Problem 1. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and A be a non-empty set of \mathbb{F} which is bounded below. Define the set -A by $-A \equiv \{-x \in \mathbb{F} \mid x \in A\}$. Prove that

$$\inf A = -\sup(-A).$$

Proof. Let C be a subset of \mathbb{F} . Then

b is a lower bound for a set $C \Leftrightarrow b \leqslant c$ for all $c \in C \Leftrightarrow -b \geqslant -c$ for all $c \in C$

$$\Leftrightarrow -b \geqslant -c$$
 for all $-c \in -C \Leftrightarrow -b \geqslant c$ for all $c \in -C \Leftrightarrow -b$ is an upper bound for $-C$.

Therefore, we conclude that

b is a lower bound for a set C if and only if
$$-b$$
 is an upper bound for $-C$. (\star)

Now, since A is bounded from below, -A is bounded from above. The least upper bound property then implies that $b = \sup(-A) \in \mathbb{F}$ exists. From (\star) , we find that -b is a lower bound for A. Suppose that -b is not the greatest lower bound for A. Then there exists m > -b such that $m \leq x$ for all $x \in A$. This implies that m is a lower bound for A; thus (\star) shows that -m is an upper bound for -A. By the fact that -m < b, we conclude that b is not the least upper bound for -A, a contradiction to that b is the least upper bound for -A.

Remark 0.1. Note the Problem 1 in fact shows that if \mathbb{F} satisfies **LUBP**, then \mathbb{F} satisfies **GLBP**.

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and A, B be non-empty subsets of \mathbb{F} . Define $A + B = \{x + y \mid x \in A, y \in B\}$. Justify if the following statements are true or false by providing a proof for the true statement and giving a counter-example for the false ones.

- 1. $\sup(A+B) = \sup A + \sup B$. 2. $\inf(A$
- 2. $\inf(A+B) = \inf A + \inf B$.
- 3. $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$.
- 4. $\sup(A \cap B) = \min\{\sup A, \sup B\}.$
- 5. $\sup(A \cup B) \ge \max\{\sup A, \sup B\}$.
- 6. $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

Proof. 1. Let $a = \sup A$, $b = \sup B$, and $\varepsilon > 0$ be given. W.L.O.G. we can assume that $a, b \in \mathbb{F}$ for otherwise $a = \infty$ or $b = \infty$ so that A + B is not bounded from above.

- (a) Let $z \in A + B$. Then z = x + y for some $x \in A$ and $y \in B$. By the fact that $x \le a$ and $y \le b$, we find that $z \le a + b$. Therefore, a + b is an upper bound for A + B.
- (b) There exists $x \in A$ and $y \in B$ such that $x > a \frac{\varepsilon}{2}$ and $y > b \frac{\varepsilon}{2}$; thus there exists $z = x + y \in A + B$ such that

$$z = x + y > a + b - \varepsilon$$
.

Therefore, $a + b = \sup(A + B)$.

2. By Problem 1,

$$\inf(A+B) = -\sup(-(A+B)) = -\sup(-A+(-B)) = -\sup(-A) - \sup(-B)$$

= $\inf(A) + \inf(B)$.

3. The desired inequality hold if $A \cap B = \emptyset$ (since then $\sup A \cap B = -\infty$), so we assume that $A \cap B \neq \emptyset$. Then $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Therefore,

$$\sup(A \cap B) \leqslant \sup A$$
 and $\sup(A \cap B) \leqslant \sup B$.

The inequalities above then implies that $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$.

- 4. If A and B are non-empty bounded sets but $A \cap B = \emptyset$, then $\sup(A \cap B) = -\infty$ but $\sup A$, $\sup B \in \mathbb{F}$. In such a case $\sup(A \cap B) \neq \min\{\sup A, \sup B\}$.
- 5. Similar to 3, we have $A \subseteq A \cup B$ and $B \subseteq A \cup B$; thus

$$\sup A \leqslant \sup(A \cup B)$$
 and $\sup B \leqslant \sup(A \cup B)$.

Therefore, $\max\{\sup A, \sup B\} \leq \sup(A \cup B)$.

6. If one of A and B is not bounded from above, then $\sup(A \cup B) = \max\{\sup A, \sup B\} = \infty$. Suppose that A and B are bounded from above. Then $A \cup B$ are bounded from above by $\max\{\sup A, \sup B\}$ since if $x \in A \cup B$, then $x \in A$ or $x \in B$ which implies that $x \leq \sup A$ or $x \leq \sup B$; thus $x \leq \max\{\sup A, \sup B\}$ for all $x \in A \cup B$. This shows that

$$\sup(A \cup B) \leq \max\{\sup A, \sup B\}$$
.

Together with 5, we conclude that $\sup(A \cup B) = \max\{\sup A, \sup B\}$.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $S \subseteq \mathbb{F}$ be bounded below and non-empty. Show that

$$\inf S = \sup \big\{ x \in \mathbb{F} \, \big| \, x \text{ is a lower bound for } S \big\}$$

and

$$\sup S = \inf \left\{ x \in \mathbb{F} \, \big| \, x \text{ is an upper bound for } S \right\}.$$

Proof. Define $A = \{x \in \mathbb{F} \mid x \text{ is a lower bound for } S\}$. Since S is non-empty, every element in S is an upper bound for A; thus A is bounded from above. By the least upper bound property, $b = \sup A \in \mathbb{F}$ exists. Note that by the definition of A,

if
$$x \in A$$
, then $x \leqslant s$ for all $s \in S$. (\star)

Let $\varepsilon > 0$ be given. Then $b - \varepsilon$ is not an upper bound for A; thus there exists $x \in A$ such that $b - \varepsilon < x$. Then (\star) implies that $b - \varepsilon < s$ for all $s \in S$. Since $\varepsilon > 0$ is given arbitrarily, $b \leqslant s$ for all $s \in S$; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m > b such that $m \le s$ for all $s \in S$. Therefore, $m \in A$; thus $m \le b = \sup A$, a contradiction.

Problem 4. Let A, B be two sets, and $f: A \times B \to \mathbb{F}$ be a function, where $(\mathbb{F}, +, \cdot, \leq)$ is an ordered field satisfying the least upper bound property. Show that

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right) = \sup_{x\in A} \left(\sup_{y\in B} f(x,y)\right).$$

Proof. It suffices to prove the first equality. Note that

$$f(x,y) \leq \sup_{(x,y)\in A\times B} f(x,y) \qquad \forall (x,y)\in A\times B;$$

thus

$$\sup_{x \in A} f(x, y) \leqslant \sup_{(x, y) \in A \times B} f(x, y) \qquad \forall y \in B.$$

The inequality above further shows that

$$\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) \leqslant \sup_{(x, y) \in A \times B} f(x, y) . \tag{*}$$

Now we show the reverse inequality.

1. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = M < \infty$. Then for each $k\in\mathbb{N}$, there exists $(x_k,y_k)\in A\times B$ such that

$$f(x_k, y_k) > M - \frac{1}{k}.$$

Therefore,

$$M - \frac{1}{k} < f(x_k, y_k) \leqslant \sup_{x \in A} f(x, y_k)$$

which further implies that

$$M - \frac{1}{k} < f(x_k, y_k) \le \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right).$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y)\right) \geqslant M$.

2. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = \infty$. Then for each $k\in\mathbb{N}$, there exists $(x_k,y_k)\in A\times B$ such that

$$f(x_k, y_k) > k$$
.

Therefore,

$$k < f(x_k, y_k) \leqslant \sup_{x \in A} f(x, y_k)$$

which further implies that

$$k < f(x_k, y_k) \le \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right).$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) = \infty$.

With the help of (\star) , we conclude that $\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right)$.

Problem 5. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{F}^n$. Define

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^n |x_k|$$
 and $\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}.$

Show that

1.
$$\|\boldsymbol{x}\|_1 = \sup \left\{ \sum_{k=1}^n x_k y_k \mid \|\boldsymbol{y}\|_{\infty} = 1 \right\}.$$
 2. $\|\boldsymbol{y}\|_{\infty} = \sup \left\{ \sum_{k=1}^n x_k y_k \mid \|\boldsymbol{x}\|_1 = 1 \right\}.$

Proof. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}^n$ be given. Then

$$\sum_{k=1}^{n} x_k y_k \leqslant \sum_{k=1}^{n} |x_k| |y_k| \leqslant \sum_{k=1}^{n} |x_k| \|\boldsymbol{y}\|_{\infty} = \|\boldsymbol{y}\|_{\infty} \sum_{k=1}^{n} |x_k| = \|\boldsymbol{y}\|_{\infty} \|\boldsymbol{x}\|_{1}.$$

Therefore,

$$\sup\left\{\left.\sum_{k=1}^n x_k y_k \,\middle|\, \|\boldsymbol{y}\|_{\infty} = 1\right\} \leqslant \|\boldsymbol{x}\|_1 \qquad \text{and} \qquad \sup\left\{\left.\sum_{k=1}^n x_k y_k \,\middle|\, \|\boldsymbol{x}\|_1 = 1\right\} \leqslant \|\boldsymbol{y}\|_{\infty} \,.\right\}$$

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of the inequalities belongs to the sets (this is because if $b \in A$ is an upper bound for A, then b is the least upper bound for A).

1. $\sup \left\{ \sum_{k=1}^{n} x_k y_k \, \middle| \, \| \boldsymbol{y} \|_{\infty} = 1 \right\} = \| \boldsymbol{x} \|_1$: W.L.O.G. we can assume that $\boldsymbol{x} \neq \boldsymbol{0}$. For a given $\boldsymbol{x} \in \mathbb{F}^n$, define $y_k = \operatorname{sgn}(x_k)$, where sgn is the sign function defined by

$$\operatorname{sgn}(a) = \begin{cases} 1 & \text{if } a > 0, \\ -1 & \text{if } a < 0, \\ 0 & \text{if } a = 0. \end{cases}$$

Then $\mathbf{y} = (y_1, y_2, \dots, y_n)$ satisfies $\|\mathbf{y}\|_{\infty} = 1$ (since at least one component of \mathbf{x} is non-zero), and

$$\sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} x_k \operatorname{sgn}(x_k) = \sum_{k=1}^{n} |x_k| = \|\boldsymbol{x}\|_1.$$

2. $\sup \left\{ \sum_{k=1}^{n} x_k y_k \, \middle| \, \|\boldsymbol{x}\|_1 = 1 \right\} = \|\boldsymbol{y}\|_{\infty}$: W.L.O.G. we can assume that $\boldsymbol{y} \neq \boldsymbol{0}$. Suppose that $\|\boldsymbol{y}\|_{\infty} = |y_m| \neq 0$ for some $1 \leqslant m \leqslant n$; that is, the maximum of the absolute value of components occurs at the m-th component. Define $x_j = \delta_{jm} \operatorname{sgn}(y_j)$; that is,

$$x_j = \begin{cases} 0 & \text{if } j \neq m, \\ \operatorname{sgn}(y_m) & \text{if } j = m. \end{cases}$$

Then $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ satisfies $\|\boldsymbol{x}\|=1$ (since only one component of \boldsymbol{x} is 1 or -1), and

$$\sum_{k=1}^{n} x_k y_k = \operatorname{sgn}(y_m) y_m = |y_m| = ||y||_{\infty}.$$

Problem 6. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property. A set $A \subseteq \mathbb{F}$ is said to be closed if every convergent sequence in A converges to a limit in A. In logic notation,

$$A \subseteq \mathbb{F} \text{ is closed} \quad \Leftrightarrow \quad (\forall \{x_n\}_{n=1}^{\infty} \subseteq A) \Big(\{x_n\}_{n=1}^{\infty} \text{ converges} \Rightarrow \lim_{n \to \infty} x_n \in A \Big) .$$

- 1. Show that \emptyset and \mathbb{F} are closed.
- 2. Show that $[a, b] = \{x \in \mathbb{F} \mid a \leqslant x \leqslant b\}$ is closed for all $a, b \in \mathbb{F}$.
- 3. Show that if $\emptyset \neq A \subseteq \mathbb{F}$ is closed and bounded, then $\sup A \in A$ and $\inf A \in A$.

Proof. 3. Since A is bounded, $a = \inf A$ and $b = \sup A$ exist. For each $n \in \mathbb{N}$, there exists $x_n, y_n \in A$ such that

$$a \leqslant x_n < a + \frac{1}{n}$$
 and $b - \frac{1}{n} < y_n \leqslant b$.

By the Archimedean property, $\frac{1}{n} \to 0$ as $n \to \infty$; thus the Sandwich Lemma implies that

$$\lim_{n \to \infty} x_n = a \quad \text{and} \quad \lim_{n \to \infty} y_n = b.$$

Since $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty} \subseteq A$ and A is closed, $a \in A$ and $b \in B$.

Problem 7. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, $a, \delta \in \mathbb{F}$ and $\delta > 0$. The δ -neighborhood of a is the set $\mathcal{N}(a, \delta) = \{x \in \mathbb{F} \mid |x - a| < \delta\}$. A number $x \in \mathbb{F}$ is called an accumulation point of a set $A \subseteq \mathbb{F}$ if for all $\delta > 0$, $\mathcal{N}(x, \delta)$ contains at least one point of A distinct from x. In logic notation,

$$x$$
 is an accumulation point of $A \Leftrightarrow (\forall \delta > 0)(\mathcal{N}(x, \delta) \cap A \supseteq \{x\})$.

- 1. Show that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in \mathbb{F} so that $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ and $A = \{x_k \mid k \in \mathbb{N}\}$, then x is an accumulation of A if and only if x is a cluster point of $\{x_n\}_{n=1}^{\infty}$.
- 2. How about if the condition $x_i \neq x_j$ for all $i, j \in \mathbb{N}$ is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if $(\forall \delta > 0) (\#(A \cap (x - \delta, x + \delta)) = \infty)$.

The direction " \Leftarrow " is trivial since if $\#(A \cap (x - \delta, x + \delta)) = \infty$, $A \cap (x - \delta, x + \delta)$ contains some point distinct from x.

(\Rightarrow) Let $\delta_1 = 1$, by the definition of the accumulation points, there exists $x_1 \in A \cap (x - \delta_1, x + \delta_1)$ and $x_1 \neq x$. Define $\delta_2 = \min\{|x_1 - x|, \frac{1}{2}\}$. Then $\delta_2 > 0$; thus there exists $x_2 \in A \cap (x - \delta_2, x + \delta_2)$ and $x_2 \neq x$. We continue this process and obtain a sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{x\}$ satisfying that

$$x_1 \in A \cap (x-1, x+1), \quad x_n \in A \cap (x-\delta_n, x+\delta_n) \text{ with } \delta_n = \min\{|x-x_{n-1}|, \frac{1}{n}\}.$$

By the Archimedean property, $\{x_n\}_{n=1}^{\infty}$ converges to x since $|x-x_n| < \delta_n \leqslant \frac{1}{n}$. Let $\delta > 0$ be given. There exists N > 0 such that $\frac{1}{N} < \delta$; thus

$$A \cap (x - \delta, x + \delta) \supseteq A \cap \left(x - \frac{1}{N}, x + \frac{1}{N}\right) \supseteq \left\{x_N, x_{N+1}, x_{N+2}, \cdots\right\}.$$

Since $x_i \neq x_j$ for all $i, j \in \mathbb{N}$, we must have $\#(A \cap (x - \delta, x + \delta)) = \infty$.

Problem 8. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field, and $\{x_n\}_{n=1}^{\infty}$ be a sequence in \mathbb{F} . Show that $\{x_n\}_{n=1}^{\infty}$ converges if and only if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges.

Proof. By a Proposition that we have talked about in class, it suffices to prove the direction " \Leftarrow ". We show that if every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges, then every proper subsequence of $\{x_n\}_{n=1}^{\infty}$ converges to identical limit. Suppose the contrary that there exist two subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{x_{m_j}\}_{j=1}^{\infty}$ that converge to a and b and $a \neq b$, respectively. We construct a new subsequence $\{y_\ell\}_{\ell=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$, as follows. Let $k_1 = 1$ and $y_1 = x_{n_{k_1}}$. Let j_1 be the smallest integer so that $m_{j_1} > n_{k_1}$, and define $y_2 = x_{m_{j_1}}$. Let k_2 be the smallest integer so that $n_{k_2} > m_{j_1}$, and define $y_3 = x_{n_{\ell_2}}$. We continue this process and obtain a sequence $\{y_\ell\}_{\ell=1}^{\infty}$ satisfying that

$$y_{\ell} = \begin{cases} y_{n_{k_{\frac{\ell+1}{2}}}} & \ell \text{ is odd }, \\ y_{m_{j_{\frac{\ell}{2}}}} & \ell \text{ is even }, \end{cases}$$

where k_1, k_2, \cdots and j_1, j_2, \cdots satisfy that $k_1 = 1$,

$$j_r = \min \{j \in \mathbb{N} \mid m_j > k_r\} \quad \text{and} \quad k_{r+1} = \min \{k \in \mathbb{N} \mid n_k > m_{j_r}\} \quad \forall r \in \mathbb{N}.$$

Then $\{y_{2\ell-1}\}_{\ell=1}^{\infty}$, the collection of odd terms of $\{y_{\ell}\}_{\ell=1}^{\infty}$, is a subsequence of $\{x_{n_k}\}_{k=1}^{\infty}$ and $\{y_{2\ell}\}_{\ell=1}^{\infty}$, the collection of even terms of $\{y_{\ell}\}_{\ell=1}^{\infty}$, is a subsequence of $\{x_{m_j}\}_{j=1}^{\infty}$, and $\{y_{2\ell-1}\}_{\ell=1}^{\infty}$ converges to a while $\{y_{2\ell}\}_{\ell=1}^{\infty}$ converges to b, and $a \neq b$. By a Proposition we talked about in class, $\{y_{\ell}\}_{\ell=1}^{\infty}$ does not converges, a contradiction.