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Nov. 6. 2020

Problem 1. Show that (C, | ¨ |) is complete.

Proof. Let tznu8
n=1 be a Cauchy sequence in C. Write zn = xn + iyn, where xn and yn are real

numbers. Then

|xn ´ xm| ď |zn ´ zm| and |yn ´ ym| ď |zn ´ zm| @n,m P N .

Therefore, txnu8
n=1 and tynu8

n=1 are Cauchy sequences in R; thus by the completeness of R, lim
nÑ8

xn = x

and lim
nÑ8

yn = y for some x, y P R. Let z = x+ yi. Then

|zn ´ z| =
a

(xn ´ x)2 + (yn ´ y)2 Ñ 0 as n Ñ 8 ;

thus we establish that every Cauchy sequence in C converges to a point in C. This implies that
(C, | ¨ |) is complete. ˝

Problem 2. Let (M,d) be a metric space. Two Cauchy sequences tpnu8
n=1 and tqnu8

n=1 in M are
said to be equivalent, denoted by tpnu8

n=1 „ tqnu8
n=1, if lim

nÑ8
d(pn, qn) = 0.

1. Prove that „ is an equivalence relation; that is, show that

(a) tpnu8
n=1 „ tpnu8

n=1.

(b) If tpnu8
n=1 „ tqnu8

n=1, then tqnu8
n=1 „ tpnu8

n=1.

(c) If tpnu8
n=1 „ tqnu8

n=1 and tqnu8
n=1 „ trnu8

n=1, then tpnu8
n=1 „ trnu8

n=1.

2. Let tpnu8
n=1 and tqnu8

n=1 be two Cauchy sequences. Show that the sequence
␣

d(pn, qn)
(8

n=1
is a

Cauchy sequence in R; thus is convergent.

3. Let M˚ be the set of all equivalence classes. If P,Q P M˚, we define

d˚(P,Q) = lim
nÑ8

d(pn, qn) ,

where tpnu8
n=1 P P and tqnu8

n=1 P Q. Show that the definition above is well-defined; that is, show
that if tp1

nu8
n=1 P P and tq1

nu8
n=1 P Q are another two Cauchy sequences, then lim

nÑ8
d(pn, qn) =

lim
nÑ8

d(p1
n, q

1
n).

4. Define φ : M Ñ M˚ as follows: for each x P M , txnu8
n=1, where xn ” x for all n P N, is a

Cauchy sequence in M . Then txnu8
n=1 P φ(x) for one particular φ(x) P M˚. In other words,

φ(x) is the equivalence class where txnu8
n=1 belongs to. Show that

d˚
(
φ(x), φ(y)

)
= d(x, y) @x, y P M.



5. Show that φ(M) is dense in M˚; that is, for each x P M˚ there exists a sequence txku8
k=1 Ď φ(M)

such that xk Ñ x as k Ñ 8.

6. Show that (M˚, d˚) is a complete metric space. The metric space (M˚, d˚) is called the com-
pletion of (M,d).

Proof. 請自行搜尋 “completion of metric space”。 ˝

Problem 3. Consider the function f(x) =
8
ř

k=1

sin(kx)
k

.

1. Find the domain of f .

2. Show that for each ε ą 0 and 0 ă δ ă π, there exists N ą 0 and N depends only on ε and δ

but is independent of x, such that
ˇ

ˇ

ˇ

n+p
ÿ

k=n

sin(kx)
k

ˇ

ˇ

ˇ
ă ε @n ě N, p ě 0 and x P [δ, 2π ´ δ] .

Proof. Let Sn(x) =
n
ř

k=1

sin(kx).

1. (a) If x = 2nπ for some n P Z (or x = 0 (mod 2π)), then Sn(x) = 0 for all n P N; thus for
each x = 0 (mod 2π), tSn(x)u

8
n=1 is bounded by 1.

(b) If x ‰ 2nπ for all n P Z (or x ‰ 0 (mod 2π)), then

2 sin x

2
Sn(x) =

n
ÿ

k=1

2 sin x

2
sin(kx) =

n
ÿ

k=1

cos
(
k´

1

2

)
x´ cos

(
k+

1

2

)
x = cos x

2
´ cos

(
n+

1

2

)
x

which implies that

ˇ

ˇSn(x)
ˇ

ˇ ď

ˇ

ˇ

ˇ

cos x
2

´ cos
(
n+ 1

2

)
x

2 sin x
2

ˇ

ˇ

ˇ
ď

1
ˇ

ˇ sin x
2

ˇ

ˇ

@x ‰ 0 (mod 2π) .

In either cases, for each x P R there exists M = M(x) P R such that |Sn(x)| ď M . Therefore,
the Dirichlet test

(
with ak = sin(kx) and pk =

1

k

)
implies that f is defined everywhere; thus

the domain of f is R.

2. We mimic the proof of the Dirichlet test. Let ε ą 0 and δ P (0, π) be given. Then csc δ

2
ą 0;

thus the Archimedean property of R implies that there exists N ą
2

ε
csc δ

2
. If n ě N , p ě 0

and x P [δ, 2π ´ δ] (thus x ‰ 0 (mod 2π)), then

ˇ

ˇ

ˇ

n+p
ÿ

k=n

sin(kx)
k

ˇ

ˇ

ˇ
=
ˇ

ˇ

ˇ

n+p
ÿ

k=n

[
Sk+1(x) ´ Sk(x)

]1
k

ˇ

ˇ

ˇ

=
ˇ

ˇ

ˇ
´Sn(x)

1

n
+ Sn+1(x)

( 1
n

´
1

n+ 1

)
+ ¨ ¨ ¨ + Sn+p(x)

( 1

n+ p ´ 1
´

1

n+ p

)
+ Sn+p+1(x)

1

n+ p

ˇ

ˇ

ˇ

ď
1

ˇ

ˇ sin x
2

ˇ

ˇ

[
1

n
+
( 1
n

´
1

n+ 1

)
+ ¨ ¨ ¨ +

( 1

n+ p ´ 1
´

1

n+ p

)
+

1

n+ p

]
=

2

n
ˇ

ˇ sin x
2

ˇ

ˇ

ă
sin δ

2
ˇ

ˇ sin x
2

ˇ

ˇ

ε .



Since x P [δ, 2π ´ δ], sin x
2

attains its minimum at x = δ or 2π ´ δ; thus

0 ă sin δ

2
ď sin x

2
@x P [δ, 2π ´ δ] .

Therefore,
ˇ

ˇ

ˇ

n+p
ÿ

k=n

sin(kx)
k

ˇ

ˇ

ˇ
ă ε whenever n ě N, p ě 0 and x P [δ, 2π ´ δ] . ˝

Problem 4. Let tanu8
n=1 Ď R ba a sequence. A series

8
ř

n=1

bn is said to be a rearrangement of the series
8
ř

n=1

an if there exists a rearrangement π of N; that is, π : N Ñ N is bijective, such that bn = aπ(n).

Show that if
8
ř

n=1

an converges absolutely, then any rearrangement of the series
8
ř

n=1

an converges and

has the value
8
ř

n=1

an.

Proof. Suppose that
8
ř

n=1

an is an absolutely convergent series with limit a, and π : N Ñ N is a
rearrangement of N. Let ε ą 0 be given. Then there exists N ą 0 such that

ˇ

ˇ

ˇ

n
ÿ

k=1

ak ´ a
ˇ

ˇ

ˇ
ă

ε

2
and

8
ÿ

k=n+1

|ak| ă
ε

2
whenever n ě N .

Choose K ą 0 such that π(n) ą N if n ě K. In fact, K = max
␣

π´1(1), ¨ ¨ ¨ , π´1(N)
(

+ 1 suffices
the purpose. Then K ě N and if n ě K, π

(
t1, 2, ¨ ¨ ¨ , nu

)
Ě t1, 2, ¨ ¨ ¨ , Nu. Therefore,

1. if n ě K and p ě 0, we have
n+p
ÿ

k=n

ˇ

ˇaπ(k)
ˇ

ˇ ď

8
ÿ

k=N+1

|ak| ă
ε

2
ă ε

which, by Cauchy’s criterion, shows that
8
ř

k=1

aπ(k) converges absolutely.

2. If n ě K,
ˇ

ˇ

ˇ

n
ÿ

k=1

aπ(k) ´ a
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

n
ÿ

k=1

aπ(k) ´

N
ÿ

k=1

ak

ˇ

ˇ

ˇ
+
ˇ

ˇ

ˇ

N
ÿ

k=1

ak ´ a
ˇ

ˇ

ˇ
ď

8
ÿ

k=N+1

|ak| +
ε

2
ă ε

which implies that
8
ř

n=1

aπ(n) = a. ˝

Problem 5. Determine whether the following series converge or not. Also test for their absolute
convergence.

1.
8
ÿ

n=1

sin(n´α), α ą 0; 2.
8
ÿ

n=1

log(n+ 1) ´ logn
arctan 2

n

; 3.
8
ÿ

n=2

(´1)n
?
n+ (´1)n

;

4.
8
ÿ

n=1

a(a+ 1) ¨ ¨ ¨ (a+ n ´ 1)b(b+ 1) ¨ ¨ ¨ (b+ n ´ 1)

1 ¨ 2 ¨ ¨ ¨n ¨ c(c+ 1) ¨ ¨ ¨ (c+ n ´ 1)
; 5.

8
ÿ

n=1

(´1)n

n+ 1

(
1 +

1

3
+ ¨ ¨ ¨ +

1

2n+ 1

)
.



The a, b, c in (4) are real numbers except negative integers.

Problem 6. Let (M,d) be a metric space.

1. Let A be a non-empty subset of M , and d(:, A) : M Ñ R be defined by

d(x,A) = inf
␣

d(x, y)
ˇ

ˇ y P A
(

Prove or disprove the following inequality

d(x, y) ď d(x,A) + d(y, A) @x, y P M ,A Ď M .

2. For non-empty subsets A,B of M , define d(A,B) = inf
␣

d(a, b)
ˇ

ˇ a P A, b P B
(

. Show that

d(A,B) ď d(x,A) + d(x,B) @x P M .

Note that for subsets A,B,C in M , we do NOT have d(A,B) ď d(A,C) + d(C,B) in general.
Find a counter-example for this inequality.

In Problem 7 through 12, we first introduce the concepts of accumulation points, isolated points
and derived set of a set as follows. Definition. Let (M,d) be a normed vector space, and A be a
subset of M .

1. A point x P M is called an accumulation point of A if there exists a sequence txnu8
n=1 in

Aztxu such that txnu8
n=1 converges to x.

2. A point x P A is called an isolated point (孤立點) (of A) if there exists no sequence in Aztxu

that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted by A1.

Problem 7. Let (M,d) be a metric space, and A be a subset of M .

1. Show that the collection of all isolated points of A is AzA1.

2. Show that A1 = sAz(AzA1). In other words, the derived set consists of all limit points that are
not isolated points. Also show that sAzA1 = AzA1.

Proof. 1. By the definition of isolated points of sets,

x P AzA1 ô x P A and x is not an accumulation point of A
ô x P A and D ε ą 0 Q B(x, ε) X Aztxu = H

ô x P A and D ε ą 0 Q B(x, ε) X A Ď txu

ô D ε ą 0 Q B(x, ε) X A = txu ;

thus x is an isolated point of A if and only if x P AzA1.



2. First we show that sA = A Y A1. To see this, let x P sAzA. By the fact that A = Aztxu, there
exists txnu8

n=1 Ď Aztxu such that lim
nÑ8

xn = x. Therefore, x P A1 which implies that

sAzA Ď A1 Ď sA ,

where we use the fact that sA Ě A1 to conclude the last inclusion. The inclusion relation above
then shows that

sA = A Y sA = A Y ( sAzA) Ď A Y A1 Ď A Y sA = sA ;

thus we establish that sA = A Y A1. This identity further shows that

sA X AA = (A Y A1) X AA = A1 X AA Ď A .

Now, using the identity AzB = A X BA we find that

sAz(AzA1) = sA X
(
A X (A1)A

)A
= sA X (AA Y A1) = ( sA X AA) Y ( sA X A1)

= ( sA X AA) Y A1 = A1 .

Moreover, using sA = A Y A1 we also have

sAzA1 = (A Y A1) X (A1)A = A X (A1)A = AzA1 . ˝

Problem 8. Let A and B be subsets of a metric space (M,d). Show that

1. cl(cl(A)) = cl(A).

2. cl(A Y B) = cl(A) Y cl(B).

3. cl(A X B) Ď cl(A) X cl(B). Find examples of that cl(A X B) Ĺ cl(A) X cl(B).

Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A)) = cl(A).

2. Since A Ď A Y B and B Ď A Y B, we have cl(A) Ď cl(A Y B) and cl(B) Ď cl(A Y B); thus
cl(A) Y cl(B) Ď cl(A Y B). On the other hand, if x P cl(A Y B), there exists a sequence
txnu8

n=1 in AYB such that lim
nÑ8

xn = x. Since AYB contains infinitely many terms of txnu8
n=1,

at least one of A and B contains infinitely many terms of txnu8
n=1. W.L.O.G., suppose that

#
␣

n P N
ˇ

ˇxn P A
(

= 8. Let
␣

n P N
ˇ

ˇxn P A
(

=
␣

nk P N
ˇ

ˇnk ă nk+1

(

.

Then txnk
u8
k=1 P A. Since xn Ñ x as n Ñ 8, we must have xnk

Ñ x as k Ñ 8; thus x P cl(A).
Therefore, cl(A Y B) Ď cl(A) Y cl(B).

3. Let x P cl(A X B). Then
(@ ε ą 0)(B(x, ε) X (A X B) ‰ H) .

Therefore, by the fact that B(x, ε)XA Ď B(x, ε)X(AXB) and B(x, ε)XB Ď B(x, ε)X(AXB),
we have

(@ ε ą 0)(B(x, ε) X A ‰ H) and (@ ε ą 0)(B(x, ε) X B ‰ H) .



This implies that x P sA X sB. Note that if A = Q and B = QA, then cl(A X B) = H while
sA = sB = R which provides an example of cl(A X B) Ĺ sA X sB. ˝

Problem 9. Let A and B be subsets of a metric space (M,d). Show that

1. int(int(A)) = int(A).

2. int(A X B) = int(A) X int(B).

3. int(A Y B) Ě int(A) Y int(B). Find examples of that int(A Y B) Ľ int(A) Y int(B).

Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since AXB Ď A and AXB Ď B, we have int(AXB) Ď int(A) and int(AXB) Ď int(B); thus
int(A X B) Ď int(A) X int(B). On the other hand, let x P int(A) X int(B). Then x P int(A)
and x P int(B); thus there exist r1, r0 ą 0 such that

B(x, r1) Ď A and B(x, r) Ď B .

Let r = mintr1, r2u. Then r ą 0, and B(x, r) Ď B(x, r1) and B(x, r) Ď B(x, r2). Therefore,
B(x, r) Ď A and B(x, r) Ď B which further implies that B(x, r) Ď AXB; thus x P int(AXB).

3. Let x P Å Y B̊. Then x P Å or x P B̊; thus there exists r ą 0 such that B(x, r) Ď A or
B(x, r) Ď B. Therefore, there exists r ą 0 such that B(x, r) Ď A Y B which shows that
int(AYB) Ě int(A)Y int(B). Note that if A = Q and B = QA, then int(AYB) = R while
int(A) = int(B) = H; thus we obtain an example of int(A Y B) Ľ int(A) Y int(B). ˝

Problem 10. Let (M,d) be a metric space, and A be a subset of M . Show that

BA =
(
A X cl(MzA)

)
Y
(
cl(A)zA

)
.

Proof. By the definition of the boundary, BA = sA X ĎAA; thus(
A X cl(MzA)

)
Y
(
cl(A)zA

)
=

(
A X ĎAA

)
Y
(
sA X AA

)
=

[
A Y

(
sA X AA

)]
X
[
ĎAA Y

(
sA X AA

)]
= sA X

[(
ĎAA Y sA

)
X
(
ĎAA Y AA

)]
= sA X

[(
ĎAA Y sA

)
X ĎAA

]
= BA X

(
ĎAA Y sA

)
= BA ,

where the last equality follows from that BA Ď sA and BA Ď ĎAA. ˝

Problem 11. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets
satisfy A Ď S Ď cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T , then A is dense in T .

2. Show that if A is dense in S and B Ď S is open, then B Ď cl(A X B).



Proof. 1. If A is dense in S and if S is dense in T , then A Ď S Ď sA and S Ď T Ď sS. Since S Ď sA,
we must have sS Ď sA; thus

A Ď S Ď T Ď sS Ď sA

which shows that A is dense in T .

2. Let x P B. Since B is open, there exists ε0 ą 0 such that B(x, ε0) Ď B Ď S. On the other
hand, x P S since B is a subset of S; thus the denseness of A in S implies that

(@ ε ą 0)(B(x, ε) X A ‰ H) .

Therefore, for a given ε ą 0, if ε ě ε0, then

B(x, ε) X (A X B) Ě B(x, ε0) X (A X B) = B(x, ε0) X A ‰ H)

while if ε ă ε0, then
B(x, ε) X (A X B) = B(x, ε) X A ‰ H .

This implies that
(@ ε ą 0)(B(x, ε) X (A X B) ‰ H) ;

thus x P cl(A X B). ˝

Problem 12. Let A and B be subsets of a metric space (M,d). Show that

1. B (BA) Ď B (A). Find examples of that B (BA) Ĺ BA. Also show that B (BA) = BA if A is closed.

2. B (A Y B) Ď BA Y BB Ď B (A Y B) Y A Y B. Find examples of that equalities do not hold.

3. If cl(A) X cl(B) = H, then B (A Y B) = BA Y BB.

4. B (A X B) Ď BA Y BB. Find examples of the equalities do not hold.

5. B (B (BA)) = B (BA).

Proof. 1. We note that if F is closed, then

BF = sF X ĎF A = F X ĎF A Ď F . (˛)

Since BF is closed, we must have B (BA) Ď BA. Note that if A = Q X [0, 1], then BA = [0, 1];
thus B (BA) = t0, 1u Ĺ BA. Finally we show that B (BA) = BA if A is closed. Using (˛), it
suffices to show that BA Ď B (BA). Using 2 of Problem 8,

B (BA) = BA X cl((BA)A) = BA X cl(AA Y ĎAA
A
) = BA X

(
ĎAA Y cl(ĎAA

A
)

=
(
BA X ĎAA

)
Y
(
BA X cl(ĎAA

A
)
)

Ě
(
BA X ĎAA

)
= BA .



2. Using 2 and 3 of Problem 8,

B (A Y B) = ĞA Y B X cl
(
(A Y B)A

)
=

(
sA Y sB

)
X cl(AA X BA) Ď

(
sA Y sB

)
X
(
ĎAA X ĎBA

)
=

(
sA X ĎAA X ĎBA

)
Y
(
sB X ĎAA X ĎBA

)
Ď

(
sA X ĎAA

)
Y
(
sB X ĎBA

)
= BA Y BB .

On the other hand, since BA = sAzÅ and Å Ď A, we have
sA Ď A Y BA Ď Å Y ( sAzÅ) = sA

which implies that A Y BA = sA. Therefore,

BA Ď sA Ď ĞA Y B = A Y B Y B (A Y B)

and similarly BB Ď A Y B Y B (A Y B). Therefore,

BA Y BB Ď B (A Y B) Y A Y B .

Note that if A = [´1, 0] Y
(
Q X [0, 1]

)
and B = [´1, 0] Y (QA X [0, 1]), then A Y B = [´1, 1],

BA = BB = t´1u Y [0, 1] which implies that

B (A Y B) = t´1, 1u Ĺ BA Y BB Ĺ A Y B = B (A Y B) Y A Y B .

3. By 2, it suffices to shows that BAYBB Ď B (AYB) if sAX sB = H. Let x P BAYBB. W.L.O.G.,
assume that x P BA. Then x P sA; thus x R sB which further implies that there exists ε0 ą 0

such that B(x, ε0) X B = H or equivalently, B(x, ε0) Ď BA. Therefore, for given r ą 0, if
r ă ε0, then

B(x, r) X (A Y B) Ě B(x, r) X A ‰ H

and
B(x, r) X

(
(A Y B)A

)
= B(x, r) X (AA X BA) = B(x, r) X AA ‰ H

while if r ě ε0, then

B(x, r) X (A Y B) Ď B(x, ε0) X (A Y B) Ě B(x, ε0) X A ‰ H

and
B(x, r) X

(
(A Y B)A

)
Ě B(x, ε0) X (AA X BA) = B(x, ε0) X AA ‰ H .

As a consequence, for each r ą 0,

B(x, r) X (A Y B) ‰ H and B(x, r) X (A Y B)A ;

thus x P ĞA Y B and x P cl
(
(A Y B)A

)
which implies that x P B (A Y B).

4. Using 2 and 3 of Problem 8,

B (A X B) = ĞA X B X cl
(
(A X B)A

)
= ĞA X B X cl(AA Y BA) Ď

(
sA X sB

)
X
(
ĎAA Y ĎBA

)
=

[(
sA X sB

)
X ĎAA

]
Y
[(

sA X sB
)

X ĎBA
]

Ď
(
sA X ĎAA

)
Y
(
sB X ĎBA

)
= BA Y BB .

Note that if A = Q and B = QA, then BA = BB = R but

B (A X B) = H Ĺ R = BA X BB .

5. Since BA is closed, 1 implies that B (B (BA)) = B (BA). ˝


