1 + kx4 ´ 4kx4

(1 + kx4)2
=

1 ´ 3kx4

(1 + kx4)2
and lim

xÑ8
fk(x) = 0 ;

xk = (3k)´ 1
4 . Therefore,

0 ď fk(x) ď fk(xk) =
3

4
(3k)´ 1

4

which suggests that tfku8
k=1 converges uniformly to 0 on [0,8). Moreover, letting

g(x) =
x

1 + x4
, we have |fk(x)

ˇ

ˇ ď g(x) for all k P N and x P [0,8), and if R ą 1,

IR ”

ż R

0

g(x)dx ď

ż 1

0

g(x)dx+

ż R

1

g(x)dx ď

ż 1

0

g(x)dx+

ż R

1

1

x3
dx

=

ż 1

0

g(x)dx ´
1

2
R´2 +

1

2
ď

ż 1

0

g(x)dx+
1

2
ă 8 .

Since IR is increasing in R and bounded above, lim
RÑ8

IR must exist which ensures that
ż 8

0
g(x)dx ă 8. Therefore, we can apply (a) to conclude that

lim
kÑ8

ż 8

0

fk(x)dx =

ż 8

0

0dx = 0 . ˝

Problem 6. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in(
C (K;R), } ¨ }8

)
for all a, b P R.

3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set
B =

␣

f P Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.

Proof. 1. 參考共筆 Example 5.50.

2. 參考共筆 Example 5.51.



3. 鄭老師班上課筆記。 ˝

Problem 8. Let (M,d) be a metric space, (V , } ¨ }) be a normed space, and A Ď M be
a subset. Suppose that B Ď Cb(A;V) be equi-continuous. Prove or disprove that cl(B) is
equi-continuous.

Proof. We prove that cl(B) is equi-continuous. Let ε ą 0 be given. Since B is equi-
continuous, there exists δ ą 0 such that

}f(x) ´ f(y)} ă
ε

3
if d(x, y) ă δ, x, y P A and f P B.

If g P cl(B), there exists f P B such that
›

›g ´ f
›

›

8
ă

ε

3
; thus if g P cl(B) and d(x, y) ă δ

with x, y P A,
›

›g(x) ´ g(y)
›

› ď
›

›g(x) ´ f(x)
›

›+
›

›f(x) ´ f(y)
›

›+
›

›f(y) ´ g(y)
›

› ă ε .

Therefore, cl(B) is equi-continuous. ˝

Problem 10. Assume that tfku8
k=1 is a sequence of monotone increasing functions on R

with 0 ď fk(x) ď 1 for all x and k P N.

1. Show that there is a subsequence
␣

fkj
(8

j=1
which converges pointwise to a function

f (This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that
␣

fkj
(8

j=1
converges uniformly to f on any

compact set of R.

Proof. 1. We divide the proof into the following 7 steps.

(a) By the diagonal process (Lemma 5.63 in the new lecture note), we can find a
subsequence

␣

fkj
(8

j=1
that converges pointwise to some rf on Q.

(b) Since fkj(x) ď fkj(y) if x ď y, passing j to the limit we obtain that

rf(x) ď rf(y) if x ď y and x, y P Q.

In other words, rf is an increasing function on Q.

(c) For each x P R, define f(x) = sup
rďx,rPQ

rf(r) = lim
rÑx´

rPQ

rf(r). Then due to the mono-

tonicity of rf , f = rf on Q, and f is also monotone increasing. Let S be the
collection of all discontinuity of f ; that is,

S =
␣

x P R
ˇ

ˇ f is not continuous at x
(

.

Then for each x P S, ax ” lim
yÑx´

f(y) = sup
yăx

f(y) and bx ” lim
yÑx+

f(y) = inf
yąx

f(y)

exist and ax ă bx. In other words, each discontinuity x of f corresponds to an
interval [ax, bx], and by the monotonicity of f , [ax, bx]X[ay, by] = H if x, y P S and
x ‰ y. Since each [ax, bx] contains at least one rational number qx and qx ‰ qy if
x, y P X and x ‰ y, S must be countable.



(d) Since QYS is countable, by the diagonal process again there exists a subsequence
␣

fkjℓ
(8

ℓ=1
that converges pointwise to some sf on Q Y S.

(e) For each x P R, define g(x) = sup
sďx,sPQYS

sf(s) = lim
sÑx´

sPQYS

sf(s). As in (c), g = sf on

QYS, and g is monotone increasing. Our goal is showing that
␣

fkjℓ
(8

ℓ=1
converges

pointwise to g on R. However, since R = (QYS)Y (QYS)A,
␣

fkjℓ
(8

ℓ=1
converges

to sf on QYS, and g = sf on QYS, it suffices to show that
␣

fkjℓ (a)
(8

ℓ=1
converges

to g(a) if f is continuous at a.

(f) Claim: if f is continuous at a, then g(a) = f(a).
Proof of claim: It should be clear that g(x) ě f(x) for all x P R since sf = rf on
Q. Now suppose that sup

rďa,rPQ
rf(r) = f(a) ă g(a) = sup

sďa,sPQYS

sf(s) for some a R S.

Then D sn P S, sn Õ a (this means sn ă a and sn Ñ a as n Ñ 8) such that
lim
ℓÑ8

fkjℓ (sn) =
sf(sn) ą g(a)´

1

n
. We note that since a R S and sn P S, sn ‰ a for

all n P N. Now, for each fixed sn ă a, for all r P (sn, a]XQ, by the monotonicity
of fkjℓ , fkjℓ (r) ě fkjℓ (sn). Therefore,

rf(r) = lim
ℓÑ8

fkjℓ (r) ě lim
ℓÑ8

fkjℓ (sn) ą g(a) ´
1

n
;

thus f(a) = suprďa,rPQ
rf(r) ě g(a) ´

1

n
. Since this holds for all n P N, we must

have f(a) ě g(a) which is a contradiction.

(g) By (e) and (f), we only need to show that
␣

fkjℓ (a)
(8

ℓ=1
converges to f(a) if f is

continuous at a. Suppose that f is continuous at a, and ε ą 0 be given. Then
D δ ą 0 such that

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ ă
ε

6
if |x ´ a| ă δ .

Let r, s P (a ´ δ, a + δ) X Q such that s ă x ă r. Since fkjℓ (r) Ñ sf(r) and
fkjℓ (s) Ñ sf(s) as ℓ Ñ 8, DN ą 0 such that

ˇ

ˇfkjℓ (r) ´ f(r)
ˇ

ˇ ă
ε

6
and

ˇ

ˇfkjℓ (s) ´ f(s)
ˇ

ˇ ă
ε

6
@ ℓ ě N .

Therefore, if ℓ ě N ,
ˇ

ˇfkjℓ (x) ´ f(x)
ˇ

ˇ ď
ˇ

ˇfkjℓ (x) ´ fkjℓ (r)
ˇ

ˇ+
ˇ

ˇfkjℓ (r) ´ f(r)
ˇ

ˇ+
ˇ

ˇf(r) ´ f(x)
ˇ

ˇ

ď fkjℓ (r) ´ fkjℓ (s) +
ˇ

ˇfkjℓ (r) ´ f(r)
ˇ

ˇ+
ˇ

ˇf(r) ´ f(x)
ˇ

ˇ

ď f(r) ´ f(s) + |f(s) ´ fkjℓ (s)| + 2
ˇ

ˇfkjℓ (r) ´ f(r)
ˇ

ˇ+
ˇ

ˇf(r) ´ f(x)
ˇ

ˇ

ď
ˇ

ˇf(x) ´ f(s)
ˇ

ˇ+ |f(s) ´ fkjℓ (s)| + 2
ˇ

ˇfkjℓ (r) ´ f(r)
ˇ

ˇ+ 2
ˇ

ˇf(r) ´ f(x)
ˇ

ˇ

ă 6 ¨
ε

6
= ε.

2. Let ε ą 0 be given, and K Ď R be a compact set. Choose a, b P R so that K Ď [a, b].
Since [a, b] is compact and f : [a, b] Ñ R is continuous, f is uniformly continuous on



[a, b]. Therefore, there exists δ ą 0 such that
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
if |x ´ y| ă δ and x, y P [a, b].

Choose n P N so that b ´ a

n
ă δ. Divide [a, b] into n sub-intervals [xi, xi+1], i =

0, ¨ ¨ ¨ , n ´ 1, where xi = a+
i(b ´ a)

n
. Then

ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă
ε

2
if x, y P [xi, xi+1].

Moreover, since
␣

fkj
(8

k=1
converges pointwise to f on [a, b], there exists Ni ą 0 such

that
ˇ

ˇfkj(xi) ´ f(xi)
ˇ

ˇ ă
ε

2
@ j ě Ni .

Let N = maxtN1, ¨ ¨ ¨ , Nnu. Then for x P [xi, xi+1] and j ě N , if fkj(x) ´ f(x) ě 0,
ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ = fkj(x) ´ f(x) ď fkj(xi+1) ´ f(xi)

ď fkj(xi+1) ´ f(xi+1) + f(xi+1) ´ f(xi) ă ε ,

while if fkj(x) ´ f(x) ď 0,
ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ = f(x) ´ fkj(x) ď f(xi+1) ´ fkj(xi)

ď f(xi+1) ´ f(xi) + f(xi) ´ fkj(xi) ă ε.

As a consequence,
ˇ

ˇfkj(x) ´ f(x)
ˇ

ˇ ă ε @ j ě N and x P [a, b] ;

thus
␣

fkj
(8

j=1
converges uniformly to f on [a, b]. ˝

Problem 12. Let (M,d) be a metric space, K Ď M be a compact subset, and Φ : K Ñ K

be such that d
(
Φ(x),Φ(y)

)
ă d(x, y) for all x, y P K, x ‰ y.

1. Show that Φ has a unique fixed-point.

2. Show that 1 is false if K is not compact.

Proof. 1. Let f(x) = d(Φ(x), x). Then if x ‰ y,
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇd(Φ(x), x) ´ d(Φ(y), y)
ˇ

ˇ

ď
ˇ

ˇd(Φ(x), x) ´ d(Φ(y), x)
ˇ

ˇ+
ˇ

ˇd(Φ(y), x) ´ d(Φ(y), y)
ˇ

ˇ

ď d(Φ(x),Φ(y)) + d(x, y) ă 2d(x, y) ;

thus f is continuous on K. Suppose that Φ has no fixed-point on K. Then Φ(x) ‰ x

for all x P K; thus f(x) ą 0 for all x P K. The Min-Max Theorem suggests that there
exists x0 P K such that

f(x0) = min
xPK

f(x) .



For this particular x0, we also have Φ(x0) ‰ x0; thus

f(Φ(x0)) = d(Φ(Φ(x0)),Φ(x0)) ă d(Φ(x0), x0) = f(x0)

which implies that f(x0) is not the minimum of f on K, a contradiction.

2. 見共筆 Example 5.79.
˝

Problem 14. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k

ă
2

k + 1

if |x| ď 1.

Proof. We first show by induction that for all k P N Y t0u,

0 ď pk(x) ď |x| @ x P [´1, 1] . (‹)

It is clear that (‹) holds for k = 0. Now suppose that (‹) holds for 0 ď pn(x) ď |x|. Then

|x| ´ pn(x) ě 0 and 1 ´
|x| + pn(x)

2
ě 1 ´ |x| ě 0 on [´1, 1]; thus using the identity

|x| ´ pn+1(x) =
[
|x| ´ pn(x)

][
1 ´

|x| + pn(x)

2

]
(‹‹)

we conclude that |x| ´ pn+1(x) ě 0. By induction, (‹) holds for all k P N Y t0u.
Now we can conclude from (‹‹) that

0 ď |x| ´ pk(x) ď
[
|x| ´ pk´1(x)

](
1 ´

|x|

2

)
ď

[
|x| ´ pk´2(x)

](
1 ´

|x|

2

)2
ď ¨ ¨ ¨ ¨ ¨ ¨ ď |x|

(
1 ´

|x|

2

)k
ă

2

k + 1
.

As a consequence, tpku8
k=1 converges uniformly to p(x) = |x|. ˝


