Problem 2. Let (M, d) and (N, ρ) be metric spaces, $A \subseteq M$, and $f_k : A \to N$ be uniformly continuous functions, and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to $f : A \to N$ on A. Show that f is uniformly continuous on A.

Proof. Let $\varepsilon > 0$ be given. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on A, there exists N > 0 such that

$$\sup_{x \in A} |f_k(x) - f(x)| < \frac{\varepsilon}{3} \qquad \forall k \geqslant N.$$

Since f_N is uniformly continuous on A, there exists $\delta > 0$ such that

$$|f_N(x) - f_N(y)| < \frac{\varepsilon}{3}$$
 $\forall |x - y| < \delta \text{ and } x, y \in A.$

Therefore, if $|x - y| < \delta$ and $x, y \in A$,

$$|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \varepsilon$$

which suggests that f is uniformly continuous on A.

Problem 4. Complete the following.

- (a) Suppose that $f_k, f, g : [0, \infty) \to \mathbb{R}$ are functions such that
 - 1. $\forall R > 0$, f_k and g are Riemann integrable on [0, R];
 - 2. $|f_k(x)| \leq g(x)$ for all $k \in \mathbb{N}$ and $x \in [0, \infty)$;
 - 3. $\forall R > 0, \{f_k\}_{k=1}^{\infty}$ converges to f uniformly on [0, R];

4.
$$\int_0^\infty g(x)dx \equiv \lim_{R \to \infty} \int_0^R g(x)dx < \infty.$$

Show that $\lim_{k\to\infty}\int_0^\infty f_k(x)dx=\int_0^\infty f(x)dx$; that is,

$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$$

- (b) Let $f_k(x)$ be given by $f_k(x) = \begin{cases} 1 & \text{if } k-1 \leqslant x < k \,, \\ 0 & \text{otherwise.} \end{cases}$ Find the (pointwise) limit f of the sequence $\{f_k\}_{k=1}^{\infty}$, and check whether $\lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx$ or not. Briefly explain why one can or cannot apply (a).
- (c) Let $f_k: [0, \infty) \to \mathbb{R}$ be given by $f_k(x) = \frac{x}{1 + kx^4}$. Find $\lim_{k \to \infty} \int_0^\infty f_k(x) dx$.
- *Proof.* 1. First we note that since $|f_k(x)| \leq g(x)$ for all $x \in [0, \infty)$, $|f(x)| \leq g(x)$ for all $x \in [0, \infty)$. Let $\varepsilon > 0$ be given. Since $\int_0^\infty g(x) dx < \infty$, there exists L > 0 such that

$$\int_{L}^{\infty} g(x)dx \equiv \int_{0}^{\infty} g(x)dx - \int_{0}^{L} g(x)dx = \lim_{R \to \infty} \int_{L}^{R} g(x)dx < \frac{\varepsilon}{3}.$$

Let $I_n = \int_0^n g(x)dx$ and $F_n \equiv \int_0^n f(x)dx$. Since $\{I_n\}_{n=1}^{\infty}$ is increasing and convergent, $\{I_n\}_{n=1}^{\infty}$ is Cauchy; thus $\{F_n\}_{n=1}^{\infty}$ is also Cauchy since

$$|F_n - F_m| \leqslant |I_n - I_m|.$$

Therefore, $\lim_{n\to\infty}\int_0^n f(x)dx$ exists. Denote the limit by F. We then have

$$|F_n - F| = \lim_{m \to \infty} |F_n - F_m| \leqslant \frac{\varepsilon}{3}$$
 if $n \geqslant L$.

Claim: $\lim_{R \to \infty} \int_0^R f(x) dx = F$.

Proof of claim: Since

$$\int_0^R f(x)dx = \int_0^{[R]} f(x)dx + \int_{[R]}^R f(x)dx,$$

we find that for $R \ge L$,

$$\left| \int_0^R f(x)dx - F \right| = \left| \int_0^R f(x)dx - \int_0^{[R]} f(x)dx + \int_0^{[R]} f(x)dx - F \right|$$

$$\leq \int_{[R]}^R |f(x)|dx + \left| \int_0^{[R]} f(x)dx - F \right|$$

$$\leq \int_{[R]}^R |g(x)|dx + \left| F_{[R]} - F \right| \leq \frac{2}{3}\varepsilon < \varepsilon.$$

Therefore, $\lim_{R\to\infty}\int_0^R f(x)dx = F$. Similarly, $\lim_{R\to\infty}\int_0^R f_k(x)dx$ exists.

For this particular L, since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on [0,L],

$$\lim_{k \to \infty} \int_0^L f_k(x) dx = \int_0^L f(x) dx;$$

thus there exists N > 0 such that

$$\left| \int_0^L (f_k(x) - f(x)) dx \right| < \frac{\varepsilon}{3} \qquad \forall k \geqslant N.$$

As a consequence, if $k \ge N$,

$$\left| \int_0^\infty \left(f_k(x) - f(x) \right) dx \right| = \lim_{R \to \infty} \left| \int_0^R \left(f_k(x) - f(x) \right) dx \right|$$

$$\leq \left| \int_0^L \left(f_k(x) - f(x) \right) dx \right| + \lim_{R \to \infty} \int_L^R \left(|f_k(x)| + |f(x)| \right) dx$$

$$\leq \left| \int_0^L \left(f_k(x) - f(x) \right) dx \right| + 2 \int_L^\infty g(x) dx < \varepsilon.$$

2. We show that the pointwise limit of $\{f_k\}_{k=1}^{\infty}$ is zero. Let $a \in \mathbb{R}$. Then a < N-1 for some $N = N(a) \in \mathbb{N}$. Therefore,

$$|f_k(a) - 0| = 0 \quad \forall k \geqslant N.$$

Clearly this convergence is not uniform (since the number N depends crucially on a). However, for any R > 0, $\{f_k\}_{k=1}^{\infty}$ converges uniformly to 0 on [0, R].

Moreover,

$$\int_0^\infty f_k(x)dx = 1 \quad \text{but} \quad \int_0^\infty f(x)dx = 0;$$

thus
$$\lim_{k\to\infty} \int_0^\infty f_k(x)dx \neq \int_0^\infty f(x)dx$$
.

We cannot apply (a) since we cannot find a function g satisfying 2 and 4 simultaneously.

3. Let $x_k \in [0, \infty)$ be such that $f_k(x_k) = \sup_{x \in [0, \infty)} f_k(x)$. In fact, since

$$f'_k(x) = \frac{1 + kx^4 - 4kx^4}{(1 + kx^4)^2} = \frac{1 - 3kx^4}{(1 + kx^4)^2}$$
 and $\lim_{x \to \infty} f_k(x) = 0$;

 $x_k = (3k)^{-\frac{1}{4}}$. Therefore,

$$0 \leqslant f_k(x) \leqslant f_k(x_k) = \frac{3}{4} (3k)^{-\frac{1}{4}}$$

which suggests that $\{f_k\}_{k=1}^{\infty}$ converges uniformly to 0 on $[0,\infty)$. Moreover, letting $g(x) = \frac{x}{1+x^4}$, we have $|f_k(x)| \leq g(x)$ for all $k \in \mathbb{N}$ and $x \in [0,\infty)$, and if R > 1,

$$\begin{split} I_R &\equiv \int_0^R g(x) dx \leqslant \int_0^1 g(x) dx + \int_1^R g(x) dx \leqslant \int_0^1 g(x) dx + \int_1^R \frac{1}{x^3} dx \\ &= \int_0^1 g(x) dx - \frac{1}{2} R^{-2} + \frac{1}{2} \leqslant \int_0^1 g(x) dx + \frac{1}{2} < \infty \,. \end{split}$$

Since I_R is increasing in R and bounded above, $\lim_{R\to\infty}I_R$ must exist which ensures that $\int_0^\infty g(x)dx < \infty$. Therefore, we can apply (a) to conclude that

$$\lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty 0 dx = 0.$$

Problem 6. Let (M,d) be a metric space, and $K \subseteq M$ be a compact subset.

- 1. Show that the set $U = \{ f \in \mathscr{C}(K; \mathbb{R}) \mid a < f(x) < b \text{ for all } x \in K \}$ is open in $(\mathscr{C}(K; \mathbb{R}), \|\cdot\|_{\infty})$ for all $a, b \in \mathbb{R}$.
- 2. Show that the set $F = \{ f \in \mathscr{C}(K; \mathbb{R}) \mid a \leqslant f(x) \leqslant b \text{ for all } x \in K \}$ is closed in $(\mathscr{C}(K; \mathbb{R}), \|\cdot\|_{\infty})$ for all $a, b \in \mathbb{R}$.
- 3. Let $A \subseteq M$ be a subset, not necessarily compact. Prove or disprove that the set $B = \{ f \in \mathscr{C}_b(A; \mathbb{R}) \mid f(x) > 0 \text{ for all } x \in A \}$ is open in $(\mathscr{C}_b(A; \mathbb{R}), \| \cdot \|_{\infty})$.

Proof. 1. 参考共筆 Example 5.50.

2. 參考共筆 Example 5.51.

3. 鄭老師班上課筆記。

Problem 8. Let (M, d) be a metric space, $(\mathcal{V}, \|\cdot\|)$ be a normed space, and $A \subseteq M$ be a subset. Suppose that $B \subseteq \mathscr{C}_b(A; \mathcal{V})$ be equi-continuous. Prove or disprove that cl(B) is equi-continuous.

Proof. We prove that cl(B) is equi-continuous. Let $\varepsilon > 0$ be given. Since B is equi-continuous, there exists $\delta > 0$ such that

$$||f(x) - f(y)|| < \frac{\varepsilon}{3}$$
 if $d(x, y) < \delta$, $x, y \in A$ and $f \in B$.

If $g \in \operatorname{cl}(B)$, there exists $f \in B$ such that $\|g - f\|_{\infty} < \frac{\varepsilon}{3}$; thus if $g \in \operatorname{cl}(B)$ and $d(x, y) < \delta$ with $x, y \in A$,

$$||g(x) - g(y)|| \le ||g(x) - f(x)|| + ||f(x) - f(y)|| + ||f(y) - g(y)|| < \varepsilon.$$

Therefore, cl(B) is equi-continuous.

Problem 10. Assume that $\{f_k\}_{k=1}^{\infty}$ is a sequence of monotone increasing functions on \mathbb{R} with $0 \leq f_k(x) \leq 1$ for all x and $k \in \mathbb{N}$.

- 1. Show that there is a subsequence $\{f_{k_j}\}_{j=1}^{\infty}$ which converges **pointwise** to a function f (This is usually called the Helly selection theorem).
- 2. If the limit f is continuous, show that $\{f_{k_j}\}_{j=1}^{\infty}$ converges uniformly to f on any compact set of \mathbb{R} .

Proof. 1. We divide the proof into the following 7 steps.

- (a) By the diagonal process (Lemma 5.63 in the new lecture note), we can find a subsequence $\{f_{k_j}\}_{j=1}^{\infty}$ that converges pointwise to some \widetilde{f} on \mathbb{Q} .
- (b) Since $f_{k_j}(x) \leq f_{k_j}(y)$ if $x \leq y$, passing j to the limit we obtain that

$$\widetilde{f}(x) \leqslant \widetilde{f}(y)$$
 if $x \leqslant y$ and $x, y \in \mathbb{Q}$.

In other words, \widetilde{f} is an increasing function on \mathbb{Q} .

(c) For each $x \in \mathbb{R}$, define $f(x) = \sup_{r \leqslant x, r \in \mathbb{Q}} \widetilde{f}(r) = \lim_{\substack{r \to x^- \\ r \in \mathbb{Q}}} \widetilde{f}(r)$. Then due to the monotonicity of \widetilde{f} , $f = \widetilde{f}$ on \mathbb{Q} , and f is also monotone increasing. Let S be the collection of all discontinuity of f; that is,

$$S = \{x \in \mathbb{R} \mid f \text{ is not continuous at } x\}.$$

Then for each $x \in S$, $a_x \equiv \lim_{y \to x^-} f(y) = \sup_{y < x} f(y)$ and $b_x \equiv \lim_{y \to x^+} f(y) = \inf_{y > x} f(y)$ exist and $a_x < b_x$. In other words, each discontinuity x of f corresponds to an interval $[a_x, b_x]$, and by the monotonicity of f, $[a_x, b_x] \cap [a_y, b_y] = \emptyset$ if $x, y \in S$ and $x \neq y$. Since each $[a_x, b_x]$ contains at least one rational number q_x and $q_x \neq q_y$ if $x, y \in X$ and $x \neq y$, S must be countable.

- (d) Since $\mathbb{Q} \cup S$ is countable, by the diagonal process again there exists a subsequence $\{f_{k_{j_{\ell}}}\}_{\ell=1}^{\infty}$ that converges pointwise to some \bar{f} on $\mathbb{Q} \cup S$.
- (e) For each $x \in \mathbb{R}$, define $g(x) = \sup_{s \leqslant x, s \in \mathbb{Q} \cup S} \bar{f}(s) = \lim_{\substack{s \to x^- \\ s \in \mathbb{Q} \cup S}} \bar{f}(s)$. As in (c), $g = \bar{f}$ on $\mathbb{Q} \cup S$, and g is monotone increasing. Our goal is showing that $\{f_{k_{j_\ell}}\}_{\ell=1}^{\infty}$ converges pointwise to g on \mathbb{R} . However, since $\mathbb{R} = (\mathbb{Q} \cup S) \cup (\mathbb{Q} \cup S)^{\mathbb{C}}$, $\{f_{k_{j_\ell}}\}_{\ell=1}^{\infty}$ converges to \bar{f} on $\mathbb{Q} \cup S$, and $g = \bar{f}$ on $\mathbb{Q} \cup S$, it suffices to show that $\{f_{k_{j_\ell}}(a)\}_{\ell=1}^{\infty}$ converges to g(a) if f is continuous at a.
- (f) Claim: if f is continuous at a, then g(a) = f(a). Proof of claim: It should be clear that $g(x) \geqslant f(x)$ for all $x \in \mathbb{R}$ since $\bar{f} = \tilde{f}$ on \mathbb{Q} . Now suppose that $\sup_{r \leqslant a, r \in \mathbb{Q}} \tilde{f}(r) = f(a) < g(a) = \sup_{s \leqslant a, s \in \mathbb{Q} \cup S} \bar{f}(s)$ for some $a \notin S$. Then $\exists s_n \in S$, $s_n \nearrow a$ (this means $s_n < a$ and $s_n \to a$ as $n \to \infty$) such that $\lim_{\ell \to \infty} f_{k_{j_\ell}}(s_n) = \bar{f}(s_n) > g(a) - \frac{1}{n}$. We note that since $a \notin S$ and $s_n \in S$, $s_n \neq a$ for all $n \in \mathbb{N}$. Now, for each fixed $s_n < a$, for all $r \in (s_n, a] \cap \mathbb{Q}$, by the monotonicity of $f_{k_{j_\ell}}$, $f_{k_{j_\ell}}(r) \geqslant f_{k_{j_\ell}}(s_n)$. Therefore,

$$\widetilde{f}(r) = \lim_{\ell \to \infty} f_{k_{j_{\ell}}}(r) \geqslant \lim_{\ell \to \infty} f_{k_{j_{\ell}}}(s_n) > g(a) - \frac{1}{n};$$

thus $f(a) = \sup_{r \leq a, r \in \mathbb{Q}} \widetilde{f}(r) \geqslant g(a) - \frac{1}{n}$. Since this holds for all $n \in \mathbb{N}$, we must have $f(a) \geqslant g(a)$ which is a contradiction.

(g) By (e) and (f), we only need to show that $\{f_{k_{j_{\ell}}}(a)\}_{\ell=1}^{\infty}$ converges to f(a) if f is continuous at a. Suppose that f is continuous at a, and $\varepsilon > 0$ be given. Then $\exists \delta > 0$ such that

$$|f(x) - f(a)| < \frac{\varepsilon}{6}$$
 if $|x - a| < \delta$.

Let $r, s \in (a - \delta, a + \delta) \cap \mathbb{Q}$ such that s < x < r. Since $f_{k_{j_{\ell}}}(r) \to \bar{f}(r)$ and $f_{k_{j_{\ell}}}(s) \to \bar{f}(s)$ as $\ell \to \infty$, $\exists N > 0$ such that

$$|f_{k_{j_{\ell}}}(r) - f(r)| < \frac{\varepsilon}{6} \text{ and } |f_{k_{j_{\ell}}}(s) - f(s)| < \frac{\varepsilon}{6} \quad \forall \ell \ge N.$$

Therefore, if $\ell \geq N$,

$$|f_{k_{j_{\ell}}}(x) - f(x)| \leq |f_{k_{j_{\ell}}}(x) - f_{k_{j_{\ell}}}(r)| + |f_{k_{j_{\ell}}}(r) - f(r)| + |f(r) - f(x)|$$

$$\leq f_{k_{j_{\ell}}}(r) - f_{k_{j_{\ell}}}(s) + |f_{k_{j_{\ell}}}(r) - f(r)| + |f(r) - f(x)|$$

$$\leq f(r) - f(s) + |f(s) - f_{k_{j_{\ell}}}(s)| + 2|f_{k_{j_{\ell}}}(r) - f(r)| + |f(r) - f(x)|$$

$$\leq |f(x) - f(s)| + |f(s) - f_{k_{j_{\ell}}}(s)| + 2|f_{k_{j_{\ell}}}(r) - f(r)| + 2|f(r) - f(x)|$$

$$< 6 \cdot \frac{\varepsilon}{6} = \varepsilon.$$

2. Let $\varepsilon > 0$ be given, and $K \subseteq \mathbb{R}$ be a compact set. Choose $a, b \in \mathbb{R}$ so that $K \subseteq [a, b]$. Since [a, b] is compact and $f : [a, b] \to \mathbb{R}$ is continuous, f is uniformly continuous on

[a,b]. Therefore, there exists $\delta > 0$ such that

$$|f(x) - f(y)| < \frac{\varepsilon}{2}$$
 if $|x - y| < \delta$ and $x, y \in [a, b]$.

Choose $n \in \mathbb{N}$ so that $\frac{b-a}{n} < \delta$. Divide [a,b] into n sub-intervals $[x_i, x_{i+1}], i = 0, \dots, n-1$, where $x_i = a + \frac{i(b-a)}{n}$. Then

$$|f(x) - f(y)| < \frac{\varepsilon}{2}$$
 if $x, y \in [x_i, x_{i+1}]$.

Moreover, since $\{f_{k_j}\}_{k=1}^{\infty}$ converges pointwise to f on [a,b], there exists $N_i > 0$ such that

$$|f_{k_j}(x_i) - f(x_i)| < \frac{\varepsilon}{2} \qquad \forall j \geqslant N_i.$$

Let $N = \max\{N_1, \dots, N_n\}$. Then for $x \in [x_i, x_{i+1}]$ and $j \ge N$, if $f_{k_j}(x) - f(x) \ge 0$,

$$|f_{k_j}(x) - f(x)| = f_{k_j}(x) - f(x) \le f_{k_j}(x_{i+1}) - f(x_i)$$

$$\le f_{k_j}(x_{i+1}) - f(x_{i+1}) + f(x_{i+1}) - f(x_i) < \varepsilon,$$

while if $f_{k_i}(x) - f(x) \leq 0$,

$$|f_{k_j}(x) - f(x)| = f(x) - f_{k_j}(x) \le f(x_{i+1}) - f_{k_j}(x_i)$$

$$\le f(x_{i+1}) - f(x_i) + f(x_i) - f_{k_i}(x_i) < \varepsilon.$$

As a consequence,

$$|f_{k_j}(x) - f(x)| < \varepsilon$$
 $\forall j \ge N \text{ and } x \in [a, b];$

thus $\{f_{k_j}\}_{j=1}^{\infty}$ converges uniformly to f on [a,b].

Problem 12. Let (M, d) be a metric space, $K \subseteq M$ be a compact subset, and $\Phi : K \to K$ be such that $d(\Phi(x), \Phi(y)) < d(x, y)$ for all $x, y \in K$, $x \neq y$.

- 1. Show that Φ has a unique fixed-point.
- 2. Show that 1 is false if K is not compact.

Proof. 1. Let $f(x) = d(\Phi(x), x)$. Then if $x \neq y$,

$$\begin{aligned} \left| f(x) - f(y) \right| &= \left| d(\Phi(x), x) - d(\Phi(y), y) \right| \\ &\leq \left| d(\Phi(x), x) - d(\Phi(y), x) \right| + \left| d(\Phi(y), x) - d(\Phi(y), y) \right| \\ &\leq d(\Phi(x), \Phi(y)) + d(x, y) < 2d(x, y); \end{aligned}$$

thus f is continuous on K. Suppose that Φ has no fixed-point on K. Then $\Phi(x) \neq x$ for all $x \in K$; thus f(x) > 0 for all $x \in K$. The Min-Max Theorem suggests that there exists $x_0 \in K$ such that

$$f(x_0) = \min_{x \in K} f(x) \,.$$

For this particular x_0 , we also have $\Phi(x_0) \neq x_0$; thus

$$f(\Phi(x_0)) = d(\Phi(\Phi(x_0)), \Phi(x_0)) < d(\Phi(x_0), x_0) = f(x_0)$$

which implies that $f(x_0)$ is not the minimum of f on K, a contradiction.

2. 見共筆 Example 5.79.

Problem 14. Put $p_0 = 0$ and define

$$p_{k+1}(x) = p_k(x) + \frac{x^2 - p_k^2(x)}{2} \quad \forall k \in \mathbb{N} \cup \{0\}.$$

Show that $\{p_k\}_{k=1}^{\infty}$ converges uniformly to |x| on [-1,1].

Hint: Use the identity

$$|x| - p_{k+1}(x) = [|x| - p_k(x)] \left[1 - \frac{|x| + p_k(x)}{2}\right]$$

to prove that $0 \le p_k(x) \le p_{k+1}(x) \le |x|$ if $|x| \le 1$, and that

$$|x| - p_k(x) \le |x| \left(1 - \frac{|x|}{2}\right)^k < \frac{2}{k+1}$$

if $|x| \leq 1$.

Proof. We first show by induction that for all $k \in \mathbb{N} \cup \{0\}$,

$$0 \leqslant p_k(x) \leqslant |x| \qquad \forall \, x \in [-1, 1] \,. \tag{*}$$

It is clear that (\star) holds for k = 0. Now suppose that (\star) holds for $0 \leq p_n(x) \leq |x|$. Then $|x| - p_n(x) \geq 0$ and $1 - \frac{|x| + p_n(x)}{2} \geq 1 - |x| \geq 0$ on [-1, 1]; thus using the identity

$$|x| - p_{n+1}(x) = \left[|x| - p_n(x)\right] \left[1 - \frac{|x| + p_n(x)}{2}\right]$$
 (**)

we conclude that $|x| - p_{n+1}(x) \ge 0$. By induction, (\star) holds for all $k \in \mathbb{N} \cup \{0\}$.

Now we can conclude from $(\star\star)$ that

$$0 \le |x| - p_k(x) \le \left[|x| - p_{k-1}(x) \right] \left(1 - \frac{|x|}{2} \right) \le \left[|x| - p_{k-2}(x) \right] \left(1 - \frac{|x|}{2} \right)^2$$
$$\le \dots \dots \le |x| \left(1 - \frac{|x|}{2} \right)^k < \frac{2}{k+1}.$$

As a consequence, $\{p_k\}_{k=1}^{\infty}$ converges uniformly to p(x) = |x|.