Problem 2. Let (M, d) and (N, p) be metric spaces, A € M, and f;, : A — N be uniformly
continuous functions, and {f;}2, converges uniformly to f : A — N on A. Show that f is

uniformly continuous on A.

Proof. Let € > 0 be given. Since {f;};; converges uniformly to f on A, there exists N > 0

such that

Sup‘fk(:v)—f(:v)‘<§ Vk>=N.
zeA

Since fy is uniformly continuous on A, there exists ¢ > 0 such that

}fN(ZE)—fN(y)‘<§ V|ig—y| <dand x,ye A.

Therefore, if | —y| < § and x,y € A,

[f(2) = F)| < [f(2) = fn(@)] + [fn(@) = In()] + [fn(y) = Fy)| <<
which suggests that f is uniformly continuous on A. o
Problem 4. Complete the following.
(a) Suppose that fi, f,g:[0,00) — R are functions such that

1. VR >0, fr and g are Riemann integrable on [0, RJ;
2. |fe(x)| < g(z) for all ke N and = € [0, 0);

3. VR >0, {fe};2, converges to f uniformly on [0, R];
0 R

4. f g(x)dr = lim | g(z)dr < .

0 R—w Jo

Q0 Q0
Show that lim | fi(z)dz = f f(x)dz; that is,
k—00 0 0

R R
fim i, | u(o)de = it | o)

1 ifk—1<z<k,

‘ Find the (pointwise) limit f of
0 otherwise.

(b) Let fx(z) be given by fi(x) = {
e 0] Q0
the sequence {fi}72,, and check whether klim fr(x)dx = J f(z)dz or not. Briefly
—® Jo 0

explain why one can or cannot apply (a).

(¢) Let f :[0,00) — R be given by fi(z) =

X . . ©

Proof. 1. First we note that since |fi(z)| < g(z) for all x € [0,00), |f(x)] < g(z) for all
0

x € [0,00). Let € > 0 be given. Since f g(x)dx < o0, there exists L > 0 such that
0

Jwg(x)dx - F g(x)dz — fg(x)dx — lim Rg(a:)d:z: < g .

L 0 0 —©JL



Let I, = J g(x)dx and F,, = J f(z)dz. Since {I,}>_, is increasing and convergent,

0 0
{I,,}_, is Cauchy; thus {F,}>_, is also Cauchy since
|Fy, — Fou| < |1 — I -

Therefore, lim | f(x)dz exists. Denote the limit by /. We then have

n—o Jo
F, — F|= lim |Fy— Fo|<- if n>L.
m—00 3
R
Claim: lim f f(z)dz = F.
R—00 0

Proof of claim: Since

R (R] R

| #@e = | parda+ | syar,
0 0 [R]

we find that for R > L,

[R]

‘LRf($)d$ - F‘ _ ‘LR flz)dx — [R] fla)dz+ | f(z)ds — F‘

0 0

< J{R ‘f(x)‘dx - ‘ L[R] f(z)dz — F‘

R]

R 2
<J ‘g(x)‘d:c—i—]F[R]—F‘<55<g.
(]

R R
Therefore, lim f f(z)dz = F. Similarly, lim J fr(x)dx exists.
R—o0 Jg R—o0 Jg

For this particular L, since { f};2, converges uniformly to f on [0, L],

lim LL fk(a:)dx—LLf(:c)d:c;

k—o0

thus there exists N > 0 such that

3

’LL(fk(x)—f(x))dx’<§ Vk>N.

\Y

As a consequence, if K > N,
[ ) = s@ac] = o | [ ) - st
< | () = sas] + o [ (] + )

< ‘LL (fr(x) — f(:c))dx‘ +2foog(:v)d:v <e.

L

2. We show that the pointwise limit of {f}{, is zero. Let a € R. Then a < N — 1 for
some N = N(a) € N. Therefore,

|fi(a) —0/=0  Vk=N.



Clearly this convergence is not uniform (since the number N depends crucially on a).

However, for any R > 0, {fi};>, converges uniformly to 0 on [0, R].

Moreover,

f@ flz)dz =1 but foo f(x)dz = 0;
0 0

Q0 0
thus lim | fy(z)dz # f f(z)dx.
k—0o0 0 0

We cannot apply (a) since we cannot find a function g satisfying 2 and 4 simultaneously.

3. Let xj € [0,00) be such that fiy(xx) = sup fr(z). In fact, since

2€[0,00)

1+ kat — 4ka? 1 — 3ka?
! _ _ . _ .
Jilw) = (1+ ka2 (14 ka)2 and - lim fi(z) =0;

zx = (3k)~i. Therefore,

N

0< fule) < fules) = (30)"

which suggests that {fj}{2, converges uniformly to 0 on [0,00). Moreover, letting

g(x) = 1522 ¥ have |f,(z)| < g(z) for all k € N and z € [0, %), and if R > 1,

R 1 R 1 R
Ir = J g(x)dr < f g(z)dx +J g(z)dr < J g(x)dz —i—f —dx
0 0 1 0 1 x
1

! 1 ! 1
:J g(m)dm—ER_2+§<J g(a:)da:+§<oo.
0 0

Since I is increasing in R and bounded above, I%im Ir must exist which ensures that
— 00

Q0
J g(z)dz < 0. Therefore, we can apply (a) to conclude that
0

o0 Q0
lim f fr(z)dz = J Odx = 0. o
k= Jo 0

Problem 6. Let (M, d) be a metric space, and K < M be a compact subset.

1. Show that the set U = {f € ¢(K;R)|a < f(z) < bforallze K} is open in
(€(K;R), | - o) for all a,be R.

2. Show that the set F' = {f € €(K;R)|a < f(z) < bforallze K} is closed in
(€¢(K;R),| - o) for all a,be R.

3. Let A < M be a subset, not necessarily compact. Prove or disprove that the set

B={fe€(AR)|f(z) >0 forall z€ A} is open in (G,(A;R), | - |)-
Proof. 1. %% ¥ 4 Example 5.50.

2. %4 £ 4 Example 5.51.
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Problem 8. Let (M,d) be a metric space, (V,| - |) be a normed space, and A < M be
a subset. Suppose that B < %,(A;V) be equi-continuous. Prove or disprove that cl(B) is

equi-continuous.

Proof. We prove that cl(B) is equi-continuous. Let ¢ > 0 be given. Since B is equi-

continuous, there exists d > 0 such that

Hf(x)—f(y)||<§ if d(z,y) <0, z,ye Aand f € B.

If g € cl(B), there exists f € B such that Hg - fHoo < %; thus if g € cl(B) and d(z,y) <
with z,y € A,

lg(z) = 9] < o) = f@@)] + | £(2) = fw)| + [ £ @) - 9w)] <e.
Therefore, cl(B) is equi-continuous. o

Problem 10. Assume that {fx}2; is a sequence of monotone increasing functions on R

with 0 < fr(z) <1 for all z and k € N.
1. Show that there is a subsequence { Jx; };il which converges pointwise to a function

f (This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that { Jr; }]00:

compact set of R.

, converges uniformly to f on any

Proof. 1. We divide the proof into the following 7 steps.

(a) By the diagonal process (Lemma 5.63 in the new lecture note), we can find a

subsequence { Tx; };il that converges pointwise to some f on Q.

(b) Since fi,(z) < fi;(y) if 2 <y, passing j to the limit we obtain that

~

fl2)< fly) ifz<yandzyeqQ.

In other words, f is an increasing function on Q.

~ ~

(c) For each x € R, define f(z) = sup f(r) = lim f(r). Then due to the mono-

r<z,reQ ’";’E’é—
tonicity of f, f= f on QQ, and f is also monotone increasing. Let S be the

collection of all discontinuity of f; that is,
S = {w eR ‘ f is not continuous at x}

Then for each z € S, a, = lim f(y) = sup f(y) and b, = lim+ f(y) = inf f(y)
Yy—x~ y<zx Yy—x y>x
exist and a, < b,. In other words, each discontinuity x of f corresponds to an

interval [a,, b,], and by the monotonicity of f, [az, bs|N]ay, b, = Jif 2,y € S and
x # y. Since each [a,, b,] contains at least one rational number ¢, and ¢, # g, if

x,y € X and x # y, S must be countable.



(d) Since Qu S is countable, by the diagonal process again there exists a subsequence

{ Tr;, }:.;1 that converges pointwise to some f on Q U S.

(e) For each z € R, define g(x) =

sup  f(s) = lim f(s).

s<x,5€QuUS s—o@
= Q seQu S

Asin (¢), g = f on

Qu S, and g is monotone increasing. Our goal is showing that { Jx; }ZO | converges

pointwise to g on R. However, since R =

to fonQuS, and g = f on QU S, it suffices to show that {fkjé

(QuS)u(QuS) {f’m }z | converges

} (., converges

to g(a) if f is continuous at a.

(f) Claim: if f is continuous at a, then g(a)

f(a

).
Proof of claim: It should be clear that g(z) = f(x) for all x € R since f = fon
) =

Q. Now suppose that

sup f(r) =

r<a,reQ

sup  f(s) for some a ¢ S.

s<a,seQuS

fla) < gla

Then 3s, € S, s, /" a (this means s, < a and s, — a as n — o) such that

Jim i, (50) = £(

1
Sn) > g(a) — —. We note that since a ¢ S and s, € S, s,, # a for
n

all n € N. Now, for each fixed s,, < a, for all r € (s,,a] n Q, by the monotonicity

of fi;,s fr, (r) = T, (8n). Therefore,
N ' 1
f(r) = lim fi, (r) = lm fi; (sa) > g(a) = —
~ 1
thus f(a) = sup,<,,eq f(r) = g(a) — —. Since this holds for all n € N, we must
’ n

have f(a) >

By (e) and (f), we only need to show that { i, (

g(a) which is a contradiction.

a)}zozl converges to f(a) if f is

continuous at a. Suppose that f is continuous at a, and € > 0 be given. Then

39 > 0 such that

£(z) = fla)| < =

Let r,s € (a — d,a + ) n Q such that s < x < r.

if [x—a]<d.
6

Since f,, (1) — f(r) and

fi;, () — f(s) as £ — o0, AN > 0 such that

’fkjl (T)

Therefore, if £ > N,

— f(r)’ < c and !fka(s

- )—f(s)\<% Vi>N.

| fis, () = f(@)| < [ iy, (@) = iy, (0] + [ fiy, (r) = f(r)] + | £ () = f(2)]
< Jiy, (1) = Jig (s +\f;w(7“)— )|+ [f(r) = f(@)]
< f(r) - f(8)+|f()—fkjl(8)|+2|fkjl(r)— )| +[f(r) = f(2)]
< |f(x) - f(8|+|f by, ()| + 2| fi, () = f(r)] + 2] f(r) = f(2)]
<6- -
6

2. Let € > 0 be given, and K < R be a compact set. Choose a,b € R so that K < [a, b].

Since |a, b] is compact and f :

[a,b] — R is continuous, f is uniformly continuous on



[a,b]. Therefore, there exists ¢ > 0 such that

‘f(a:)—f(y)‘< if |x—y| <0 and x,y € [a,bl.

DN ™

b—

Choose n € N so that —— < §. Divide [a,b] into n sub-intervals [z;, z;41], i =

i(b—a)
n

. Then

0,---,n—1, where z; = a +

f@) = f)l <5 i eye ol

Moreover, since { fkj};;o:l converges pointwise to f on [a,b], there exists V; > 0 such

that
€

’fk]<£€@)—f(xz)}<§ Vj=N;.

Let N = max{Ny, -, N,}. Then for z € [z;,z,1] and j = N, if fy, () — f(z) =0,
| fi; () = f(@)] = fay () = f(2) < fu; (wira) — f(22)
< iy (@ig1) = f(@in) + f@in) — f(@:) <&,

while if fi, () — f(z) <0,

|fi; (@) = f(@)] = (@) = fi; (2) < fl@in) = fi; (22)

< f(@ivn) = flao) + flxi) = fu, (33) < e
As a consequence,
|fu,(x) = f(z)| <e  Vj=Nandze[a,b];

thus { fi, }j';l converges uniformly to f on [a, b)]. .

Problem 12. Let (M, d) be a metric space, K € M be a compact subset, and ® : K — K
be such that d(@(m),@(y)) < d(z,y) for all z,y € K, x # y.

1. Show that ® has a unique fixed-point.

2. Show that 1 is false if K is not compact.
Proof. 1. Let f(z) = d(®(x),z). Then if x # y,
() = f(y)] = |d(®(x),2) — d(D(y),y)]
< |d(®(x), x) — d(®(y), )| + |d(D(y), ) — d(®(y),y)|
< d(®(x), ®(y)) + d(z,y) < 2d(x,y);

)
x),x
thus f is continuous on K. Suppose that ® has no fixed-point on K. Then ®(z) # =

for all z € K; thus f(z) > 0 for all z € K. The Min-Max Theorem suggests that there

exists x¢g € K such that

F (o) = min f(z)



For this particular x, we also have ®(zy) # x¢; thus

f(@(x0)) = d(P(D(0)), D(0)) < d(P(20),20) = f(20)
which implies that f(x¢) is not the minimum of f on K, a contradiction.

2. 8 % & Example 5.79.

Problem 14. Put py = 0 and define

pk+1($):pk(l')+w VkeNu{0}.

Show that {p};2, converges uniformly to |z| on [—1,1].
Hint: Use the identity

_ e[+ pi(2)

2] — prti(x) = [|x| —pk(x)} [1 5

to prove that 0 < pg(z) < pry1(x) < |z| if |x| < 1, and that

k 2
ol - (o) < Jel (1 - 1) < 20
if |z < 1.
Proof. We first show by induction that for all k€ N u {0},
0<pz)<lal  VYrel-L1]. (+)

It is clear that (x) holds for £ = 0. Now suppose that (x) holds for 0 < p,(x) < |z|. Then

|z| — pp(z) =0 and 1 — M >1—|z| = 0 on [—1,1]; thus using the identity
2| + pu()
o]~ Puss () = [Ja] — pu(a)] [1 - A 22D] (+s)

we conclude that |z| — p,+1(x) = 0. By induction, (x) holds for all £ € N U {0}.

Now we can conclude from (**) that

0 < Jal =) < [l = @] (1 = 5) < [l peca(@] (1= 5’
ovnnnn < | |(1 %)k 2

As a consequence, {py}72; converges uniformly to p(x) = |z|. o



