Exercise Problem Sets 5

Oct. 23. 2020
Problem 1. Complete the following.
1. Show that the p-norm on Euclidean space R™ given by
n 1
<Z|xi|p)p ifl1<p<owo,
HprE i=1 Tr = (:)31,'-- 7$n)
max{|x1|,-~~ ,|$n|} if p=o0,
is indeed a norm on R™.

2. Show that for each 1 < p,qg <o and p # ¢, || - ||, and | - || are equivalent norms.

Proof. 1. It suffices to show that | - |, satisfies the triangle inequality, and the case of p = 1 and
p = 0 is left to the readers. First we prove Holder’s inequality: for 1 < p < oo,

Yt < (Llnr)" (Rar) "

Let A= ( > \ai|p>5 and B = ( > ]bz|p%>T It suffices to show that
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By Young’s inequality ab < —a? + D= 2p5 for all a,b >0, we find that
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Having established Holder’s inequality, we find that
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< [i(|xi+yi|P—1)*]T(§]!xilp);+[i (Ji +gsl"™")? ] (Z'yz )
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(Z |2; + y#’) (=l + lyl) = =+ ylp " (12l + lyls) -
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Therefore, |+ y||, < ||, + |y,



2. It suffices to show that every p-norm is equivalent to the co-norm since if so, then for all
1 < p,q < w0 there exist C, Cy, C5, Cy such that

Cilzlp < |zl < Collz], and  Csfzly < |l2fe < Culz],  VazeR".
Therefore,
Ch Cs
al!w\lp < [zfy < C. = lzl, VzeR".

Now we show that each p-norm is equivalent to the co-norm. Note that
o). < lal, V1<p<oo.

On the other hand,

n ! n !
Il = (Zyxirp)" < (Z;rwuz;)p < 5|zl
Therefore,
nolal, <[l < o], VYeeR"andl<p<w. c
Problem 2. Complete the following.
1. For f € €([a,b];R), define

J| ]pdx if 1 <p< oo,
11> =

max‘f ‘ if p=o0.

z€a,b]

Show that | - ||, is a norm on €([a, b]; R).

2. Are |- |, and | - |, equivalent norms on €([a, b]; R) for any 1 < p, ¢ < 07

Proof. 1. For a continuous function h : [a,b] — R,

b —a\b—a
Jh()dx—hmZh a+i ) :

a n—0o0 n n

b— .
a) and g(a +1 a), respectively, we have

T = 0 at i [ (S )],

Therefore, with ¢; and d; denoting f (a + ib —

\|f+gup—hm(2\f+g(a+zb °)

and similarly,

=0t i[5 (S 1e)"] ol = 0 i[5 (S 1) ]

By Minkowski’s inequality in Problem 1,

n 1 n 1 n 1
w7 (Nle+ i) <05 (Nlel)” + 07 (Y1)’
=1 =1 =1

thus the desired conclusion follows from passing to the limit as n — oo.



2. The 1-norm and the co-norm are not equivalent. For each n € N, consider the function f, :
[0,1] — R defined by

Y

SN

—nr+n if0<z<
fn(x):{

0 otherwise.

Then |fuls = % but | fa]ls = n. Therefore,

Il _
17l

which does not belong to any given bounded interval [Cy, C5] when n is large. In fact, any

p-norm and g-norm cannot be equivalent since for every n > 0 one can also find a function

f:10,1] — R such that |[f|, =1 and |f|, >nif p <gq. D
Problem 3. Let M, ., be the collection of all n x m real matrices. Define a function | - |,, :
M, m — R by

[Alpg = sup [[Az,.
]l =1
here we recall that | - |, is the p-norm on Euclidean space. If p = ¢, we simply use ||A|, to denote

| Al Complete the following.

A
pg = SUp A=l for all p,q > 1.

z#£0 H$Hp

2. Show that |A[,, = inf {M € R||Az|, < M|z|, V& ecR™}.

—_

. Show that || A]

3. [Az], < A

|p,q||pr for all £ € R™.

4. Let {Ar}2; € Myuxm, and p,q = 1 be given. Show that klim |Akllp.q = 0 if and only if each
—00
(k)

ij Lsign,lsjsm’

lim || Ay, = 0 if and only if lim a” =0forall 1 <i<m,1<j<n.
—00 —00

entry of A; converges to 0. In other words, by writing Ay = [a show that
j

Proof. 1. If & # 0, then y = ——— satisfies that |lyl, = 1; thus if & # 0,

(g
|Az]
t = [Ayl, < sup |Az]g = |4,
=] Jellp=1
A
Therefore, sup | Az], A .q-

T#0 Hme h
On the other hand, if ||z|, = 1, then x # 0; thus if ||z|, = 1,

A A
_ 4z, _ Az,

| Az, = .
! (e[ T a0 |,
A
Therefore, |A|,, = sup |Az|, < sup I 33Hq‘
Jfp=1 a0 []p

2. 2 follows from Problem 3 in Exercise 2.



| Az

[

3. By 1, < ||A|p,, for all & # 0 or equivalently,
Azl < [Allpglel, — Va#0.

Since the inequality above also holds for = 0, we conclude that

| Azl <

Ve R™.

4. Let B = [b;;] € Myxm, and |bge| =  max_  |b;;]; that is, the maximum of the absolute value
I<i<n,l<j<m

of entries of B occurs at the (k, ¢)-entry. Let e, be the unit vector whose ¢-th component is 1.

Since Bey is the /-th column of B, for 1 <t <nand 1 <j <m,
1bij| < |bre| < [Bedllq < [ Bllpglecly = [Bllpq
thus
|bz‘j|<HBHp,q Vléién,léjgm. (*)

B
On the other hand, there exists € R™ such that ||z||, = 1 and |Bz|, > |JM. Therefore, if
1<q< oo,

[Blpq 2 < |Bz|, = (é’i ”:I:J’) [; (ji’biﬂ)q];gm[i}(%iwiﬂ)qf

while if ¢ = o

< ||Bz| = max
1<isn

[Blpg _
2
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In either cases, we conclude that

< flbul; [baal, - - [baml) ()

for some function f of nm variables satisfying that f(y) — 0 as y — 0.

(=) Using (x), we find that for each 1 <i<nand 1 <j<m,

k
0< ‘az(j) < | Aklpq

Since klim | Ak|lp.g = 0, by the Sandwich Lemma we conclude that
—00

khm‘a ‘:0 Vi<i<n1l<j<m.
—00

uppose that lim |a =0 for a <i<n,l<gy<<m. en (¢) implies that
S hl)Oflll 1 < j <m. Then (o) implies th

0< HAICHZLQ < f<|a§];)|’ }a§§)|v T gjr)z ) (0)

for some function f of nm variables satisfying that f(y) — 0 as y — 0. Therefore, the




Sandwich Lemma implies that klim | Akllpg = 0. o
—0

Problem 4. Show that

n n n
”AHl = max {2 |ai1|72 ‘aiZ‘v e 72 |azm‘} .
=1 =1 =1

Hint: Use Problem 4 and 5 of Exercise 2.

Proof. By Problem 5 of Exercise 2,

|zl = sup -y and  [ylo = sup z-y,

[yllo=1 [z]1=1
where x - y denotes the standard inner product of  and y in the Euclidean space. Therefore,
|A|, = sup ||Az|, = sup sup (Az)-y= sup sup z-(ATy),

|1 =1 lzl=1|lylo=1 lzl1=1[ylo=1

and Problem 4 of Exercise further implies that
[Al1 = sup sup (ATy)-z= sup |ATy|s = [AT|w.
lyleo=1 [lz|1=1 lylloo=1

By the fact that the co-norm of an n x m real matrix is the maximum of the sum of the absolute

value of entries of row vectors, we find that

n n n
| Ay = AT ] = max{Z janl, Y Jail, > \am|} . :
i=1 =1 i=1

Alternative proof. Let & = (x1,--- , %) € R™ and |z|; = 1. Then for A = [a;;] € M;,xm, We have
n m m n m n
aal = 3| Nagrs| < XD laullest = 32D haglel = 3l (D)
=1 j=1 i=1j=1 j=li=1 =1 i=1
m n n m n
< Dyl (max Y layl) = (mex D hagl) D5 fesl = (max Y ay ) s
j=1 =1 i=1 Jj=1 i=1

= s Dkl

Therefore, |Al; = sup [|Ax|; < < max > Z @i
m

|21 =1 A
n
On the other hand, suppose that max Z la;;| = 2 |aik|; that is, the maximum of the sum of
<jsm i=1
absolute value of column entries of A occurs at the k-th column. Let & = (z1, -+ ,x,) € R™ be
defined by
0 ifj#k,
Lj = P
1 ifj=k.
Then .
Jaal = 3| S, o = 2 mr = mae 3l
=1 j=1 =1
thus [|A]; = sup |Az|; > max Z |aij]. o
1<j\m

lfi=1



Problem 5. Let (X, ||-|x), (Y| ]v), (Z,]-]z) be three normed vector spaces such that X,Y < Z
and
|2lz < Clz|x Vee X  and  [y|z <Clyly VyeY.

Define

E={ae Z||a|p = max{|alx, |a]y} < oo}

and

F={acZ||a|r= inf (|z|x+|ylv)<wo}.

zeX,yeY

1. Show that (E,| - |g) is a normed vector space, and £ =X nY.
2. Show that (F,| - |r) is a normed vector space. The space F' is usually denoted by X + Y.

Proof. We note that £, F' < Z, to show that £/ and F' are vector spaces it suffices to show that F

and F' are vector subspaces of Z.

1. The case of E: Let a,be E, and A\ € F. Then

max {|alx, aly} < o:

thus
max {|Aa|x, [Aa|y} = [\ max {|a]x, |a]y} < o= (%)
which shows that
AaeFE VieFand ae F. (0)
Moreover,
la+blx <la|x +|bly and  [a+bly <|a]x +[b]y

which implies that

max {a +b]x, |a+ bly} < max {|a]x + b, |aly + [ b]y}

< max{|a|x, |a]y} +max {|b]x, [y} < .

Therefore,
a+bekFk Va, be E. (00)

Combining (¢) and (¢¢), we conclude that
Aa+pube B VA\ueF a be E;
thus Lemma 2.9 shows that E is a subspace of Z.
2. The case of F: Let a,be F and A € F. Then there exists 1, 2 € X, y,;,y, € Y such that

a=x+y, and  @|x +[yly < fafr+1,

b=z, +y, and |22l x + |ysly < [b]F+1.



Therefore,
Na=Jay+ Ay, and [Aailx + Dy = A (lealx + loly) < A(lal +1) <o

which implies that
AaeF VieFand ac F.
Moreover, with  and y denoting x; + 2 and y, + y,, respectively, we find that z e X, ye Y,
a+b=x+ yand
lzlx + [yl < lox + [2lx + [yl + lwaly <lalr+]blr+2 < 0.

This implies that
at+bel Va,be F.

Similar to the case of E, by Lemma 2.9 we conclude that F'is a subspace of Z.

Next we show that |- |z and |- |z defined in the problem are indeed norms on E and F, respectively.
It is clear that || - |z and | - | F satisfy Property (a) in the definition of the norm vector space, so we

only prove Property (b)-(d).
1. The case of L

(b) By the definition of | - ||,
la =0 < max {|alx. [aly} = 0= [alx = |a]y =0 = a=0.

(c) Let A€ F and a € E be given. Then (x) implies that |Aa|g = ||| a| -
(d) Let a,be E. Then (xx) implies that |a+ b|g < ||a|z + | b &

Finally, a € F if and only if |al|x < o and |ally < oo; thus @ € F if and only if @ € X and
a €Y. This shows that £ = X nY.

2. The case of F:

(b) Since 0 =0+ 0,
0lr = it Jalx + lyly < [0]x + 0]y = 0.

zeX,yeY
Suppose that |a|r = 0. For each n € N, there exists x, € X and y, € Y such that

a=zx,+y, and
1
[2nlx + yaly <~
n

The inequality above implies that , — 0 and y,, — 0 as n — c0; thus

a=lim(z,+y,) =0.

n—o0



(c) Let AeF, ae E, and € > 0 be given. W.L.O.G. we can assume that A # 0. Then there
exists ¢; € X and y, € Y such that

1
a=xz+y,  and @i lx +|yly <laefr+ e

Then \a = Ax; + \y;, Az € X, Ay, € Y and
[Aalr < [Azi]x + [Ayilly = [A([2:]x + [9ly) <[Malr +e.

Since € > 0 is given arbitrarily, we find that

Aa|r < |N||a]r VAeFand ae F.

On the other hand, by the fact that Aa € F', there exists & € X, y, € Y such that
Aa=mz+y, and [Aa|p < |@:|x + [yly +[Ae.

Then a = A tzy + A ty,, Aty € X, A‘lyg eY, and

1
lalr < A z2lx + A gy = (HfBsz+IlyzHy) HHAaHere-

Al

Since € > 0 is given arbitrarily, we conclude that |a|gr < —|Aa|r. Therefore,

i
|Aa|r = |[N|a|r VAeF,acF.

(d) Let @,be F, and € > 0 be given. There exists @1, x; € X and y,, y, € Y such that

19
a=x +y,|zlx +|ylly <|alr+ bR

£
b=z + Yy, |x|x + [lyally <|b|r+ 3

Let z=x1+ 2 and y=vy;, + y,. Thenze X and ye Y, a+ b=z+ y, and

la+blr < [z|x + [yly <lzilx + |z x + 9]y + lgaly < lalr + [b]r + <.
Since € > 0 is given arbitrarily, we find that
la+blr <la|r+[blr  VabeF. o
Problem 6. Show that if (-, -) is an inner product on a vector space V (over a scalar field F). Then
1. Qv+ pw, uy = Mo, uy + p{w, uy for all u, v, we V.
2. {u, \v + pw) = Mu, v) + filu, w) for all u, v, we V.
3. (v, \w) = Mv, w) for all v, we V.

4. {0, w) = (w,0) =0 for all we V.



Problem 7. Let (M, d) be a metric space. Show that p: M x M — R defined by

d(z,y)
p(r,y) = Hd—(x,y)

is a metric on M.
Proof. Let x,y,ze€ M.
1. Since d(z,y) = 0, we find that p(z,y) = 0.

2. p(z,y) =0 = d(z,y) =0 = z=y.

__dlzy) _ d(y,x)
1+d(z,y) 1+d(y,x)

3. Since d(z,y) = d(y,z), p(z,y) = p(y, ).

4. Let a =d(x,y), b =d(z,2) and ¢ = d(z,y). Since a < b+ ¢, we find that

b c a (b+c+2bc)(14+a)—a(l+b+ c+ be)

ple2) +plzy) = p@y) = g F o T T, T (1+a)(1+b)(1+0)

B b+ c+ 2bc+ ab + ac + 2abc — a — ab — ac — abe
N (1+a)(1+b)(1+c)
B b+ c+ 2bc+ abc — a

= = )

(1+a)(1+0b)(1+c¢)

thus p satisfies the triangle inequality. =
Problem 8. Let d : R? x R? — R be defined by

T — Y if xo =ys,
d(z,y) = 21 3 _ ? ? where = (z1,22) and y = (y1, y2).
|z1 — 1| + |22 —yo| +1 if 29 # yo,

Show that d is a metric on R?.
Proof. Let = (x1,13), y = (y1,v2) and z = (21, 25) in R2
1. Clearly d(zx,y) = 0.
2. dzy) =0 (r2=p)Alt1—pul=0s(2=p)r(T1=y) ==y

3. (a) The case x5 = yo: In this case d(x, y) = |1 — y1| and d(y, ) = |y1 — x1]; thus if 25 = o
then d(x, y) = d(y, ).

(b) The case w3 # yo: In this case
d(z,y) = |lv1 =yl +|o2 =gl + 1 and  d(y, ) = |y — 21| + [y2 — 22| + 1;
thus if x9 # ys then d(x, y) = d(y, x).
In either cases, we have d(z, y) = d(y, ).
4. (a) The case x5 = yo: In this case

d(z,y) = |z1 —y1| < |11 — 21| + |21 — | < d(=, 2) +d(z,9).



(b) The case x5 # yo: In this case zy is different from at least one of the second component
22,1y W.L.O.G. we assume that zo # x5. Then

dz,y) = |1 —y1| + |v2 — | + L < o1 — 21| + |21 — 1| + |22 — 20| + |22 — 42| + 1
= d(fll, Z) + |Zl - y1| + |ZQ - y2‘ < d(il}7 Z) +d(z7 y) .

In either cases, d satisfies the triangle inequality. =



