Exercise Problem Sets 2
Oct. 2. 2020

Problem 1. Let (F, +, -, <) be an ordered field satisfying the least upper bound property, and A be
a non-empty set of ' which is bounded below. Define the set —A by —A = {— relF ’ s A}. Prove
that

inf A = —sup(—A).

Proof. Let C' be a subset of F. Then

bis alower bound foraset C e b<cforallceC < —b> —cforallce C

< —b>—cforall —ce —C < —b > cforall ce —C < —b is an upper bound for —C'
Therefore, we conclude that

b is a lower bound for a set C'if and only if —b is an upper bound for —C. (%)

Now, since A is bounded from below, — A is bounded from above. The least upper bound property
then implies that b = sup(—A) € F exists. From (x), we find that —b is a lower bound for A. Suppose
that —b is not the greatest lower bound for A. Then there exists m > —b such that m < x for all
x € A. This implies that m is a lower bound for A; thus (x) shows that —m is an upper bound for —A.
By the fact that —m < b, we conclude that b is not the least upper bound for —A, a contradiction

to that b is the least upper bound for —A. O
Remark 0.1. Note the Problem 1 in fact shows that if F satisfies LUBP, then F satisfies GLBP.

Problem 2. Let (F,+, -, <) be an ordered field satisfying the least upper bound property, and A, B
be non-empty subsets of F. Define A+ B = {x+y|x € A,y € B}. Justify if the following statements

are true or false by providing a proof for the true statement and giving a counter-example for the

false ones.
1. sup(A+ B) = sup A + sup B. 2. inf(A+ B) = inf A+ inf B.
3. sup(A n B) < min{sup A, sup B}. 4. sup(A n B) = min{sup A, sup B}.
5. sup(A u B) = max{sup A, sup B}. 6. sup(A U B) = max{sup A, sup B}.

Proof. 1. Let a =sup A, b =sup B, and € > 0 be given. W.LL.O.G. we can assume that a,b € F for

otherwise a = o or b = o so that A + B is not bounded from above.
(a) Let z€e A+ B. Then z = z + y for some x € A and y € B. By the fact that z < a and
y < b, we find that z < a + b. Therefore, a + b is an upper bound for A + B.

(b) There exists z € A and y € B such that > a — % and y > b — %; thus there exists
z=x+ye€ A+ B such that

z=x4+y>a+b—c¢.



Therefore, a + b = sup(A + B).

2. By Problem 1,

inf(A + B) = —sup(—(A + B)) = —sup(—A + (—B)) = —sup(—A) — sup(—B)
— inf(A) + inf(B).

3. The desired inequality hold if A n B = J (since then sup A n B = —0), so we assume that
AnB# . Then An B< Aand An B < B. Therefore,

sup(An B) <sup A and sup(A n B) <supB.

The inequalities above then implies that sup(A n B) < min{sup A, sup B}.

4. If A and B are non-empty bounded sets but A n B = ¢, then sup(A n B) = —w but
sup A,sup B € F. In such a case sup(A n B) # min{sup A, sup B}.

5. Similar to 3, we have A Au B and B € A u B; thus
sup A < sup(A u B) and sup B < sup(A u B).
Therefore, max{sup A4, sup B} < sup(A u B).

6. If one of A and B is not bounded from above, then sup(A u B) = max{sup A, sup B} = .
Suppose that A and B are bounded from above. Then A U B are bounded from above by
max{sup A, sup B} since if z € AU B, then x € A or x € B which implies that z < sup A or
x < sup B; thus z < max{sup A,sup B} for all z € A U B. This shows that

sup(A u B) < max{sup A, sup B} .
Together with 5, we conclude that sup(A u B) = max{sup A, sup B}. D

Problem 3. Let (I, +, -, <) be an ordered field satisfying the least upper bound property, and S < F
be bounded below and non-empty. Show that

inf ' = sup {.:1: el | x is a lower bound for S}

and

sup S = inf{:c eF ‘ x is an upper bound for S} .

Proof. Define A = {x elF } x is a lower bound for S } Since S is non-empty, every element in S is an
upper bound for A; thus A is bounded from above. By the least upper bound property, b =sup A e F
exists. Note that by the definition of A,

if re A, then x < sforall seS. (%)



Let € > 0 be given. Then b — ¢ is not an upper bound for A; thus there exists x € A such that
b—¢e < x. Then (%) implies that b — e < s for all s € S. Since € > 0 is given arbitrarily, b < s for all
s € S; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m > b such that m < s for all

s € S. Therefore, m € A; thus m < b = sup A, a contradiction. =

Problem 4. Let A, B be two sets, and f : A x B — F be a function, where (F, +, -, <) is an ordered
field satisfying the least upper bound property. Show that

sup  f(x,y) = sup (sup f(z,y)) = sup (sup f(z,y)) .
(z,y)eAxB yeB  z€eA €A  yeB

Proof. 1t suffices to prove the first equality. Note that

fle,y) < sup  flz,y) V(z,y)e AxB;
(z,y)eAxB

thus
sup f(z,y) < sup f(z,y) VyeB.

€A (z,y)eAxB

The inequality above further shows that

sup(Sllpf(%',y)) < sup f(x,y). (%)
yeB N zeA (z,y)eAxB

Now we show the reverse inequality.

1. Suppose that sup f(z,y) = M < . Then for each k € N, there exists (x,yx) € A x B

(z,y)eAxB
such that 1
f(@r, yr) > M‘E'
Therefore,
1
M — = < f(zx,ye) < sup f(z, ye)
TEA

which further implies that

1
M — = < f(@x, ye) < sup (sup f(z,y)) .
yeB x€A

Since the inequality above holds for all k € N, we find that sup (sup f(z,y)) = M.
yeB  x€A

2. Suppose that sup f(z,y) = . Then for each k € N, there exists (zx,yx) € A x B such
(z,y)eAxB

that
fxr, ye) > k.

Therefore,

k< fzg,yr) < Sug)f(%yk)
xe



which further implies that

k< f(zk,yx) < sup (sup f(z,y)).
yeB x€A

Since the inequality above holds for all k£ € N, we find that sup (sup f(z, y)) = 0.

yeB  z€A
With the help of (), we conclude that sup f(x,y) = sup (sup f(z, y)) o
(z,y)eAxB yeB ze€A

Problem 5. Let (F,+,-,<) be an ordered field satisfying the least upper bound property, and

x = (x1,29, - ,x,) € F". Define
kul = E‘xk| and H:BHOOII’HaX{|l'1|,’£E2’,--' 7’xn‘}
k=1
Show that
Lol =sup {3 wnmn | lgle = 1} 20 Jylo = sup { ) anpe| Jals = 1},
k=1 k=1
Proof. Let x,y € F" be given. Then
Dok < O wellysl < D [ekllyloo = 9l D |7kl = [glol 2] -
k=1 k=1 k=1 k=1

Therefore,
sup{Zxkyk‘Hwa: 1} < |lzflx and SUP{Zxkyk‘H‘l’Hl = 1} < |ylleo -
k=1 k=1

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of
the inequalities belongs to the sets (this is because if b € A is an upper bound for A, then b is the
least upper bound for A).
1. sup{ > TRy ‘ |yl = 1} = ||z/;: W.L.O.G. we can assume that & # 0. For a given x € F",
k=1

define ;k = sgn(zy), where sgn is the sign function defined by

1 ifa>0,
sgn(a) =< -1 ifa<0,
0 ifa=0.
Then y = (y1,92, - ,yn) satisfies |y|, = 1 (since at least one component of & is non-zero),

and

n n n
Z LYk = Z zpsgn(wi) = Z || = [l
k=1 k=1 k=1

2. sup{ >, xkyk‘ﬂazHl = 1} = ||yleo: W.L.O.G. we can assume that y # 0. Suppose that
k=1

(7P = |ym| # 0 for some 1 < m < n; that is, the maximum of the absolute value of
components occurs at the m-th component. Define z; = d,,,sgn(y;); that is,
0 if j #m,
l’j - o
sgn(ym) ifj=m.

Then @ = (x1, %9, -+ ,x,) satisfies ||| = 1 (since only one component of x is 1 or —1), and



> ey = S0 (Ym)Um = | = Yoo - o
k=1

Problem 6. Let (F,+,-, <) be an ordered field satisfying the least upper bound property. A set
A < F is said to be closed if every convergent sequence in A converges to a limit in A. In logic

notation,

AcFisclosed < (V{z,}o, <A ({$N}ZO:1 converges = 7}21010 Ty € A> :
1. Show that ¢ and F are closed.
2. Show that [a,b] = {z € F|a < 2 < b} is closed for all a,b € F.
3. Show that if &5 # A < F is closed and bounded, then sup A € A and inf A € A.

Proof. 3. Since A is bounded, a = inf A and b = sup A exist. For each n € N, there exists x,,,y, € A
such that
1 1
a<zT,<a+— and b—— <y, <b.
n n

1
By the Archimedean property, o 0 as n — o0; thus the Sandwich Lemma implies that

lim z, = a and lim y, = 0.
n—00 n—0o0
Since {x,}2  {yn}r, < A and A is closed, a € A and b € B. D

Problem 7. Let (F, +, -, <) be an Archimedean ordered field, a,d € F and § > 0. The §-neighborhood
of a is the set N(a,0) = {z € F||z —a| < §}. A number z € F is called an accurmulation point
of a set A< T if for all 6 > 0, N(x,0) contains at least one point of A distinct from z. In logic
notation,

z is an accumulation point of A < (V4§ > 0)(N(z,6) n A 2 {z}).

1. Show that if {x,}, is a sequence in F so that z; # z; for all i,j € N and A = {x; |k € N},

then z is an accumulation of A if and only if z is a cluster point of {x,}> ;.
2. How about if the condition z; # x; for all 7, j € N is removed? Is the statement in 1 still valid?

Proof. 1. We show that
z is an accumulation point of A if and only if (V6 > 0)(#(A N (z — 0,2+ ) = o).

The direction “<” is trivial since if #(A N (z — 8,2+ 8)) = 0, An (z — 8,2+ §) contains some point

distinct from z.

(=) Let 6; = 1, by the definition of the accumulation points, there exists z; € An (x — 01,4+ d;) and
1
11 # x. Define 6y = min{|x1 — x|, 5}. Then 05 > 0; thus there exists xo € A N (x — 0, + d2)
and x5 # x. We continue this process and obtain a sequence {z,}°_; < A\{z} satisfying that

rneAn(z—1,z+4+1), x,€An(xr—20,x+9,) with 5n:min{|x—xn_1], 1}.

n



By the Archimedean property, {z,}>_, converges to x since |r — z,| < 6, < % Let 6 > 0 be
given. There exists N > 0 such that % < 0; thus

An(z—=90z+0)2An (:Jc— %,x—k%) D {TN, N1, TNy, )
Since z; # x; for all i, j € N, we must have #(A n (z — §,2 4 6)) = . o

Problem 8. Let (F, +, -, <) be an ordered field, and {z,}>_; be a sequence in F. Show that {z,}’_;

converges if and only if every proper subsequence of {z,}°_, converges.

Proof. By a Proposition that we have talked about in class, it suffices to prove the direction “<”.
We show that if every proper subsequence of {z,}r_, converges, then every proper subsequence of
{z,}> | converges to identical limit. Suppose the contrary that there exist two subsequence {z,, }72,
and {x,,, }72, that converge to a and b and a # b, respectively. We construct a new subsequence
{ye}y of {z,}r |, as follows. Let ky = 1 and y; = Tn,, - Let ji be the smallest integer so that

mj, > ny,, and define yo = @, . Let kz be the smallest integer so that ng, > my,, and define

Y3 = Tn,, . We continue this process and obtain a sequence {y,};2, satisfying that

Y,y ¢ is odd,

Yo = ’ .
Ym,;, Llseven,
2

where ki, ko, -+ and ji, jo, - - - satisfy that k& = 1,
jr=min{jeN|m; >k} and k41 =min{keN|n;>m,} VreN.

Then {yor—1}72,, the collection of odd terms of {y,}7,, is a subsequence of {z,, }72; and {y2}2,
the collection of even terms of {y,};2,, is a subsequence of {,, }%,, and {yz1};Z, converges to a
while {y2/};2, converges to b, and a # b. By a Proposition we talked about in class, {y¢};2; does not

converges, a contradiction. o



