Problem 1. Complete the following.

1. Show that the p-norm on Euclidean space \mathbb{R}^n given by

$$||x||_p \equiv \begin{cases} \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} & \text{if } 1 \leqslant p < \infty, \\ \max\{|x_1|, \dots, |x_n|\} & \text{if } p = \infty, \end{cases}$$

is indeed a norm on \mathbb{R}^n .

2. Show that for each $1 \leq p, q \leq \infty$ and $p \neq q, \|\cdot\|_p$ and $\|\cdot\|_q$ are equivalent norms.

Proof. 1. It suffices to show that $\|\cdot\|_p$ satisfies the triangle inequality, and the case of p=1 and $p=\infty$ is left to the readers. First we prove Hölder's inequality: for 1 ,

$$\sum_{i=1}^n a_i b_i \leqslant \Big(\sum_{i=1}^n |a_i|^p\Big)^{\frac{1}{p}} \Big(\sum_{i=1}^n |b_i|^{\frac{p}{p-1}}\Big)^{\frac{p-1}{p}} \ .$$

Let $A = \left(\sum_{i=1}^n |a_i|^p\right)^{\frac{1}{p}}$ and $B = \left(\sum_{i=1}^n |b_i|^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}}$. It suffices to show that

$$\sum_{i=1}^{n} \frac{a_i}{A} \frac{b_i}{B} \leqslant 1.$$

By Young's inequality $ab \leq \frac{1}{p}a^p + \frac{p-1}{p}b^{\frac{p}{p-1}}$ for all $a, b \geq 0$, we find that

$$\frac{a_i}{A}\frac{b_i}{B} \leqslant \frac{1}{p} \left(\frac{|a_i|}{A}\right)^p + \frac{p-1}{p} \left(\frac{|b_i|}{B}\right)^{\frac{p}{p-1}};$$

thus

$$\sum_{i=1}^{n} \frac{a_i}{A} \frac{b_i}{B} \leqslant \frac{1}{p} \frac{1}{A^p} \sum_{i=1}^{n} |a_i|^p + \frac{p-1}{p} \frac{1}{B^{\frac{p}{p-1}}} \sum_{i=1}^{n} |b_i|^{\frac{p}{p-1}} = \frac{1}{p} + \frac{p-1}{p} = 1.$$

Having established Hölder's inequality, we find that

$$\begin{aligned} \|\boldsymbol{x} + \boldsymbol{y}\|_{p}^{p} &= \sum_{i=1}^{n} |x_{i} + y_{i}|^{p} \leqslant \sum_{i=1}^{n} |x_{i} + y_{i}|^{p-1} |x_{i}| + \sum_{i=1}^{n} |x_{i} + y_{i}|^{p-1} |y_{i}| \\ &\leqslant \left[\sum_{i=1}^{n} \left(|x_{i} + y_{i}|^{p-1} \right)^{\frac{p}{p-1}} \right]^{\frac{p-1}{p}} \left(\sum_{i=1}^{n} |x_{i}|^{p} \right)^{\frac{1}{p}} + \left[\sum_{i=1}^{n} \left(|x_{i} + y_{i}|^{p-1} \right)^{\frac{p}{p-1}} \right]^{\frac{p-1}{p}} \left(\sum_{i=1}^{n} |y_{i}|^{p} \right)^{\frac{1}{p}} \\ &= \left(\sum_{i=1}^{n} |x_{i} + y_{i}|^{p} \right)^{\frac{p-1}{p}} \left(\|\boldsymbol{x}\|_{p} + \|\boldsymbol{y}\|_{p} \right) = \|\boldsymbol{x} + \boldsymbol{y}\|_{p}^{p-1} \left(\|\boldsymbol{x}\|_{p} + \|\boldsymbol{y}\|_{p} \right). \end{aligned}$$

Therefore, $\|\boldsymbol{x} + \boldsymbol{y}\|_p \leq \|\boldsymbol{x}\|_p + \|\boldsymbol{y}\|_p$.

2. It suffices to show that every p-norm is equivalent to the ∞ -norm since if so, then for all $1 \leq p, q < \infty$ there exist C_1, C_2, C_3, C_4 such that

$$C_1 \|\boldsymbol{x}\|_p \leqslant \|\boldsymbol{x}\|_{\infty} \leqslant C_2 \|\boldsymbol{x}\|_p$$
 and $C_3 \|\boldsymbol{x}\|_q \leqslant \|\boldsymbol{x}\|_{\infty} \leqslant C_4 \|\boldsymbol{x}\|_q$ $\forall \boldsymbol{x} \in \mathbb{R}^n$.

Therefore,

$$\frac{C_1}{C_4} \|\boldsymbol{x}\|_p \leqslant \|\boldsymbol{x}\|_q \leqslant \frac{C_2}{C_3} \|\boldsymbol{x}\|_p \qquad \forall \, \boldsymbol{x} \in \mathbb{R}^n \,.$$

Now we show that each p-norm is equivalent to the ∞ -norm. Note that

$$\|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_{p} \qquad \forall \, 1 \leqslant p \leqslant \infty \,.$$

On the other hand,

$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{\frac{1}{p}} \leqslant \left(\sum_{i=1}^{n} \|\boldsymbol{x}\|_{\infty}^{p}\right)^{\frac{1}{p}} \leqslant n^{\frac{1}{p}} \|\boldsymbol{x}\|_{\infty}.$$

Therefore,

$$n^{-\frac{1}{p}}\|\boldsymbol{x}\|_p \leqslant \|\boldsymbol{x}\|_{\infty} \leqslant \|\boldsymbol{x}\|_p \qquad \forall \, \boldsymbol{x} \in \mathbb{R}^n \text{ and } 1 \leqslant p \leqslant \infty.$$

Problem 2. Complete the following.

1. For $f \in \mathscr{C}([a, b]; \mathbb{R})$, define

$$||f||_p = \begin{cases} \left(\int_a^b |f(x)|^p dx \right)^{\frac{1}{p}} & \text{if } 1 \leq p < \infty, \\ \max_{x \in [a,b]} |f(x)| & \text{if } p = \infty. \end{cases}$$

Show that $\|\cdot\|_p$ is a norm on $\mathscr{C}([a,b];\mathbb{R})$.

2. Are $\|\cdot\|_p$ and $\|\cdot\|_q$ equivalent norms on $\mathscr{C}([a,b];\mathbb{R})$ for any $1 \leq p,q \leq \infty$?

Proof. 1. For a continuous function $h:[a,b] \to \mathbb{R}$,

$$\int_{a}^{b} h(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} h\left(a + i\frac{b-a}{n}\right) \frac{b-a}{n}.$$

Therefore, with c_i and d_i denoting $f(a+i\frac{b-a}{n})$ and $g(a+i\frac{b-a}{n})$, respectively, we have

$$||f + g||_p = \lim_{n \to \infty} \left(\sum_{i=1}^n \left| (f+g) \left(a + i \frac{b-a}{n} \right) \right|^p \frac{b-a}{n} \right)^{\frac{1}{p}} = (b-a)^{\frac{1}{p}} \lim_{n \to \infty} \left[n^{-\frac{1}{p}} \left(\sum_{i=1}^n |c_i + d_i|^p \right)^{\frac{1}{p}} \right],$$

and similarly,

$$||f||_p = (b-a)^{\frac{1}{p}} \lim_{n \to \infty} \left[n^{-\frac{1}{p}} \left(\sum_{i=1}^n |c_i|^p \right)^{\frac{1}{p}} \right], \qquad ||g||_p = (b-a)^{\frac{1}{p}} \lim_{n \to \infty} \left[n^{-\frac{1}{p}} \left(\sum_{i=1}^n |d_i|^p \right)^{\frac{1}{p}} \right].$$

By Minkowski's inequality in Problem 1,

$$n^{-\frac{1}{p}} \left(\sum_{i=1}^{n} |c_i + d_i|^p \right)^{\frac{1}{p}} \leq n^{-\frac{1}{p}} \left(\sum_{i=1}^{n} |c_i|^p \right)^{\frac{1}{p}} + n^{-\frac{1}{p}} \left(\sum_{i=1}^{n} |d_i|^p \right)^{\frac{1}{p}};$$

thus the desired conclusion follows from passing to the limit as $n \to \infty$.

2. The 1-norm and the ∞ -norm are not equivalent. For each $n \in \mathbb{N}$, consider the function $f_n : [0,1] \to \mathbb{R}$ defined by

$$f_n(x) = \begin{cases} -n^2 x + n & \text{if } 0 \leq x \leq \frac{1}{n}, \\ 0 & \text{otherwise.} \end{cases}$$

Then $||f_n||_1 = \frac{1}{2}$ but $||f_n||_{\infty} = n$. Therefore,

$$\frac{\|f_n\|_{\infty}}{\|f_n\|_1} = 2n$$

which does not belong to any given bounded interval $[C_1, C_2]$ when n is large. In fact, any p-norm and q-norm cannot be equivalent since for every n > 0 one can also find a function $f: [0,1] \to \mathbb{R}$ such that $||f||_p = 1$ and $||f||_q > n$ if p < q.

Problem 3. Let $\mathcal{M}_{n\times m}$ be the collection of all $n\times m$ real matrices. Define a function $\|\cdot\|_{p,q}$: $\mathcal{M}_{n\times m}\to\mathbb{R}$ by

$$||A||_{p,q} = \sup_{\|\boldsymbol{x}\|_p = 1} ||A\boldsymbol{x}||_q$$
.

here we recall that $\|\cdot\|_p$ is the *p*-norm on Euclidean space. If p=q, we simply use $\|A\|_p$ to denote $\|A\|_{p,q}$. Complete the following.

- 1. Show that $||A||_{p,q} = \sup_{x \neq 0} \frac{||Ax||_q}{||x||_p}$ for all $p, q \ge 1$.
- 2. Show that $||A||_{p,q} = \inf \{ M \in \mathbb{R} \mid ||A\boldsymbol{x}||_q \leqslant M ||\boldsymbol{x}||_p \ \forall \ \boldsymbol{x} \in \mathbb{R}^m \}.$
- 3. $||A\boldsymbol{x}||_q \leq ||A||_{p,q} ||\boldsymbol{x}||_p$ for all $\boldsymbol{x} \in \mathbb{R}^m$.
- 4. Let $\{A_k\}_{k=1}^{\infty} \subseteq \mathcal{M}_{n \times m}$, and $p, q \ge 1$ be given. Show that $\lim_{k \to \infty} \|A_k\|_{p,q} = 0$ if and only if each entry of A_k converges to 0. In other words, by writing $A_k = \left[a_{ij}^{(k)}\right]_{1 \le i \le n, 1 \le j \le m}$, show that $\lim_{k \to \infty} \|A_k\|_{p,q} = 0$ if and only if $\lim_{k \to \infty} a_{ij}^{(k)} = 0$ for all $1 \le i \le m, 1 \le j \le n$.

Proof. 1. If $x \neq 0$, then $y = \frac{x}{\|x\|_p}$ satisfies that $\|y\|_p = 1$; thus if $x \neq 0$,

$$\frac{\|A\boldsymbol{x}\|_q}{\|\boldsymbol{x}\|_p} = \|A\boldsymbol{y}\|_q \leqslant \sup_{\|\boldsymbol{x}\|_p = 1} \|A\boldsymbol{x}\|_q = \|A\|_{p,q}.$$

Therefore, $\sup_{\boldsymbol{x}\neq\boldsymbol{0}}\frac{\|A\boldsymbol{x}\|_q}{\|\boldsymbol{x}\|_p}\leqslant \|A\|_{p,q}.$

On the other hand, if $\|\boldsymbol{x}\|_p = 1$, then $\boldsymbol{x} \neq \boldsymbol{0}$; thus if $\|\boldsymbol{x}\|_p = 1$,

$$||Ax||_q = \frac{||Ax||_q}{||x||_p} \le \sup_{x \ne 0} \frac{||Ax||_q}{||x||_p}.$$

Therefore, $||A||_{p,q} = \sup_{\|\pmb{x}\|_p = 1} ||A\pmb{x}||_q \leqslant \sup_{\pmb{x} \neq \pmb{0}} \frac{||A\pmb{x}||_q}{\|\pmb{x}\|_p}.$

2. 2 follows from Problem 3 in Exercise 2.

3. By 1, $\frac{\|A\boldsymbol{x}\|_q}{\|\boldsymbol{x}\|_p} \leq \|A\|_{p,q}$ for all $\boldsymbol{x} \neq \boldsymbol{0}$ or equivalently,

$$||A\boldsymbol{x}||_q \leqslant ||A||_{p,q} ||\boldsymbol{x}||_p \qquad \forall \, \boldsymbol{x} \neq \boldsymbol{0}$$

Since the inequality above also holds for x = 0, we conclude that

$$||A\boldsymbol{x}||_q \leqslant ||A||_{p,q} ||\boldsymbol{x}||_p \qquad \forall \, \boldsymbol{x} \in \mathbb{R}^m.$$

4. Let $B = [b_{ij}] \in M_{n \times m}$, and $|b_{k\ell}| = \max_{1 \le i \le n, 1 \le j \le m} |b_{ij}|$; that is, the maximum of the absolute value of entries of B occurs at the (k, ℓ) -entry. Let \mathbf{e}_{ℓ} be the unit vector whose ℓ -th component is 1. Since $B\mathbf{e}_{\ell}$ is the ℓ -th column of B, for $1 \le i \le n$ and $1 \le j \le m$,

$$|b_{ij}| \leq |b_{k\ell}| \leq ||Be_{\ell}||_q \leq ||B||_{p,q} ||e_{\ell}||_p = ||B||_{p,q};$$

thus

$$|b_{ij}| \leqslant ||B||_{p,q} \qquad \forall \, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m \,. \tag{*}$$

On the other hand, there exists $\boldsymbol{x} \in \mathbb{R}^m$ such that $\|\boldsymbol{x}\|_p = 1$ and $\|\boldsymbol{B}\boldsymbol{x}\|_q \geqslant \frac{\|\boldsymbol{B}\|_{p,q}}{2}$. Therefore, if $1 \leqslant q < \infty$,

$$\frac{\|B\|_{p,q}}{2} \leqslant \|B\boldsymbol{x}\|_{q} = \left(\sum_{i=1}^{n} \left|\sum_{j=1}^{m} b_{ij} x_{j}\right|^{q}\right)^{\frac{1}{q}} \leqslant \left[\sum_{i=1}^{n} \left(\sum_{j=1}^{m} |b_{ij}|\right)^{q}\right]^{\frac{1}{q}} \leqslant m \left[\sum_{i=1}^{n} \left(\frac{1}{m} \sum_{j=1}^{m} |b_{ij}|\right)^{q}\right]^{\frac{1}{q}}$$
$$\leqslant m \left(\sum_{i=1}^{n} \frac{1}{m} \sum_{j=1}^{m} |b_{ij}|^{q}\right)^{\frac{1}{q}} \leqslant m^{1-\frac{1}{q}} \left(\sum_{i=1}^{n} \sum_{j=1}^{m} |b_{ij}|^{q}\right)^{\frac{1}{q}} \leqslant m \left(\sum_{i=1}^{n} \sum_{j=1}^{m} |b_{ij}|^{q}\right)^{\frac{1}{q}},$$

while if $q = \infty$,

$$\frac{\|B\|_{p,q}}{2} \leqslant \|B\boldsymbol{x}\|_{\infty} = \max_{1 \leqslant i \leqslant n} \left| \sum_{j=1}^{m} b_{ij} x_{j} \right| \leqslant \max_{1 \leqslant i \leqslant n} \sum_{j=1}^{m} |b_{ij}| \leqslant \sum_{i=1}^{n} \sum_{j=1}^{m} |b_{ij}|.$$

In either cases, we conclude that

$$||B||_{p,q} \le f(|b_{11}|, |b_{12}|, \cdots, |b_{nm}|)$$
 (\$\displaystyle{\displaystyle}

for some function f of nm variables satisfying that $f(y) \to 0$ as $y \to 0$.

(⇒) Using (★), we find that for each $1 \le i \le n$ and $1 \le j \le m$,

$$0 \leqslant \left| a_{ij}^{(k)} \right| \leqslant \|A_k\|_{p,q} \,.$$

Since $\lim_{k\to\infty} ||A_k||_{p,q} = 0$, by the Sandwich Lemma we conclude that

$$\lim_{k \to \infty} |a_{ij}^{(k)}| = 0 \qquad \forall \, 1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m \,.$$

 (\Leftarrow) Suppose that $\lim_{k\to\infty} |a_{ij}^{(k)}| = 0$ for all $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$. Then (\diamond) implies that

$$0 \leqslant ||A_k||_{p,q} \leqslant f(|a_{11}^{(k)}|, |a_{12}^{(k)}|, \cdots, |a_{nm}^{(k)}|) \tag{\diamond}$$

for some function f of nm variables satisfying that $f(y) \to 0$ as $y \to 0$. Therefore, the

Problem 4. Show that

$$||A||_1 = \max \left\{ \sum_{i=1}^n |a_{i1}|, \sum_{i=1}^n |a_{i2}|, \cdots, \sum_{i=1}^n |a_{im}| \right\}.$$

Hint: Use Problem 4 and 5 of Exercise 2.

Proof. By Problem 5 of Exercise 2,

$$\|\boldsymbol{x}\|_1 = \sup_{\|\boldsymbol{y}\|_{\infty}=1} \boldsymbol{x} \cdot \boldsymbol{y}$$
 and $\|\boldsymbol{y}\|_{\infty} = \sup_{\|\boldsymbol{x}\|_1=1} \boldsymbol{x} \cdot \boldsymbol{y}$,

where $x \cdot y$ denotes the standard inner product of x and y in the Euclidean space. Therefore,

$$||A||_1 = \sup_{\|\boldsymbol{x}\|_1=1} ||A\boldsymbol{x}||_1 = \sup_{\|\boldsymbol{x}\|=1} \sup_{\|\boldsymbol{y}\|_{\infty}=1} (A\boldsymbol{x}) \cdot \boldsymbol{y} = \sup_{\|\boldsymbol{x}\|_1=1} \sup_{\|\boldsymbol{y}\|_{\infty}=1} \boldsymbol{x} \cdot (A^{\mathrm{T}}\boldsymbol{y}),$$

and Problem 4 of Exercise further implies that

$$||A||_1 = \sup_{\|{\pmb y}\|_{\infty}=1} \sup_{\|{\pmb x}\|_1=1} (A^{\mathrm{T}}{\pmb y}) \cdot {\pmb x} = \sup_{\|{\pmb y}\|_{\infty}=1} ||A^{\mathrm{T}}{\pmb y}||_{\infty} = ||A^{\mathrm{T}}||_{\infty}.$$

By the fact that the ∞ -norm of an $n \times m$ real matrix is the maximum of the sum of the absolute value of entries of row vectors, we find that

$$||A||_1 = ||A^{\mathrm{T}}||_{\infty} = \max \left\{ \sum_{i=1}^n |a_{i1}|, \sum_{i=1}^n |a_{i2}|, \cdots, \sum_{i=1}^n |a_{im}| \right\}.$$

Alternative proof. Let $\mathbf{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$ and $\|\mathbf{x}\|_1 = 1$. Then for $A = [a_{ij}] \in \mathcal{M}_{n \times m}$, we have

$$||A\mathbf{x}||_{1} = \sum_{i=1}^{n} \left| \sum_{j=1}^{m} a_{ij} x_{j} \right| \leq \sum_{i=1}^{n} \sum_{j=1}^{m} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} \sum_{i=1}^{n} |a_{ij}| |x_{j}| = \sum_{j=1}^{m} |x_{j}| \left(\sum_{i=1}^{n} |a_{ij}| \right)$$

$$\leq \sum_{j=1}^{m} |x_{j}| \left(\max_{1 \leq j \leq m} \sum_{i=1}^{n} |a_{ij}| \right) = \left(\max_{1 \leq j \leq m} \sum_{i=1}^{n} |a_{ij}| \right) \sum_{j=1}^{m} |x_{j}| = \left(\max_{1 \leq j \leq m} \sum_{i=1}^{n} |a_{ij}| \right) ||\mathbf{x}||_{1}$$

$$= \max_{1 \leq j \leq m} \sum_{i=1}^{n} |a_{ij}|.$$

Therefore, $||A||_1 = \sup_{\|\boldsymbol{x}\|_1 = 1} ||A\boldsymbol{x}||_1 \le \max_{1 \le j \le m} \sum_{i=1}^n |a_{ij}|.$

On the other hand, suppose that $\max_{1 \le j \le m} \sum_{i=1}^{n} |a_{ij}| = \sum_{i=1}^{n} |a_{ik}|$; that is, the maximum of the sum of absolute value of column entries of A occurs at the k-th column. Let $\boldsymbol{x} = (x_1, \dots, x_m) \in \mathbb{R}^m$ be defined by

$$x_j = \begin{cases} 0 & \text{if } j \neq k, \\ 1 & \text{if } j = k. \end{cases}$$

Then

$$||A\boldsymbol{x}||_1 = \sum_{i=1}^n \left| \sum_{j=1}^m a_{ij} x_j \right| = \sum_{i=1}^n |a_{ik}| = \max_{1 \le j \le m} \sum_{i=1}^n |a_{ij}|;$$

thus
$$||A||_1 = \sup_{\|\boldsymbol{x}\|_1 = 1} ||A\boldsymbol{x}||_1 \geqslant \max_{1 \leqslant j \leqslant m} \sum_{i=1}^n |a_{ij}|.$$

Problem 5. Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$, $(Z, \|\cdot\|_Z)$ be three normed vector spaces such that $X, Y \subseteq Z$ and

$$\|\boldsymbol{x}\|_{Z} \leqslant C \|\boldsymbol{x}\|_{X} \quad \forall \, \boldsymbol{x} \in X \quad \text{and} \quad \|\boldsymbol{y}\|_{Z} \leqslant C \|\boldsymbol{y}\|_{Y} \quad \forall \, \boldsymbol{y} \in Y.$$

Define

$$E = \{ a \in Z \mid ||a||_E \equiv \max\{||a||_X, ||a||_Y\} < \infty \}$$

and

$$F = \left\{ \boldsymbol{a} \in Z \, \middle| \, \|\boldsymbol{a}\|_F \equiv \inf_{\substack{\boldsymbol{a} = \boldsymbol{x} + \boldsymbol{y} \\ \boldsymbol{x} \in X, \boldsymbol{y} \in Y}} \left(\|\boldsymbol{x}\|_X + \|\boldsymbol{y}\|_Y \right) < \infty \right\}.$$

- 1. Show that $(E, \|\cdot\|_E)$ is a normed vector space, and $E = X \cap Y$.
- 2. Show that $(F, \|\cdot\|_F)$ is a normed vector space. The space F is usually denoted by X + Y.

Proof. We note that $E, F \subseteq Z$, to show that E and F are vector spaces it suffices to show that E and F are vector subspaces of Z.

1. The case of E: Let $\boldsymbol{a}, \boldsymbol{b} \in E$, and $\lambda \in \mathbb{F}$. Then

$$\max\left\{\|\boldsymbol{a}\|_{X},\|\boldsymbol{a}\|_{Y}\right\}<\infty;$$

thus

$$\max \{\|\lambda \boldsymbol{a}\|_{X}, \|\lambda \boldsymbol{a}\|_{Y}\} = |\lambda| \max \{\|\boldsymbol{a}\|_{X}, \|\boldsymbol{a}\|_{Y}\} < \infty \tag{*}$$

which shows that

$$\lambda \boldsymbol{a} \in E \qquad \forall \lambda \in \mathbb{F} \text{ and } \boldsymbol{a} \in E.$$
 (\$\displaystyle{\displaystyle{\displaystyle{A}}}

Moreover,

$$\|a + b\|_X \le \|a\|_X + \|b\|_Y$$
 and $\|a + b\|_Y \le \|a\|_X + \|b\|_Y$

which implies that

$$\max \{ \|\boldsymbol{a} + b\|_{X}, \|\boldsymbol{a} + \boldsymbol{b}\|_{Y} \} \leq \max \{ \|\boldsymbol{a}\|_{X} + \|\boldsymbol{b}\|_{X}, \|\boldsymbol{a}\|_{Y} + \|\boldsymbol{b}\|_{Y} \}$$

$$\leq \max\{ \|\boldsymbol{a}\|_{X}, \|\boldsymbol{a}\|_{Y} \} + \max\{ \|\boldsymbol{b}\|_{X}, \|\boldsymbol{b}\|_{Y} \} < \infty.$$
(**)

Therefore,

$$\mathbf{a} + \mathbf{b} \in E \qquad \forall \mathbf{a}, \mathbf{b} \in E.$$
 (\$\displies)

Combining (\diamond) and $(\diamond\diamond)$, we conclude that

$$\lambda \boldsymbol{a} + \mu \boldsymbol{b} \in E \qquad \forall \lambda, \mu \in \mathbb{F}, \boldsymbol{a}, \boldsymbol{b} \in E;$$

thus Lemma 2.9 shows that E is a subspace of Z.

2. The case of F: Let $\boldsymbol{a}, \boldsymbol{b} \in F$ and $\lambda \in \mathbb{F}$. Then there exists $\boldsymbol{x}_1, \boldsymbol{x}_2 \in X, \boldsymbol{y}_1, \boldsymbol{y}_2 \in Y$ such that

$$egin{aligned} m{a} &= m{x}_1 + m{y}_1 & \quad ext{and} & \quad \|m{x}_1\|_X + \|m{y}_1\|_Y \leqslant \|m{a}\|_F + 1 \,, \\ m{b} &= m{x}_2 + m{y}_2 & \quad ext{and} & \quad \|m{x}_2\|_X + \|m{y}_2\|_Y \leqslant \|m{b}\|_F + 1 \,. \end{aligned}$$

Therefore,

$$\lambda \boldsymbol{a} = \lambda \boldsymbol{x}_1 + \lambda \boldsymbol{y}_1$$
 and $\|\lambda \boldsymbol{x}_1\|_X + \|\lambda \boldsymbol{y}_1\|_Y = |\lambda|(\|\boldsymbol{x}_1\|_X + \|\boldsymbol{y}_1\|_Y) < \lambda(\|\boldsymbol{a}\| + 1) < \infty$

which implies that

$$\lambda \boldsymbol{a} \in F \qquad \forall \lambda \in \mathbb{F} \text{ and } \boldsymbol{a} \in F.$$

Moreover, with \boldsymbol{x} and \boldsymbol{y} denoting $\boldsymbol{x}_1 + \boldsymbol{x}_2$ and $\boldsymbol{y}_1 + \boldsymbol{y}_2$, respectively, we find that $\boldsymbol{x} \in X$, $\boldsymbol{y} \in Y$, $\boldsymbol{a} + \boldsymbol{b} = \boldsymbol{x} + \boldsymbol{y}$ and

$$\|\boldsymbol{x}\|_{X} + \|\boldsymbol{y}\|_{Y} \leq \|\boldsymbol{x}_{1}\|_{X} + \|\boldsymbol{x}_{2}\|_{X} + \|\boldsymbol{y}_{1}\|_{Y} + \|\boldsymbol{y}_{2}\|_{Y} < \|\boldsymbol{a}\|_{F} + \|\boldsymbol{b}\|_{F} + 2 < \infty.$$

This implies that

$$a + b \in F \qquad \forall a, b \in F.$$

Similar to the case of E, by Lemma 2.9 we conclude that F is a subspace of Z.

Next we show that $\|\cdot\|_E$ and $\|\cdot\|_F$ defined in the problem are indeed norms on E and F, respectively. It is clear that $\|\cdot\|_E$ and $\|\cdot\|_F$ satisfy Property (a) in the definition of the norm vector space, so we only prove Property (b)-(d).

1. The case of E:

(b) By the definition of $\|\cdot\|_E$,

$$\|\boldsymbol{a}\|_{E} = 0 \Leftrightarrow \max\{\|\boldsymbol{a}\|_{X}, \|\boldsymbol{a}\|_{Y}\} = 0 \Leftrightarrow \|\boldsymbol{a}\|_{X} = \|\boldsymbol{a}\|_{Y} = 0 \Leftrightarrow \boldsymbol{a} = \boldsymbol{0}.$$

- (c) Let $\lambda \in \mathbb{F}$ and $\boldsymbol{a} \in E$ be given. Then (\star) implies that $\|\lambda \boldsymbol{a}\|_E = |\lambda| \|\boldsymbol{a}\|_E$.
- (d) Let $\boldsymbol{a}, \boldsymbol{b} \in E$. Then $(\star\star)$ implies that $\|\boldsymbol{a} + \boldsymbol{b}\|_E \leq \|\boldsymbol{a}\|_E + \|\boldsymbol{b}\|_E$.

Finally, $a \in E$ if and only if $||a||_X < \infty$ and $||a||_Y < \infty$; thus $a \in E$ if and only if $a \in X$ and $a \in Y$. This shows that $E = X \cap Y$.

2. The case of F:

(b) Since 0 = 0 + 0,

$$\|\mathbf{0}\|_F = \inf_{\substack{a=x+y\\x\in X,y\in Y}} \|\mathbf{x}\|_X + \|\mathbf{y}\|_Y \leqslant \|\mathbf{0}\|_X + \|\mathbf{0}\|_Y = 0.$$

Suppose that $\|\boldsymbol{a}\|_F = 0$. For each $n \in \mathbb{N}$, there exists $\boldsymbol{x}_n \in X$ and $\boldsymbol{y}_n \in Y$ such that $\boldsymbol{a} = \boldsymbol{x}_n + \boldsymbol{y}_n$ and

$$\|\boldsymbol{x}_n\|_X + \|\boldsymbol{y}_n\|_Y < \frac{1}{n}$$
.

The inequality above implies that $\boldsymbol{x}_n \to \boldsymbol{0}$ and $\boldsymbol{y}_n \to \boldsymbol{0}$ as $n \to \infty$; thus

$$oldsymbol{a} = \lim_{n o \infty} (oldsymbol{x}_n + oldsymbol{y}_n) = oldsymbol{0}$$
 .

(c) Let $\lambda \in \mathbb{F}$, $\boldsymbol{a} \in E$, and $\varepsilon > 0$ be given. W.L.O.G. we can assume that $\lambda \neq 0$. Then there exists $\boldsymbol{x}_1 \in X$ and $\boldsymbol{y}_1 \in Y$ such that

$$m{a} = m{x}_1 + m{y}_1 \quad \text{and} \quad \|m{x}_1\|_X + \|m{y}_1\|_Y < \|m{a}\|_F + rac{1}{|\lambda|} arepsilon$$

Then $\lambda \boldsymbol{a} = \lambda \boldsymbol{x}_1 + \lambda \boldsymbol{y}_1$, $\lambda \boldsymbol{x}_1 \in X$, $\lambda \boldsymbol{y}_1 \in Y$ and

$$\|\lambda a\|_F \leq \|\lambda x_1\|_X + \|\lambda y_1\|_Y = |\lambda|(\|x_1\|_X + \|y_1\|_Y) < |\lambda|\|a\|_F + \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that

$$\|\lambda \boldsymbol{a}\|_F \leqslant |\lambda| \|\boldsymbol{a}\|_F \qquad \forall \lambda \in \mathbb{F} \text{ and } \boldsymbol{a} \in F.$$

On the other hand, by the fact that $\lambda a \in F$, there exists $x_2 \in X$, $y_2 \in Y$ such that

$$\lambda \boldsymbol{a} = \boldsymbol{x}_2 + \boldsymbol{y}_2$$
 and $\|\lambda \boldsymbol{a}\|_F \leqslant \|\boldsymbol{x}_2\|_X + \|\boldsymbol{y}_2\|_Y + |\lambda|\varepsilon$.

Then $\boldsymbol{a} = \lambda^{-1} \boldsymbol{x}_2 + \lambda^{-1} \boldsymbol{y}_2, \ \lambda^{-1} \boldsymbol{x}_2 \in X, \ \lambda^{-1} \boldsymbol{y}_2 \in Y, \text{ and }$

$$\|\boldsymbol{a}\|_{F} \leq \|\lambda^{-1}\boldsymbol{x}_{2}\|_{X} + \|\lambda^{-1}\boldsymbol{y}_{2}\|_{Y} = \frac{1}{|\lambda|} (\|\boldsymbol{x}_{2}\|_{X} + \|\boldsymbol{y}_{2}\|_{Y}) < \frac{1}{|\lambda|} \|\lambda \boldsymbol{a}\|_{F} + \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we conclude that $\|\boldsymbol{a}\|_{E} \leqslant \frac{1}{|\lambda|} \|\lambda \boldsymbol{a}\|_{F}$. Therefore,

$$\|\lambda \boldsymbol{a}\|_F = |\lambda| \|\boldsymbol{a}\|_F \qquad \forall \lambda \in \mathbb{F}, \boldsymbol{a} \in F.$$

(d) Let $\boldsymbol{a}, \boldsymbol{b} \in F$, and $\varepsilon > 0$ be given. There exists $\boldsymbol{x}_1, \boldsymbol{x}_2 \in X$ and $\boldsymbol{y}_1, \boldsymbol{y}_2 \in Y$ such that

$$egin{aligned} m{a} &= m{x}_1 + m{y}_1 \,, \|m{x}_1\|_X + \|m{y}_1\|_Y < \|m{a}\|_F + rac{arepsilon}{2} \,, \ m{b} &= m{x}_2 + m{y}_2 \,, \|m{x}_2\|_X + \|m{y}_2\|_Y < \|m{b}\|_F + rac{arepsilon}{2} \,. \end{aligned}$$

Let $\boldsymbol{x} = \boldsymbol{x}_1 + \boldsymbol{x}_2$ and $\boldsymbol{y} = \boldsymbol{y}_1 + \boldsymbol{y}_2$. Then $\boldsymbol{x} \in X$ and $\boldsymbol{y} \in Y$, $\boldsymbol{a} + \boldsymbol{b} = \boldsymbol{x} + \boldsymbol{y}$, and

$$\|\boldsymbol{a} + \boldsymbol{b}\|_F \le \|\boldsymbol{x}\|_X + \|\boldsymbol{y}\|_Y \le \|\boldsymbol{x}_1\|_X + \|\boldsymbol{x}_2\|_X + \|\boldsymbol{y}_1\|_Y + \|\boldsymbol{y}_2\|_Y < \|\boldsymbol{a}\|_F + \|\boldsymbol{b}\|_F + \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that

$$\|a + b\|_F \leqslant \|a\|_F + \|b\|_F \qquad \forall a, b \in F.$$

Problem 6. Show that if $\langle \cdot, \cdot \rangle$ is an inner product on a vector space \mathcal{V} (over a scalar field \mathbb{F}). Then

- 1. $\langle \lambda \boldsymbol{v} + \mu \boldsymbol{w}, \boldsymbol{u} \rangle = \lambda \langle \boldsymbol{v}, \boldsymbol{u} \rangle + \mu \langle \boldsymbol{w}, \boldsymbol{u} \rangle$ for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$.
- 2. $\langle \boldsymbol{u}, \lambda \boldsymbol{v} + \mu \boldsymbol{w} \rangle = \overline{\lambda} \langle \boldsymbol{u}, \boldsymbol{v} \rangle + \overline{\mu} \langle \boldsymbol{u}, \boldsymbol{w} \rangle$ for all $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$.
- 3. $\langle \boldsymbol{v}, \lambda \boldsymbol{w} \rangle = \bar{\lambda} \langle \boldsymbol{v}, \boldsymbol{w} \rangle$ for all $\boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$.
- 4. $\langle \mathbf{0}, \mathbf{w} \rangle = \langle \mathbf{w}, \mathbf{0} \rangle = 0$ for all $\mathbf{w} \in \mathcal{V}$.

Problem 7. Let (M,d) be a metric space. Show that $\rho: M \times M \to \mathbb{R}$ defined by

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}$$

is a metric on M.

Proof. Let $x, y, z \in M$.

- 1. Since $d(x,y) \ge 0$, we find that $\rho(x,y) \ge 0$.
- 2. $\rho(x,y) = 0 \Leftrightarrow d(x,y) = 0 \Leftrightarrow x = y$
- 3. Since d(x,y) = d(y,x), $\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)} = \frac{d(y,x)}{1 + d(y,x)} = \rho(y,x)$.
- 4. Let a = d(x, y), b = d(x, z) and c = d(z, y). Since $a \le b + c$, we find that

$$\rho(x,z) + \rho(z,y) - \rho(x,y) = \frac{b}{1+b} + \frac{c}{1+c} - \frac{a}{1+a} = \frac{(b+c+2bc)(1+a) - a(1+b+c+bc)}{(1+a)(1+b)(1+c)}$$

$$= \frac{b+c+2bc+ab+ac+2abc-a-ab-ac-abc}{(1+a)(1+b)(1+c)}$$

$$= \frac{b+c+2bc+abc-a}{(1+a)(1+b)(1+c)} \geqslant 0;$$

thus ρ satisfies the triangle inequality.

Problem 8. Let $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$d(\boldsymbol{x}, \boldsymbol{y}) = \begin{cases} |x_1 - y_1| & \text{if } x_2 = y_2, \\ |x_1 - y_1| + |x_2 - y_2| + 1 & \text{if } x_2 \neq y_2, \end{cases} \text{ where } \boldsymbol{x} = (x_1, x_2) \text{ and } \boldsymbol{y} = (y_1, y_2).$$

Show that d is a metric on \mathbb{R}^2 .

Proof. Let $\mathbf{x} = (x_1, x_2)$, $\mathbf{y} = (y_1, y_2)$ and $\mathbf{z} = (z_1, z_2)$ in \mathbb{R}^2 .

- 1. Clearly $d(\boldsymbol{x}, \boldsymbol{y}) \geq 0$.
- 2. $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow (x_2 = y_2) \land |x_1 y_1| = 0 \Leftrightarrow (x_2 = y_2) \land (x_1 = y_1) \Leftrightarrow \mathbf{x} = \mathbf{y}$.
- 3. (a) The case $x_2 = y_2$: In this case $d(\boldsymbol{x}, \boldsymbol{y}) = |x_1 y_1|$ and $d(\boldsymbol{y}, \boldsymbol{x}) = |y_1 x_1|$; thus if $x_2 = y_2$ then $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$.
 - (b) The case $x_2 \neq y_2$: In this case

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + 1$$
 and $d(\mathbf{y}, \mathbf{x}) = |y_1 - x_1| + |y_2 - x_2| + 1$;

thus if $x_2 \neq y_2$ then $d(\boldsymbol{x}, \boldsymbol{y}) = d(\boldsymbol{y}, \boldsymbol{x})$.

In either cases, we have $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$.

4. (a) The case $x_2 = y_2$: In this case

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| \le |x_1 - z_1| + |z_1 - y_1| \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y}).$$

(b) The case $x_2 \neq y_2$: In this case z_2 is different from at least one of the second component x_2, y_2 . W.L.O.G. we assume that $z_2 \neq x_2$. Then

$$d(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + 1 \le |x_1 - z_1| + |z_1 - y_1| + |x_2 - z_2| + |z_2 - y_2| + 1$$

= $d(\mathbf{x}, \mathbf{z}) + |z_1 - y_1| + |z_2 - y_2| \le d(\mathbf{x}, \mathbf{z}) + d(\mathbf{z}, \mathbf{y})$.

In either cases, d satisfies the triangle inequality.