Exercise Problem Sets 3
Oct. 9. 2020

Problem 1. Let (F,+, -, <) be an Archimedean ordered field, and f : F — F be a function so that

F@) - fy)] < '“”62;1/’ VeyeF.

Pick an arbitrary x; € F, and define z4,1 = f(zy) for all £ € N. Show that {z,}*

sequence in F.

is a Cauchy

n=1

Proof. Let x1 € F be given, and xy1 = f(xy) for all k € N. Then

T — Tp— 1
i — el = () — Flan)] < 2B D) o)
1 1
ﬁ}xk—l —apa < < %L’Bz — 1] = F\f(%) — 1.

Let € > 0 be given. By the Archimedean Property, there exists N > 0 such that
o= 2|f X —:U1| <e.
Therefore, if n >m > N,

’xn - mm’ < ’xm - xm—i—l‘ + |$m+1 - xn| < |$m - zm—&-l’ + ‘xm-i-l - xm-l-?‘ + ’xm+2 —Tp| S

< ’xm - $m+1‘ + |$m+1 - -Tm+2’ T+t ’xn 1 -Tn’

< 2m_1|f<x1>_x1|+2im\f<x1>_x1\+- Qn L @) — o
< \f o) — ) (o L ;n 2n1_2) < 2m_2\f(x1> o
< 5 2\]‘" T —xl\ <e:
thus {z,}_, is a Cauchy sequence. o

Problem 2. Let (IF,+, -, <) be an ordered field satisfying the monotone sequence property, b € F
and b > 1.

1. Show the law of exponents holds (for rational exponents); that is, show that

(a) if r;s in Q, then 0" =" - b*.
(b) if r,sin Q, then b = (b")°.

2. For z € F, let B(z) = {b' € F‘t € Q,t < z}. Show that sup B(z) exists for all z € F, and
b" = sup B(r )1fre(@.

3. Define b* = sup B(z) for « € F. Show that B(xz) > 0 for all x € F and the law of exponents

(for exponents in F)



(a) if x,y in F, then b* ¥ = b* - ¥, (b) if z,y > 0, then b*Y = (b")Y,
are also valid.

4. Show that if 1, x5 € F and 27 < x4, then b** < b*2. This implies that if z1, x5 are two numbers

in [F satisfying b*!' = b2, then x; = x».

5. Let y > 0 be given. Show that if u,v € F such that b* < y and b’ > vy, then b**/* < ¢ and
b=1/m > 4 for sufficiently large n.

6. Let y > 0 be given, and A < F be the set of all w such that 0" < y. Show that sup A exists
and x = sup A satisfies b = y. The number z (the uniqueness is guaranteed by 4) satisfying

b* =y is called the logarithm of y to the base b, and is denoted by log, y.
Hint: Make use of Problem 4 in Exercise 1.

Proof. We note that I also satisfies the Archimedean Property and the least upper bound property

because of a Proposition and a Theorem that we talked about in class.

2. First we show that x € F, B(z) is non-empty and bounded from above. By the Archimedean
Property, there exists n € N such that —z < n. Therefore, there exists a rational number —n

such that —n < x; thus b™" € B(x) which implies that B(x) is non-empty.

On the other hand, the Archimedean Property implies that there exists m € N such that x < m.
By the fact that

b' <b° whenever t<sandt seQ, ()

we conclude that b™ is an upper bound for B(x). Therefore, B(z) is bounded from above. By

the least upper bound property, we conclude that sup B(z) exists for all x € F.

Next we show that b" = sup B(r) if r € Q. To see this, we note that b € B(r) if r € Q. On
theother hand, () implies that b” is an upper bound for B(r); thus sup B(r) = b".

3. We first show that
sup(cA) =c-sup A Ve>0, (%)

where cA = {c- x|z € A}. To see (x), we observe that
reA=x<supA=c-z<c-supA (by the compatibility of - and <);
thus every element in cA is bounded from above by ¢ - sup A. Therefore,
sup(cA) < c-sup A.

On the other hand, let € > 0 be given. Then there exists x € A and x > sup A — = Therefore,
c
c-x > c-supA—¢; thus

sup(cA) = c-x >c-supA —e.



Since € > 0 is given arbitrarily, we find that sup(cA) = ¢ - sup A4; thus (x) is concluded.

Next we show that
sup{bt|te(@,t<x}:inf{bs|se@,s>x}. (o)
Let S(z) = {b*|s € Q,s = x}. If b € B(z), then b’ is a lower bound for S(z). Therefore, B(z)

is a Subset of the collection of all lower bounds for S(z). By Problem 3 of Exercise 2,
sup B(z) < sup {y |y is a lower bound for S(z)} = infS(z).

Suppose that sup B(z) < infS(z). Since bn \, 1 as n — oo (Problem 4 of Exercise 1), there
exists n € N such that infS(z) > bwsup B(z). By the fact that there exists r € Q and
x<r<x+%, we find that

1 1
inf S(z) > bn sup B(x) = sup{b”ﬁ ‘7" eQ,r < :13} = sup{bs }s eQ,s<x+ ﬁ}
>br>inf{bs}se@, } inf S(x
a contradiction. Observe that
sup A~ = (ian)_1 for every subset A of (0,0),

where A™! = {t7!|t € A} and (0,0) is the collection consisting of positive elements in F.

Therefore, (¢) implies that for = € F,

b =sup{t'|teQit<—a}=sup{b|teQt>z}= [inf{bt}te(@,t >x}]1
:(bz)fl

Now we show the law of exponential

bvob =0 Va,yel. (x*)

Let z,y € F be given. If t,se Qandt <z, s<y,thent+seQandt+ s < x+ y; thus
b'b® = 0" < sup Bz +y) = b1V

For any given rational t < z, taking the supremum of the left-hand side over all rational s <y

and using (x) we find that
b =b' - sup {b°|se Qs <y} <b.

Taking the supremum of the left-hand side over all rational ¢ < z, using (*) again we find that
b’ - b* :by-sup{bt‘te@,téx} < b

thus we establish that
bt - bY < bETY Ve,yeF (00)



Now, note that (o¢) implies that for all z,y € FF,
B o= by > e ety = (po) L ety s (o)L g Y = b
The inequality above is indeed an equality and we obtain that
b = b Th Y Ve,yel.

This is indeed (**) because of that b= = (b*) L.

Next we show that (b”)Y = sup B(z - y) for all z > 0 and y € F. For z > 0, define A(z) = {s €
]F}s eQ,0<s< z} Note that if z > 0, then b* = sup A(z). Since for > 0, we have b* > 1;
thus for z,y > 0,

(b")Y = sup {(b")" ! teQ,0<t<y}= sup (b°)' = sup ( sup bs)t.

teA(y) teA(y) seA(x)
By Problem 4 of Exercise 2,
sup ( sup bs)t = sup (b°) = sup b3t = PUP(teeAw) xA@) B = HTY
teA(y) seA(x) (t,s)eA(y) x A(x) (t,s)eA(y)x A(z)

. Let x1 < x5 be given. Then AP implies that there exists r,s € Q such that z; < r < s < x».
Therefore, B(z1) € B(r) € B(s) € B(xs); thus

b®t = sup B(z1) < sup B(r) < sup B(s) < sup B(zg) = b™.
Since B(r) =" and B(s) = b*, we must have B(r) < B(s); thus 4 is concluded.

. Since b% > 1 and v > 1, by the fact that br — 1asn — o0, there exist Ny, Ny > 0 such that
Yy

bv
]b%—l‘ <b£_1 whenever n > N; and !b%—ll < — —1 whenever n > N,.
b Yy

(

b
Let N = max{Ny, No}. For n > N, we have bs < 2L and br < m or equivalently,

b
b“+%<y and b”_%>y Vn>=N.

. Let A = {w elF ’ v < y}. Since b > 1, 2 of Problem 4 in Exercise 1 implies that
" >1+n(b—1) whenever n > 2. (k)

By AP, there exists N > 2 such that 1 + N(b— 1) > y; thus A is bounded from above by N.

Moreover, there exists M > 2 such that
1
1+ MOb-1)> —;
Y

thus (+x*) implies that b < y or —N € A. Therefore, A is non-empty. By LUBP, we

conclude that sup A exists.



Let x =sup A. Then x + % ¢ A; thus bt > y for all n € N. Since bn — 1san — o0, we find
that

b* = b% lim b = lim b n > y.

n—00 n—o0

On the other hand, 4 implies that = — 1 € A; thus b > y for all n € o0 and we have
n

b = b% lim b~ = lim b" % < y.

n—00 n—0o0

Therefore, 0* = y.

[m]

Problem 3. Let (F,+-, <) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Intermediate Value Theorem:

Let a,beF, a <band f: [a,b] — F be continuous (at every point of [a, b]); that is,

lim f(z,) = f(lim z,) for all convergent sequence {z,}*_, < [a,b].
n—0o0 n—oo

If f(a)f(b) <0, then there exists ¢ € [a, b] such that f(c) = 0.

Complete the following.

1. W.L.O.G, we can assume that f(a) < 0. Define the set S = {z € [a,b]| f(x) > 0}. Show that
inf S exists.

2. Let ¢ =infS. Show that f(c) > 0.
3. Conclude that f(c) < 0 as well.
Hint:
1. Show that S is non-empty and bounded from below and note that MSP < LUBP.
2. Show that there exists a sequence {c,}7°; in S such that ¢, — ¢ as n — .
3. Show that there exists a sequence {c,}’°_; in [a, ¢) such that ¢, — ¢ as n — 0.

Proof. 1. Since f(b) > 0, b € S. Moreover, a is a lower bound for S; thus S is non-empty and
bounded from below. Since MSP < LUBP, infS € [ exists.

2. Let ¢ = inf S. For each n € N, there exists ¢, < c+ 1 and ¢, € S. Then f(c,) > 0 for all n € N
n
and

1
c<e, <c+ — VneN.
n

Then the Sandwich Lemma implies that ¢, — ¢ as n — 2. By the continuity of f,

fle) = f(lim ¢,) = lim f(c,) > 0.

n—00 n—00



3. Consider the sequence {c,}>_, defined by ¢, = ¢ — %, where N is chosen large enough so that
¢y = a. Since ¢ = infS and ¢, < ¢, ¢, ¢ S for all n > N. Therefore, f(c,) < 0 for all n € N.

Since ¢, — ¢ as n — o0, by the continuity of f we find that
f(e) = F( lim ¢,) = lm f(e,) < 0. :

Problem 4. Let (F,+-, <) be an ordered field satisfying the monotone sequence property. In this

problem we prove the Extreme Value Theorem:

Let a,beF, a <band f: [a,b] > F be continuous (at every point of [a, b]); that is,
lim f(z,) = f(lim z,) for all convergent sequence {z,}>_, < [a,b].
n—0oo n—oo

Then there exist ¢, d € [a, b] such that f(c) = sup f(x) and f(d) = inf f(x).

z€[a,b] z€[a,b]

Complete the following.
1. Show that there exist sequences {c,}*_; and {d,}>_, in [a, b] such that

lim f(¢,) = sup f(x) and lim f(d,) = inf f(z).

n—00 welab] Unds w€la,b]
2. Extract convergent subsequences {x,, };; and {y,, }7=, with limit ¢ and d, respectively. Show
that ¢,d € [a, b].
3. Show that f(c) = xsel[lapb] f(z) and f(d) = xeiﬁfb] f(z).
Hint: For 2, note that MSP = BWP.
Proof. It suffices to show the case of sup f(z) since inf f(x) = — sup (—f)(x) by Problem 1 of

z€[a,b] z€(a,b] z€a,b)
Exercise 2.

1. Suppose that f([a,b]) is bounded from above. Then M = sup f([a,b]) = sup f(z) exists. For
z€[a,b]
each n € F, there exists ¢, € [a, b] such that

1
M——< f(ec,) <M.
n

By the Sandwich Lemma, lim f(c,) = M = sup f(z).
n—o0

z€[a,b]

On the other hand, if f([a,b]) is not bounded from above, then sup f([a,b]) = sup f(x) = 0.

z€[a,b]
Moreover, for each n € F there exists ¢, € [a, b] such that
flen) >n.
Then lim f(c,) = oo = sup f(z). In either case, there exists {c,}, < [a,b] such that

n—o0

lim f(c,) = sup f().

z€la,b]

z€[a,b]



2. Since {c,}2, < [a,b], {c,}2, is bounded. By the fact that MISP = BWP, there exists a
convergent subsequence {cy, }72; of {c,}_; with limit c¢. Since a < ¢,, <bfor all ke N, by a

Proposition that we talked about in class we conclude that a < ¢ < b.

3. Since ¢,, — c as k — o0, the continuity of f implies that

f(e) = f(lim ¢,) = lim f(¢,) = sup f(z). O

n—0o0 n—0o0 :pe[a,b}



