Problem 1. Let $a \in \mathbb{R}$. Define a_n through the iterated relation

$$a_n = a_{n-1}^2 - a_{n-1} + 1$$
 $\forall n > 1, a_1 = a$.

For what a is the sequence $\{a_n\}_{n=1}^{\infty}$ (1) monotone? (2) bounded? (3) convergent? Compute the limit in the case of convergence.

Proof. For $n \in \mathbb{N}$, we have

$$a_{n+1} - a_n = a_n^2 - a_n + 1 - a_n = a_n^2 - 2a_n + 1 = (a_n - 1)^2 \ge 0$$
;

thus $\{a_n\}_{n=1}^{\infty}$ is increasing no matter what a is. Moreover, **MSP** shows that $\{a_n\}_{n=1}^{\infty}$ is bounded if and only if $\{a_n\}_{n=1}^{\infty}$ is convergent.

Note that if $\lim_{n\to\infty} a_n = x$, then

$$x = \lim_{n \to \infty} a_n = \lim_{n \to \infty} (a_{n-1}^2 - a_{n-1} + 1) = x^2 - x + 1$$

which implies that the limit of (the increasing sequence) $\{a_n\}_{n=1}^{\infty}$, if it converges, must be 1. On the other hand, note that the function $f(x) = x^2 - x + 1$ maps [0,1] into [0,1], and f(x) > 1 if $x \notin [0,1]$. Therefore, if $a_1 = a \in [0,1]$, then $a_n \in [0,1]$ for all $n \in \mathbb{N}$ so that $\{a_n\}_{n=1}^{\infty}$ converges, while if $a_1 = a \notin [0,1]$, then $a_2 = f(a_1) > 1$ which implies that $\{a_n\}_{n=1}^{\infty}$ diverges.

Problem 2. Suppose that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ are two Cauchy sequences in \mathbb{R} . Show that the sequence $\{|x_n-y_n|\}_{n=1}^{\infty}$ converges.

Proof. By the completeness of \mathbb{R} , $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$ exist. Therefore,

$$\lim_{n \to \infty} |x_n - y_n| = \lim_{n \to \infty} |x - y|.$$

Problem 3. Given the following sets consisting of elements of some sequence of real numbers. Find the limsup and liminf of the sequence.

- 1. $\{\cos m \mid m = 0, 1, 2, \dots\}.$
- 2. $\{ \sqrt[m]{|\sin m|} \mid m = 1, 2, \dots \}.$
- 3. $\left\{ \left(1 + \frac{1}{m}\right) \sin \frac{m\pi}{6} \,\middle|\, m = 1, 2, \cdots \right\}.$

Hint: For 1, first show that for all irrational α , the set

$$S = \{x \in [0, 1] \mid x = k\alpha \pmod{1} \text{ for some } k \in \mathbb{N} \}$$

is dense in [0,1]; that is, for all $y \in [0,1]$ and $\varepsilon > 0$, there exists $x \in S \cap (y-\varepsilon,y+\varepsilon)$. Then choose

 $\alpha = \frac{1}{2\pi}$ to conclude that

$$T = \big\{ x \in [0, 2\pi] \, \big| \, x = k \text{ (mod } 2\pi) \text{ for some } k \in \mathbb{N} \big\}$$

is dense in $[0, 2\pi]$. To prove that S is dense in [0, 1], you might want to consider the following set

$$S_k = \big\{ x \in [0,1] \, \big| \, x = \ell \alpha \text{ (mod 1) for some } 1 \leqslant \ell \leqslant k+1 \big\}$$

Note that there must be two points in S_k whose distance is less than $\frac{1}{k}$. What happened to (the multiples of) the difference of these two points?

Proof. 3. Let $x_m = \left(1 + \frac{1}{m}\right) \sin \frac{m\pi}{6}$. Since $\lim_{m \to \infty} \left(1 + \frac{1}{m}\right) = 1 > 0$ and there are seven cluster points, $\left\{\pm 1, \pm \frac{\sqrt{3}}{2}, \pm \frac{1}{2}, 0\right\}$, of the sequence $\left\{\sin \frac{m\pi}{6}\right\}_{m=1}^{\infty}$, we expect that

$$\limsup_{m \to \infty} \left(1 + \frac{1}{m} \right) \sin \frac{m\pi}{6} = 1 \quad \text{and} \quad \liminf_{m \to \infty} \left(1 + \frac{1}{m} \right) \sin \frac{m\pi}{6} = -1.$$

To see that our expectation is in fact true, we let $\varepsilon > 0$ be given and observe that

$$\#\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} \leqslant \left[\frac{1}{\varepsilon}\right] + 1 < \infty$$

while the set $\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} \supseteq \{12k + 3 \mid k \in \mathbb{N}\}$ so that

$$\#\{m \in \mathbb{N} \mid x_m > 1 + \varepsilon\} = \infty.$$

Therefore, Proposition 1.98 shows that 1 is the limit superior of $\{x_m\}_{m=1}^{\infty}$. Similarly, -1 is the limit inferior of $\{x_m\}_{m=1}^{\infty}$.

Problem 4. Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences in \mathbb{R} . Prove the following inequalities:

$$\lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \inf y_n \leq \lim_{n \to \infty} \inf (x_n + y_n) \leq \lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \sup y_n \\
\leq \lim_{n \to \infty} \sup (x_n + y_n) \leq \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n ; \\
\left(\lim_{n \to \infty} \inf |x_n| \right) \left(\lim_{n \to \infty} \inf |y_n| \right) \leq \lim_{n \to \infty} \inf |x_n y_n| \leq \left(\lim_{n \to \infty} \inf |x_n| \right) \left(\lim_{n \to \infty} \sup |y_n| \right) \\
\leq \lim_{n \to \infty} \sup |x_n y_n| \leq \left(\lim_{n \to \infty} \sup |x_n| \right) \left(\lim_{n \to \infty} \sup |y_n| \right) .$$

Give examples showing that the equalities are generally not true.

Proof. 1. Let $k \in \mathbb{N}$ be fixed. Note that for $n \ge k$, we have

$$\inf_{n\geqslant k}(x_n+y_n)\leqslant x_n+y_n\leqslant \sup_{n\geqslant k}(x_n+y_n).$$

Note that the LHS and the RHS for functions of k and is independent of n. Therefore,

$$\inf_{n \geqslant k} \left[\inf_{n \geqslant k} (x_n + y_n) - y_n \right] \leqslant \inf_{n \geqslant k} x_n \leqslant \inf_{n \geqslant k} \left[\sup_{n \geqslant k} (x_n + y_n) - y_n \right]$$

which further shows that

$$\inf_{n\geqslant k}(x_n+y_n)-\sup_{n\geqslant k}y_n\leqslant \inf_{n\geqslant k}x_n\leqslant \sup_{n\geqslant k}(x_n+y_n)-\sup_{n\geqslant k}y_n.$$

Therefore,

$$\inf_{n \geqslant k} (x_n + y_n) \leqslant \inf_{n \geqslant k} x_n + \sup_{n \geqslant k} y_n \leqslant \sup_{n \geqslant k} (x_n + y_n) \qquad \forall k \in \mathbb{N},$$

and the first inequality follows from the fact that

$$\inf_{n \geqslant k} x_n + \inf_{n \geqslant k} y_n \leqslant \inf_{n \geqslant k} (x_n + y_n) \leqslant \inf_{n \geqslant k} x_n + \sup_{n \geqslant k} y_n \leqslant \sup_{n \geqslant k} (x_n + y_n) \leqslant \sup_{n \geqslant k} x_n + \sup_{n \geqslant k} y_n$$

for each $k \in \mathbb{N}$.

2. Let $k \in \mathbb{N}$ be fixed. Note that for $n \ge k$, we have

$$\inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant |x_n| \left(|y_n| + \frac{1}{k} \right) \leqslant \sup_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right].$$

Note that the LHS and the RHS for functions of k and is independent of n. Therefore,

$$\inf_{n\geqslant k} \frac{\inf_{n\geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right]}{|y_n| + \frac{1}{k}} \leqslant \inf_{n\geqslant k} |x_n| \leqslant \inf_{n\geqslant k} \frac{\sup_{n\geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right]}{|y_n| + \frac{1}{k}}.$$

By the fact that

$$\inf_{n \ge k} \frac{1}{|y_n| + \frac{1}{k}} = \frac{1}{\sup_{n \ge k} (|y_n| + \frac{1}{k})},$$

we find that

$$\frac{\inf\limits_{n\geqslant k}\left[|x_n|\left(|y_n|+\frac{1}{k}\right)\right]}{\sup\limits_{n\geqslant k}\left(|y_n|+\frac{1}{k}\right)}\leqslant \inf\limits_{n\geqslant k}|x_n|\leqslant \inf\limits_{n\geqslant k}\frac{\sup\limits_{n\geqslant k}\left[|x_n|\left(|y_n|+\frac{1}{k}\right)\right]}{\sup\limits_{n\geqslant k}\left(|y_n|+\frac{1}{k}\right)};$$

thus

$$\inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \inf_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right) \leqslant \sup_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right].$$

The second inequality follows from the fact that

$$\inf_{n \geqslant k} |x_n| \inf_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right) \leqslant \inf_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \inf_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right)$$

$$\leqslant \sup_{n \geqslant k} \left[|x_n| \left(|y_n| + \frac{1}{k} \right) \right] \leqslant \sup_{n \geqslant k} |x_n| \sup_{n \geqslant k} \left(|y_n| + \frac{1}{k} \right)$$

for each $k \in \mathbb{N}$, and passing to the limit as $k \to \infty$.

3. Let $x_n = 2 + \sin n$ and $y_n = 2 + \cos n$. Then $x_n, y_n > 0$, and

$$\liminf_{n\to\infty} x_n = \liminf_{n\to\infty} y_n = 1, \quad \limsup_{n\to\infty} x_n = \limsup_{n\to\infty} y_n = 3.$$

By Problem 3, the set $\{x \in [0, 2\pi] \mid x = k \pmod{2\pi} \text{ for some } k \in \mathbb{N}\}$ is dense in $[0, 2\pi]$; thus for each $\theta \in [0, 2\pi]$ there exists an increasing sequence $\{k_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$ such that $x_{k_j} = k_j \pmod{2\pi}$ and $\{x_{k_j}\}_{j=1}^{\infty}$ converges to θ . This implies that for each $\theta \in [-1, 1]$, there exists a subsequence $\{\cos k_j\}_{j=1}^{\infty}$ such that

$$\lim_{j \to \infty} \cos n_j = \cos \theta \quad \text{and} \quad \lim_{j \to \infty} \sin n_j = \sin \theta.$$

Therefore, we have

$$\liminf_{n \to \infty} (x_n + y_n) = 4 - \sqrt{2}, \quad \limsup_{n \to \infty} (x_n + y_n) = 4 + \sqrt{2},$$

and

$$\liminf_{n \to \infty} x_n y_n = \frac{9}{2} - 2\sqrt{2}, \quad \limsup_{n \to \infty} x_n y_n = \frac{9}{2} + 2\sqrt{2}.$$

Therefore,

$$\lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \inf y_n < \lim_{n \to \infty} \inf (x_n + y_n) < \lim_{n \to \infty} \inf x_n + \lim_{n \to \infty} \sup y_n < \lim_{n \to \infty} \sup (x_n + y_n) < \lim_{n \to \infty} \sup x_n + \lim_{n \to \infty} \sup y_n < \lim_{n \to \infty} \sup_{n \to$$

and

$$\lim_{n \to \infty} \inf x_n \cdot \liminf_{n \to \infty} y_n < \lim_{n \to \infty} \inf (x_n y_n) < \lim_{n \to \infty} \inf x_n \cdot \lim \sup_{n \to \infty} y_n < \lim \sup_{n \to \infty} (x_n y_n) < \lim \sup_{n \to \infty} x_n \cdot \lim \sup_{n \to \infty} y_n.$$

Therefore, the equalities are generally not true.

Problem 5. Prove that

$$\liminf_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} \leqslant \liminf_{n\to\infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n\to\infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n\to\infty} \frac{|x_{n+1}|}{|x_n|}.$$

Give examples to show that the equalities are not true in general. Is it true that $\lim_{n\to\infty} \sqrt[n]{|x_n|}$ exists implies that $\lim_{n\to\infty} \frac{|x_{n+1}|}{|x_n|}$ also exists?

Proof. Let $a = \liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$ and $b = \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}$, and $\varepsilon > 0$ be given. W.L.O.G. we can assume that $a \neq -\infty$ and $b \neq \infty$. Then there exists N > 0 such that

$$a - \varepsilon < \frac{|x_{n+1}|}{|x_n|} < b + \varepsilon \qquad \forall \, n \geqslant N \,.$$

Therefore,

$$(a-\varepsilon)|x_n| < |x_{n+1}| < (b+\varepsilon)|x_n| \qquad \forall n \geqslant N$$

which implies that if n > N,

$$|x_n| > (a-\varepsilon)|x_{n-1}| > (a-\varepsilon)^2|x_{n-2}| > \dots > (a-\varepsilon)^{n-N}|x_N|$$

and

$$|x_n| < (b+\varepsilon)|x_{n-1}| < (b+\varepsilon)^2|x_{n-2}| < \dots < (b+\varepsilon)^{n-N}|x_N|.$$

The inequality above implies that

$$(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|} < \sqrt[n]{|x_n|} < (b+\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|};$$

thus

$$\liminf_{n\to\infty}\left[(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}\right]\leqslant \liminf_{n\to\infty}\sqrt[n]{|x_n|}\leqslant \limsup_{n\to\infty}\sqrt[n]{|x_n|}\leqslant \limsup_{n\to\infty}\left[(b+\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}\right].$$

By Problem 4 of Exercise 1, $\lim_{n\to\infty} b^{\frac{1}{n}} = 1$ for all b>0. Therefore,

$$\liminf_{n\to\infty}\left[(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}\right]=\lim_{n\to\infty}(a-\varepsilon)^{1-\frac{N}{n}}\sqrt[n]{|x_N|}=a-\varepsilon=\liminf_{n\to\infty}\frac{|x_{n+1}|}{|x_n|}-\varepsilon$$

and

$$\limsup_{n\to\infty} \left[(b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} \right] = \lim_{n\to\infty} (b+\varepsilon)^{1-\frac{N}{n}} \sqrt[n]{|x_N|} = b + \varepsilon = \limsup_{n\to\infty} \frac{|x_{n+1}|}{|x_n|} + \varepsilon.$$

Since the inequality above holds for all $\varepsilon > 0$, we conclude that

$$\liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} \leqslant \liminf_{n \to \infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n \to \infty} \sqrt[n]{|x_n|} \leqslant \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|}.$$

Let $\{x_n\}_{n=1}^{\infty}$ be a real sequence defined by

$$x_n = \begin{cases} 2^{-n} & \text{if } n \text{ is odd,} \\ 4^{-n} & \text{if } n \text{ is even,} \end{cases}$$

or $x_n = (3 + (-1)^n)^{-n}$. Then $\sqrt[n]{|x_n|} = 3 + (-1)^n$ which shows that

$$\liminf_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{4} \quad \text{and} \quad \limsup_{n \to \infty} \sqrt[n]{|x_n|} = \frac{1}{2}.$$

To compute the limit superior and limit inferior of $\frac{|x_{n+1}|}{|x_n|}$, we define

$$y_n = \frac{|x_{n+1}|}{|x_n|} = \frac{(3 + (-1)^{n+1})^{-n-1}}{(3 + (-1)^n)^{-n}} = \frac{1}{3 - (-1)^n} \left(\frac{3 - (-1)^n}{3 + (-1)^n}\right)^{-n}$$

and observe that $\lim_{n\to\infty} y_{2n} = 0$ and $\lim_{n\to\infty} y_{2n+1} = \infty$. Since $y_n \in [0,\infty)$, we conclude that 0 is the smallest cluster point of $\{y_n\}_{n=1}^{\infty}$ and ∞ is the largest "cluster point" of $\{y_n\}_{n=1}^{\infty}$. This shows that

$$\liminf_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = 0 \quad \text{and} \quad \limsup_{n \to \infty} \frac{|x_{n+1}|}{|x_n|} = \infty.$$