
Exercise Problems for Advanced Calculus
MA2045, National Central University, Fall Semester 2013

§5.1 Pointwise and Uniform Convergence, §5.2 The Weierstrass M-Test, §5.3
Integration and Differentiation of Series

Problem 1. Let (M,d) be a metric space, A Ď M , and fk : A Ñ R be a sequence
of functions (not necessary continuous) which converges uniformly on A. Suppose that
a P cl(A) and

lim
xÑa

fk(x) = Ak

exists for all k P N. Show that tAku8
k=1 converges, and

lim
xÑa

lim
kÑ8

fk(x) = lim
kÑ8

lim
xÑa

fk(x) .

Problem 2. Let (M,d) and (N, ρ) be metric spaces, A Ď M , and fk : A Ñ N be uniformly
continuous functions, and tfku8

k=1 converges uniformly to f : A Ñ N on A. Show that f is
uniformly continuous on A.

Problem 3. Determine which of the following real series
8
ř

k=1

gk converge (pointwise or

uniformly). Check the continuity of the limit in each case.

1. gk(x) =

"

0 if x ď k ,
(´1)k if x ą k .

2. gk(x) =

$

’

&

’

%

1

k2
if |x| ď k ,

1

x2
if |x| ą k .

3. gk(x) =
((´1)k

?
k

)
cos(kx) on R.

4. gk(x) = xk on (0, 1).

Problem 4. Complete the following.

(a) Suppose that fk, f, g : [0,8) Ñ R are functions such that

1. @R ą 0, fk and g are Riemann integrable on [0, R];

2. |fk(x)| ď g(x) for all k P N and x P [0,8);

3. @R ą 0, tfku8
k=1 converges to f uniformly on [0, R];

4.
ż 8

0
g(x)dx ” lim

RÑ8

ż R

0
g(x)dx ă 8.

Show that lim
kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx; that is,

lim
kÑ8

lim
RÑ8

ż R

0

fk(x)dx = lim
RÑ8

lim
kÑ8

ż R

0

fk(x)dx .



(b) Let fk(x) be given by fk(x) =

"

1 if k ´ 1 ď x ă k ,

0 otherwise.
Find the (pointwise) limit f of

the sequence tfku8
k=1, and check whether lim

kÑ8

ż 8

0
fk(x)dx =

ż 8

0
f(x)dx or not. Briefly

explain why one can or cannot apply (a).

(c) Let fk : [0,8) Ñ R be given by fk(x) =
x

1 + kx4
. Find lim

kÑ8

ż 8

0
fk(x)dx.

Problem 5. Construct the function g(x) by letting g(x) = |x| if x P
[

´
1

2
,
1

2

]
and extending

g so that it becomes periodic (with period 1). Define

f(x) =
8
ÿ

k=1

g(4k´1x)

4k´1
.

1. Use the Weierstrass M -test to show that f is continuous on R.

2. Prove that f is differentiable at no point.

(So there exists a continuous which is nowhere differentiable!)
Hint: Google Blancmange function!

§5.4 The Space of Continuous Functions §5.5 The Arzela-Ascoli Theorem

Problem 6. Let (M,d) be a metric space, and K Ď M be a compact subset.

1. Show that the set U =
␣

f P C (K;R)
ˇ

ˇ a ă f(x) ă b for all x P K
(

is open in(
C (K;R), } ¨ }8

)
for all a, b P R.

2. Show that the set F =
␣

f P C (K;R)
ˇ

ˇ a ď f(x) ď b for all x P K
(

is closed in(
C (K;R), } ¨ }8

)
for all a, b P R.

3. Let A Ď M be a subset, not necessarily compact. Prove or disprove that the set
B =

␣

f P Cb(A;R)
ˇ

ˇ f(x) ą 0 for all x P A
(

is open in
(
Cb(A;R), } ¨ }8

)
.

Problem 7. Let δ : C ([0, 1];R) Ñ R be defined by δ(f) = f(0). Show that δ is linear and
continuous.

Problem 8. Let (M,d) be a metric space, (V , } ¨ }) be a normed space, and A Ď M be
a subset. Suppose that B Ď Cb(A;V) be equi-continuous. Prove or disprove that cl(B) is
equi-continuous.

Problem 9. Let C 0,α([0, 1];R) denote the “space”

C 0,α([0, 1];R) ”

!

f P C ([0, 1];R)
ˇ

ˇ

ˇ
sup

x,yP[0,1]

|f(x) ´ f(y)|

|x ´ y|α
ă 8

)

,

where α P (0, 1]. For each f P C 0,α([0, 1];R), define

}f}C 0,α = sup
xP[0,1]

|f(x)| + sup
x,yP[0,1]

x‰y

|f(x) ´ f(y)|

|x ´ y|α
.



1. Show that
(
C 0,α([0, 1];R), } ¨ }C 0,α

)
is a complete normed space.

2. Show that the set B =
␣

f P C ([0, 1];R)
ˇ

ˇ }f}C 0,α ă 1
(

is equi-continuous.

3. Show that cl(B) is compact in
(
C ([0, 1];R), } ¨ }8

)
.

Problem 10. Assume that tfku8
k=1 is a sequence of monotone increasing functions on R

with 0 ď fk(x) ď 1 for all x and k P N.

1. Show that there is a subsequence
␣

fkj
(8

j=1
which converges pointwise to a function

f (This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that
␣

fkj
(8

j=1
converges uniformly to f on any

compact set of R.

§5.6 The Contraction Mapping Principle and its Applications

Problem 11. Suppose that f : [a, b] Ñ R is twice continuous differentiable; that is, f 1, f 2 :

[a, b] Ñ R are continuous, and f(a) ă 0 = f(c) ă f(b), and f 1(x) ‰ 0 for all x P [a, b].
Consider the function

Φ(x) = x ´
f(x)

f 1(x)
.

1. Show that Φ : [a, b] Ñ R satisfies

|Φ(x) ´ Φ(y)| ď k|x ´ y| @x, y P [a, b]

for some k P [0, 1) if |b ´ a| are small enough.

2. Suppose that f 2(x) ą 0 for all x P [a, b]. Show that there exists a ď ra ă c such that
Φ : [ra, b] Ñ [ra, b].

3. Under the condition of 2, show that if x0 P [ra, b], then the iteration

xk+1 = Φ(xk) @ k P N Y t0u

provides a convergent sequence txku8
k=1 with limit c.

(The iteration scheme above of finding the zero c of f is called the Newton method.)

Problem 12. Let (M,d) be a metric space, K Ď M be a compact subset, and Φ : K Ñ K

be such that d
(
Φ(x),Φ(y)

)
ă d(x, y) for all x, y P K, x ‰ y.

1. Show that Φ has a unique fixed-point.

2. Show that 1 is false if K is not compact.

§5.7 The Stone-Weierstrass Theorem



Problem 13. Suppose that f is continuous on [0, 1] and
ż 1

0

f(x)xndx = 0 @n P N Y t0u .

Show that f = 0 on [0, 1].

Problem 14. Put p0 = 0 and define

pk+1(x) = pk(x) +
x2 ´ p2k(x)

2
@ k P N Y t0u .

Show that tpku8
k=1 converges uniformly to |x| on [´1, 1].

Hint: Use the identity

|x| ´ pk+1(x) =
[
|x| ´ pk(x)

][
1 ´

|x| + pk(x)

2

]
to prove that 0 ď pk(x) ď pk+1(x) ď |x| if |x| ď 1, and that

|x| ´ pk(x) ď |x|

(
1 ´

|x|

2

)k

ă
2

k + 1

if |x| ď 1.

Problem 15. A function g : [0, 1] Ñ R is called simple if we can divide up [0, 1] into
sub-intervals on which g is constant, except perhaps at the endpoints (see Definition 5.88 in
the lecture note). Let f : [0, 1] Ñ R be continuous and ε ą 0. Prove that there is a simple
function g such that }f ´ g}8 ă ε.

Problem 16. （挑戰自我之期中考不考題）Suppose that pn is a sequence of polynomials
converging uniformly to f on [0, 1] and f is not a polynomial. Prove that the degrees of pn
are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points
x0, ¨ ¨ ¨ , xN via Lagrange’s interpolation formula

p(x) =
N
ÿ

k=0

πk(x)
p(xk)

πk(xk)
,

where πk(x) = (x ´ x0)(x ´ x1) ¨ ¨ ¨ (x ´ xN)/(x ´ xk) =
ś

1ďjďN
j‰k

(x ´ xj).

Problem 17.（挑戰自我之期中考不考題）Consider the set of all functions on [0, 1] of the
form

h(x) =
n
ÿ

j=1

aje
bjx ,

where aj, bj P R. Is this set dense in C ([0, 1];R)?



§6.1 Bounded Linear Maps

Problem 18. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be two normed spaces.

1. Show that
(
B(X, Y ), } ¨ }B(X,Y )

)
is a normed space.

2. Show that
(
B(X, Y ), } ¨ }B(X,Y )

)
is complete if (Y, } ¨ }Y ) is complete.

Problem 19. Let P((0, 1)) Ď Cb((0, 1);R) be the collection of all polynomials defined on
(0, 1).

1. Show that the operator d

dx
: P((0, 1)) Ñ Cb((0, 1)) is linear.

2. Show that d

dx
:
(
P((0, 1)), } ¨ }8

)
Ñ

(
Cb((0, 1)), } ¨ }8

)
is unbounded; that is, show

that
sup

}p}8=1

}p1}8 = 8 .

§6.2 Definition of Derivatives and the Matrix Representation of Derivatives

Problem 20. Let (X, } ¨ }X) and (Y, } ¨ }Y ) be normed spaces, U Ď X be open, and f :

U Ď X Ñ Y be a map. Show that f is differentiable at a P U if and only if there exists
L P B(X,Y ) such that

@ ε ą 0, D δ ą 0 Q }f(x) ´ f(a) ´ L(x ´ a)}Y ď ε}x ´ a}X whenever x P D(a, δ) .

Problem 21. Let f : GL(n) Ñ GL(n) be given by f(L) = L´1. In class we have shown that
f is continuous on GL(n). Show that f is differentiable at each “point” (or more precisely,
linear map) of GL(n).
Hint: In order to show the differentiability of f at L P GL(n), we need to figure out what
(Df)(L) is. So we need to compute f(L + h) ´ f(L), where h P B(Rn,Rn) is a “small”
linear map. Compute (L+ h)´1 ´ L´1 and make a conjecture what (Df)(L) should be.

Problem 22. Let I : C ([0, 1];R) Ñ R be defined by

I(f) =

ż 1

0

f(x)2dx .

Show that I is differentiable at every “point” f P C ([0, 1];R).
Hint: Figure out what (DI)(f) is by computing I(f + h) ´ I(f), where h P C ([0, 1];R) is
a “small” continuous function.
Remark. A map from a space of functions such as C ([0, 1];R) to a scalar field such as R
or C is usually called a functional. The derivative of a functional I is usually denoted by
δI instead of DI.



Problem 23. Let U = R2z
␣

(x, 0) P R2
ˇ

ˇ x ě 0
(

. Check the differentiability of the function
f : U Ñ R given by

f(x, y) =

$

’

’

’

’

’

&

’

’

’

’

’

%

cos´1 x
a

x2 + y2
if y ą 0 ,

π if y = 0 ,

2π ´ cos´1 x
a

x2 + y2
if y ă 0 ,

at point (´1, 0) by the definition of differentiability of a function.

§6.3 Continuity of Differentiable Mappings, §6.4 Conditions for Differentiability

Problem 24. Investigate the differentiability of

f(x, y) =

$

&

%

xy
a

x2 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

Problem 25. Let U Ď Rn be open, and f : U Ñ R. Suppose that the partial derivatives
Bf

Bx1

, ¨ ¨ ¨ ,
Bf

Bxn

are bounded on U ; that is, there exists a real number M ą 0 such that

ˇ

ˇ

ˇ

Bf

Bxj

(x)
ˇ

ˇ

ˇ
ď M @ x P U and j = 1, ¨ ¨ ¨ , n .

Show that f is continuous on U .
Hint: Mimic the proof of Theorem 6.31 in 共筆。

Problem 26. Investigate the differentiability of

f(x, y) =

$

&

%

xy

x+ y2
if x+ y2 ‰ 0 ,

0 if x+ y2 = 0 .

Problem 27. (True or false) Let U Ď Rn be open. Then f : U Ñ R is differentiable at
a P U if and only if each directional derivative (Duf)(a) exists and

(Duf)(a) =
n
ÿ

j=1

Bf

Bxj

(a)uj =
( Bf

Bx1

(a), ¨ ¨ ¨ ,
Bf

Bxn

(a)
)

¨ u

where u = (u1, ¨ ¨ ¨ , un) is a unit vector.
Hint: Consider the function

f(x, y) =

$

’

&

’

%

x3y

x4 + y2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

§6.5 The Chain Rule



Problem 28. Verify the chain rule for

u(x, y, z) = xey, v(x, y, z) = yz sinx

and
f(u, v) = u2 + v sinu

with h(x, y, z) = f
(
u(x, y, z), v(x, y, z)

)
.

Problem 29. Let (r, θ, φ) be the spherical coordinate of R3 so that

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ .

1. Find the Jacobian matrices of the map (x, y, z) ÞÑ (r, θ, φ) and the map (r, θ, φ) ÞÑ

(x, y, z).

2. Suppose that f(x, y, z) is a differential function in R3. Express |∇f |2 in terms of the
spherical coordinate.

§6.6 The Product Rules and Gradients, §6.7 The Mean Value Theorem

Problem 30. Let f : R Ñ R be differentiable. Assume that for all x P R, 0 ď f 1(x) ď f(x).
Show that g(x) = e´xf(x) is decreasing. If f vanishes at some point, conclude that f is
zero.

§6.8 Higher Derivatives and Taylor’s Theorem

Problem 31. Let f(x, y, z) = (x2 + 1) cos(yz), and a = (0,
π

2
, 1), u = (1, 0, 0), v = (0, 1, 0)

and w = (2, 0, 1).

1. Compute (Df)(a)(u).

2. Compute (D2f)(a)(v)(u).

3. Compute (D3f)(a)(w)(v)(u).

Problem 32. 1. If f : A Ď Rn Ñ Rm and g : B Ď Rm Ñ Rℓ are twice differentiable and
f(A) Ď B, then for x0 P A, u, v P Rn, show that

D2(g ˝ f)(x0)(u, v)

= (D2g)(f(x0))
(
(Df)(x0)(u), Df(x0)(v)

)
+ (Dg)(f(x0))

(
(D2f)(x0)(u, v)

)
.

2. If p : Rn Ñ Rm is a linear map plus some constant; that is, p(x) = Lx + c for some
L P B(Rn,Rm), and f : A Ď Rm Ñ Rs is k-times differentiable, prove that

Dk(f ˝ p)(x0)(u
(1), ¨ ¨ ¨ , u(k)) = (Dkf)

(
p(x0)

)(
(Dp)(x0)(u

(1)), ¨ ¨ ¨ , (Dp)(x0)(u
(k)
)
.



Problem 33. Let f(x, y) be a real-valued function on R2. Suppose that f is of class C 1

(that is, all first partial derivatives are continuous on R2) and B2f

BxBy
exists and is continuous.

Show that B2f

ByBx
exists and B2f

BxBy
=

B2f

ByBx
.

Hint: Mimic the proof of Theorem 6.74.

Problem 34. Let f : Rn Ñ Rm be differentiable, and Df is a constant map in B(Rn,Rm);
that is, (Df)(x1)(u) = (Df)(x2)(u) for all x1, x2 P Rn and u P Rn. Show that f is a linear
term plus a constant and that the linear part of f is the constant value of Df .

Problem 35. Let U Ď Rn be open, and f : U Ñ R is of class C k and (Djf)(x0) = 0 for
j = 1, ¨ ¨ ¨ , k ´ 1, but (Dkf)(x0)(u, u, ¨ ¨ ¨ , u) ă 0 for all u P Rn, u ‰ 0. Show that f has a
local maximum at x0; that is, D δ ą 0 such that

f(x) ď f(x0) @x P D(x0, δ) .

§6.9 Maxima and Minima

Problem 36. Let f(x, y) = x3 + x ´ 4xy + 2y2,

1. Find all critical points of f .

2. Find the corresponding quadratic from Q(x, y, h, k)
(
or (D2f(x, y)

(
(h, k), (h, k)

))
at

these critical points, and determine which of them is positive definite.

3. Find all relative extrema and saddle points.

4. Find the maximal value of f on the set

A =
␣

(x, y)
ˇ

ˇ 0 ď x ď 1, 0 ď y ď 1, x+ y ď 1
(

.

Problem 37. Let f : R2 Ñ R be given by

f(x, y) =

$

’

&

’

%

x2 + y2 ´ 2x2y ´
4x6y2

(x4 + y2)2
if (x, y) ‰ (0, 0) ,

0 if (x, y) = (0, 0) .

1. Show that f is continuous (at (0, 0)) by showing that for all (x, y) P R2,

4x4y2 ď (x4 + y2)2 .

2. For 0 ď θ ď 2π, ´8 ă t ă 8, define

gθ(t) = f(t cos θ, t sin θ) .

Show that each gθ has a strict local minimum at t = 0. In other words, the restriction
of f to each straight line through (0, 0) has a strict local minimum at (0, 0).



3. Show that (0, 0) is not a local minimum for f .

§7.1 The Inverse Function Theorem

Problem 38. Prove Corollary 7.4; that is, show that if U Ď Rn is open, f : U Ñ Rn is
of class C 1, and (Df)(x) is invertible for all x P U , then f(W) is open for every open set
W Ď U .

Problem 39. Let D Ď Rn be a bounded open convex set, and f : D Ñ Rn be of class C 1

such that

1. f and Df are continuous on D;

2. the Jacobian det
([
(Df)(x)

])
‰ 0 for all x P D;

3. f : BD Ñ Rn is one-to-one.

Show that f : D Ñ Rn is one-to-one by completing the following:

1. Define E =
␣

x P D
ˇ

ˇ D y P D, y ‰ x Q f(x) = f(y)
(

. Then E is open relative to D.

2. Show that E is closed.

3. By the previous step, conclude that E = H or E = D. Also show that E ‰ D (thus
E = H is the only possibility which suggests that f is injective on D).

Problem 40. Let f : R2 Ñ R be of class C 1, and for some (a, b) P R2, f(a, b) = 0 and
fy(a, b) ‰ 0. Show that there exist open neighborhoods U Ď R of a and V Ď R of b such
that every x P U corresponds to a unique y P V such that f(x, y) = 0. In other words, there
exists a function y = y(x) such that y(a) = b and f(x, y(x)) = 0 for all x P U .

§7.2 The Implicit Function Theorem

Problem 41. Assume that one proves the implicit function theorem without applying the
inverse theorem. Show the inverse function using the implicit function theorem.

Problem 42. Suppose that F (x, y, z) = 0 is such that the functions z = f(x, y), x = g(y, z),
and y = h(z, x) all exist by the implicit function theorem. Show that fx ¨ gy ¨ hz = ´1.

Problem 43. Suppose that the implicit function theorem applies to F (x, y) = 0 so that
y = f(x). Find a formula for f 2 in terms of F and its partial derivatives. Similarly, suppose
that the implicit function theorem applies to F (x1, x2, y) = 0 so that y = f(x1, x2). Find
formulas for fx1x1 , fx1x2 and fx2x2 in terms of F and its partial derivatives.

§8.1 Integrable Functions

Problem 44. Let A Ď Rn be bounded, and f : A Ñ R be Riemann integrable.



1. Let P be a partition of A, and m ď f(x) ď M for all x P A. Show that mν(A) ď

L(f,P) ď U(f,P) ď Mν(A).

2. Show that L(f,P1) ď U(f,P2) if P1 and P2 are two partitions of A.

§8.2 Volume and Sets of Measure Zero

Problem 45. Complete the following.

1. Show that if A is a set of volume zero, then A has measure zero. Is it true that if A
has measure zero, then A also has volume zero?

2. Let a, b P R and a ă b. Show that the interval [a, b] does not have measure zero (in
R).

3. Let A Ď [a, b] be a set of measure zero (in R). Show that [a, b]zA does not have
measure zero (in R).

4. Show that the Cantor set (defined in Exercise Problem 34 in fall semester) has volume
zero.

§8.3 Lebesgue’s Theorem

Problem 46. (True or false) If A Ď Rn is a bounded set, and f : A Ñ R be bounded
continuous. Then f is Riemann integrable over A.

Problem 47. Let A =
8
Ť

k=1

D
(1
k
,
1

2k
)
=

8
Ť

k=1

(1
k

´
1

2k
,
1

k
+

1

2k
)

be a subset of R. Does A have

volume?

Problem 48. Prove the following statements.

1. The function f(x) = sin 1

x
is Riemann integrable over (0, 1).

2. Let f : [0, 1] Ñ R be given by

f(x) =

$

&

%

1

p
if x =

q

p
P Q, (p, q) = 1 ,

0 if x is irrational.

Then f is Riemann integrable over [0, 1]. Find
ż 1

0
f(x)dx as well.

3. Let A Ď Rn be a bounded set, and f : A Ñ R is Riemann integrable. Then fk（f 的

k 次方）is integrable for all k P N.

Problem 49. (True or false) Let A,B Ă R be bounded, and f : A Ñ R and g : f(A) Ñ R
be Riemann integrable. Then g ˝ f is Riemann integrable over A.

§8.4 Properties of the Integrals



Problem 50. (True or false) Let A Ď Rn be bounded, B Ď A, and f : A Ñ R be bounded.
If f1B is Riemann integrable over A, then f is Riemann integrable over B. Moreover,

ż

A

(f1B)(x)dx =

ż

B

f(x)dx .

§8.5 Fubini’s Theorem

Problem 51. Let A = [a, b] ˆ [c, d] be a rectangle in R2, and f : A Ñ R be Riemann
integrable. Show that the sets

!

x P [a, b]
ˇ

ˇ

ˇ

ż d

c

f(x, y)dy ‰
s

ż d

c

f(x, y)dy
)

and
!

y P [c, d]
ˇ

ˇ

ˇ

ż b

a

f(x, y)dx ‰
s

ż b

a

f(x, y)dx
)

have measure zero (in R1).

Problem 52. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

&

%

0 if x = 0 or if x or y is irrational ,
1

p
if x, y P Q and x =

q

p
with (p, q) = 1 .

1. Show that f(¨, y) : [0, 1] Ñ R is Riemann integrable for each y P [0, 1].

2. Show that f(x, ¨) : [0, 1] Ñ R is Riemann integrable if x R Q.

3. Find
ż 1

0
f(x, y)dy and

s

ż 1

0
f(x, y)dy if x =

q

p
in reduced form.

4. Show that f is Riemann integrable over [0, 1] ˆ [0, 1]. Find
ż

[0,1]ˆ[0,1]
f(x, y)dA.

Problem 53. Let f : [0, 1] ˆ [0, 1] Ñ R be given by

f(x, y) =

$

&

%

1 if (x, y) =
( k

2n
,
ℓ

2n
)
, 0 ă k, ℓ ă 2n odd numbers, n P N ,

0 otherwise .

Show that
ż 1

0

ż 1

0

f(x, y)dydx =

ż 1

0

ż 1

0

f(x, y)dxdy

but f is not Riemann integrable.

Problem 54.

1. Draw the region corresponding to the integral
ż 1

0

( ż ex

1
(x+ y)dy

)
dx and evaluate.

2. Change the order of integration of the integral in 1 and check if the answer is unaltered.


