Exercise Problem Sets 6
Nov. 6. 2020

Problem 1. Show that (C,|-|) is complete.

Proof. Let {z,}>_, be a Cauchy sequence in C. Write z, = x, + iy,, where x, and y, are real

numbers. Then
|Tn — T < |20 — 2] and  |Yn — Y| < |20 — 2l Vn,meN.

Therefore, {x,}_; and {y,}_, are Cauchy sequences in R; thus by the completeness of R, 7}1_1}30 Tp =10

and lim y, =y for some z,y € R. Let 2z = 4+ yi. Then
n—aoo

‘Zn_2|:\/(xn_x)2+(yn_y>2_)0 as n — O]
thus we establish that every Cauchy sequence in C converges to a point in C. This implies that

(C,|-|) is complete. D

Problem 2. Let (M,d) be a metric space. Two Cauchy sequences {p,}r_; and {g,}>, in M are
said to be equivalent, denoted by {p,}’°; ~ {g.};°;, if lim d(p,,q,) = 0.
n—ao0

1. Prove that ~ is an equivalence relation; that is, show that
(@) {pntnzt ~ Apntnis
(b) If {pn}nzy ~ {antniys then {gn}i_; ~ {pa}iiy.
(¢) T {pntizy ~ {annis and {gn}iy ~ {rn}iiy, then {p, 3oy ~ {ra )7

2. Let {p,}°_; and {g,}>_, be two Cauchy sequences. Show that the sequence {d(pn, qn)}Oo is a

n=1

Cauchy sequence in R; thus is convergent.

3. Let M™ be the set of all equivalence classes. If P,Q) € M*, we define
d*(P, Q) = 7}1_1}30 d(pn7 qTL) ’

where {p,}°, € Pand {¢,},~; € Q. Show that the definition above is well-defined; that is, show
that if {p/,}°, € P and {¢,}*_, € Q are another two Cauchy sequences, then lim d(p,,q,) =
n—o0

: / /
lim d(pf,, q7,)-
4. Define ¢ : M — M* as follows: for each x € M, {z,}>_ ,, where x,, = z for all n € N, is a

Cauchy sequence in M. Then {z,}*_; € p(z) for one particular p(z) € M*. In other words,

() is the equivalence class where {z,}°_; belongs to. Show that

d*(p(x),¢(y)) = d(z,y)  Vx,ye M.



5. Show that ¢(M) is dense in M*; that is, for each x € M* there exists a sequence {zx}72, < @(M)

such that x, — = as k — 0.

6. Show that (M*,d*) is a complete metric space. The metric space (M*,d*) is called the com-
pletion of (M, d).
Proof. 3 p 7% “completion of metric space” ° O

in(kx) '

0
Problem 3. Consider the function f(z) = )] :

1. Find the domain of f.

2. Show that for each ¢ > 0 and 0 < § < 7, there exists N > 0 and N depends only on € and ¢
but is independent of x, such that

' sin(kx)
)Z - )<5 ¥n=N,p>0andzels2r— 4.

Proof. Let S,(x) = i sin(kz).
k=1

1. (a) If 2 = 2nn for some n € Z (or = 0 (mod 27)), then S,(x) = 0 for all n € N; thus for
each z = 0 (mod 27), {S,(z)}>_, is bounded by 1.

(b) If & # 2nm for all n € Z (or x # 0 (mod 27)), then

2sin — S 2281n§sm (kx) Zcos ]{;_,) —cos(k‘+ )x-cos%—cos(n#—i)

which implies that

cos%—cos( —|—%) ’< 1

2s1n§

[Sule)] < | Vo #0 (mod 2r).

: X
EH

In either cases, for each x € R there exists M = M (z) € R such that |S,(z)| < M. Therefore,
the Dirichlet test (With ar = sin(kx) and py = %) implies that f is defined everywhere; thus
the domain of f is R.

2. We mimic the proof of the Dirichlet test. Let € > 0 and ¢ € (0,7) be given. Then cscg > 0;

thus the Archimedean property of R implies that there exists N > gcsc Y Ifn>=N,p>=0
and x € [0, 2 — 4] (thus z # 0 (mod 27)), then

1 1
n+p—1 n-+p

)+---+Sn+p($)( )+5n+p+1(95)%p‘
o+ (- )+"'+(n+p—1_n+p)+n+p}:n\siﬂz\<|Sm i
2




Since z € [d, 27 — §], sin § attains its minimum at z = § or 27 — §; thus

J
0 < sin > < sin— Vaeld2r—0].
2 2
Therefore,
- sin(kx)
‘2 ? ‘<5 whenever n > N,p>0and x € [§, 27 — ¢]. o

k=n

Q0
Problem 4. Let {a,} ; < R ba a sequence. A series Y. b, is said to be a rearrangement of the series

n=1
o0

> a, if there exists a rearrangement m of N; that is, 7 : N — N is bijective, such that b, = Ar(n)-

n=1
0¢] o0

Show that if )] a, converges absolutely, then any rearrangement of the series >’ a, converges and
—1 =1
n o n
has the value > a,.
n=1

e}
Proof. Suppose that >} a, is an absolutely convergent series with limit a, and 7 : N — N is a

n=1
rearrangement of N. Let € > 0 be given. Then there exists N > 0 such that

n e¢]
€ €
‘Zak—a‘<§ and Z |ak|<§ whenever n > N.
=1 k=n+1

Choose K > 0 such that w(n) > N if n > K. In fact, K = max {7~ !(1),--- , 7 *(N)} + 1 suffices
the purpose. Then K > N and if n > K, ({1,2, e ,n}) o{1,2,--- 7N}. Therefore,

1. if n > K and p > 0, we have

n—+p 0 c
2 ‘aﬂ(k)| < 2 ]ak.| < 5 <e€
k=n k=N+1

0
which, by Cauchy’s criterion, shows that ] ar) converges absolutely.

k=1
2. 1fn>K,
n n N N 0 e
‘Zaﬁ(k)—a‘<‘Zaﬂ(,€)—2ak‘+‘2ak—a‘< Z |ak|+§<5
k=1 k=1 k=1 k=1 k=N+1
0
which implies that »] a.u) = a. o

n=1

Problem 5. Determine whether the following series converge or not. Also test for their absolute

convergence.
0 0
log(n + 1) —logn (-1

1. > 0; 2. 3. —_—
Z sin(n*), a Z arctanf ’ nZ::Q Vn+ (="’
S ala+1)-- (a—i—n—l)b(b—i—l)‘--(b—l—n—l) o (—1)n 1 1

4. ; : 1+=+--- :
nz_]l 1-2---n-clc+1)---(c+n—1) ’ g nz_]ln+1( +3+ +2n—|—1)



The a, b, ¢ in (4) are real numbers except negative integers.
Problem 6. Let (M, d) be a metric space.

1. Let A be a non-empty subset of M, and d(:, A) : M — R be defined by
d(z, A) = inf {d(z,y) |y € A}
Prove or disprove the following inequality

d(z,y) < d(z,A)+d(y, A) Ve,ye M, A< M.

2. For non-empty subsets A, B of M, define d(A, B) = inf{d(a, b) ‘ ac€ Abe B}. Show that
d(A,B) <d(z,A) +d(z, B) VeelM.

Note that for subsets A, B, C'in M, we do NOT have d(A, B) < d(A,C)+d(C, B) in general.

Find a counter-example for this inequality.

In Problem [ﬂ through @, we first introduce the concepts of accumulation points, isolated points
and derived set of a set as follows. Definition. Let (M, d) be a normed vector space, and A be a
subset of M.

1. A point z € M is called an accumulation point of A if there exists a sequence {z,}> ; in

A\{x} such that {z,}>_, converges to x.

2. A point z € A is called an isolated point (3 B) (of A) if there exists no sequence in A\{z}

that converges to x.
3. The derived set of A is the collection of all accumulation points of A, and is denoted by A’.
Problem 7. Let (M, d) be a metric space, and A be a subset of M.
1. Show that the collection of all isolated points of A is A\A'.

2. Show that A’ = A\(A\A’). In other words, the derived set consists of all limit points that are
not isolated points. Also show that A\A’ = A\A’.

Proof. 1. By the definition of isolated points of sets,

re A\A' & z € A and z is not an accumulation point of A
< reAand 3e > 03 B(x,e) n A\{z} =T
< zreAand 3e > 03 B(zr,e) n A< {z}
< de>03B(z,e) n A= {zx};

thus z is an isolated point of A if and only if z € A\A'.



2. First we show that A = A u A’. To see this, let z € A\A. By the fact that A = A\{z}, there

exists {z,}°; < A\{z} such that lim z,, = z. Therefore, x € A’ which implies that
n—00
AAc A cA,

where we use the fact that A 2 A’ to conclude the last inclusion. The inclusion relation above
then shows that
A=AVA=AUV(AA)CAVACAVA=A;

thus we establish that A = A U A’. This identity further shows that
AnA'=AuA) A=A A cA.
Now, using the identity A\B = A n B® we find that
AAA) = A (An (A)) = A (40 A) = (An &) U (A 4)
=(AnAHYuA =4
Moreover, using A = A U A’ we also have
AA=(AVA) N (A =An(A)=A4". o
Problem 8. Let A and B be subsets of a metric space (M, d). Show that
1. cl(cl(A)) = cl(A).
2. cl(Au B) =cl(A) ucl(B).
3. cl(An B) < cl(A) ncl(B). Find examples of that cl(A n B) < cl(A) n cl(B).
Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A4)) = cl(A).

2. Since A< Au B and B < Au B, we have cl(A) € cl(A u B) and cl(B) < cl(A u B); thus
cl(A) u cl(B) < cl(A u B). On the other hand, if x € cl(A u B), there exists a sequence

{z,}*_, in AU B such that lim z,, = z. Since AU B contains infinitely many terms of {z,}>_ |,
n—0o0

at least one of A and B contains infinitely many terms of {x,}> ;. W.L.O.G., suppose that
#{neN|z, e A} = 0. Let

{neN|z,e A} ={n, e N|ny <ngpu1}.

Then {z,, };>, € A. Since x,, —» x as n — 0, we must have z,,, — = as k — o0; thus z € cl(A).
Therefore, cl(A U B) < cl(A) u cl(B).

3. Let z € cl(A n B). Then
(Ve>0)(B(z,e) n(An B) # ).
Therefore, by the fact that B(z,e)nA € B(x,e)n(AnB) and B(z,e)nB < B(z,e)n(AnB),

we have

(Ve > 0)(B(z,e) n A # &) and (Ve > 0)(B(z,e) n B # ).



This implies that 2 € A n B. Note that if A=Q and B = Q' then cl(An B) = & while
A = B = R which provides an example of cl(An B) € An B. D

Problem 9. Let A and B be subsets of a metric space (M, d). Show that

1. int(int(A)) = int(A).

2. int(A n B) = int(A) n int(B).

3. int(A v B) 2int(A) u int(B). Find examples of that int(A u B) 2 int(A) U int(B).
Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since An B < Aand An B < B, we have int(A n B) < int(A) and int(A n B) < int(B); thus
int(A n B) < int(A) nint(B). On the other hand, let = € int(A) N int(B). Then x € int(A)

and z € int(B); thus there exist r1, 79 > 0 such that
B(z,r) < A and B(z,myc B.

Let r = min{ry,ro}. Then r > 0, and B(z,r) € B(x,r) and B(z,r) € B(x,r2). Therefore,
B(z,r) € A and B(z,r) € B which further implies that B(x,r) € An B; thus z € int(A n B).

3. Let z € AU B. Then z € A or x € B; thus there exists r > 0 such that B(z,r) = A or
B(z,r) < B. Therefore, there exists r > 0 such that B(z,r) € A u B which shows that
int(Au B) 2int(A4) uint(B). Note that if A=Q and B = Q, then int(Au B) = R while
int(A) = int(B) = &J; thus we obtain an example of int(A u B) 2 int(A) U int(B). o

Problem 10. Let (M, d) be a metric space, and A be a subset of M. Show that
0A = (Anc(M\A)) U (cI(A)\A).
Proof. By the definition of the boundary, 4 = A n A°; thus

(Ancl(M\A)) U (l(ANA) = (An AL) U (A AY)

=[AV(AnA)] n[AU (AnA)] =An [(ALUA) A (AU AY)]
=An[(AAUA)NA] =0AN (AU A) =04

where the last equality follows from that 0A < A and 0 A < AC. O

Problem 11. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets
satisfy A € S < cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T, then A is dense in 7.

2. Show that if A is dense in S and B < S is open, then B < cl(A n B).



Proof. 1. If A is dense in S and if S is dense in 7, then A< S< Aand S< T < S. Since S € A,
we must have S < A; thus
AcScTcScA

which shows that A is dense in 7.

2. Let x € B. Since B is open, there exists g > 0 such that B(z,59) € B < S. On the other

hand, z € S since B is a subset of S; thus the denseness of A in .S implies that
(Ve >0)(B(z,e) nA# ).
Therefore, for a given € > 0, if € > ¢y, then
B(z,e) n (An B) 2 B(z,80) N (An B) = B(z,60) N A # &)

while if € < g, then
B(z,e)n(AnB)=B(z,e)n A+ .

This implies that
(Ve > 0)(B(z,e) n (An B) # &);

thus x € cl(A n B). o
Problem 12. Let A and B be subsets of a metric space (M, d). Show that
1. d(0A) < 0(A). Find examples of that 0(0A) < dA. Also show that d(0A) = 0 A if A is closed.
2. 0(AuB)cdAudB< d(AuB)u Au B. Find examples of that equalities do not hold.
3. If cl(A) ncl(B) = &, then 0(Au B) =0A v dB.
4. 0(An B) € 0A U dB. Find examples of the equalities do not hold.
5. 0(0(0A)) =0(0A).
Proof. 1. We note that if F'is closed, then
OF=FnF=FnF'cF. (o)

Since 0 F is closed, we must have d(0A) < dA. Note that if A =Q n [0, 1], then 0A = [0, 1];
thus 0(0A) = {0,1} < JdA. Finally we show that 0(0A) = dA if A is closed. Using (o), it
suffices to show that 0 A < d(0A). Using 2 of Problem E,

0(0A) = 0A A c((0A)Y) = 0A A (A U AC) = A (AC U cl(AT)
= (@ANA) U (PAC(AT)) 2 (0A A7) = 0A.



2. Using 2 and 3 of Problem E,
J(AuB)=AuBnc((AuB)) = (AuB)ncl(A'nB") c
:(Amﬁmﬁ)u(BmEmBC) (AmAC) (B
On the other hand, since 0 A = A\A and A € A, we have
ACAVIAC AU (AA)=A
which implies that A U 0 A = A. Therefore,
ACAcAuB=AuBuUdAUDB)

(AU B) n (At~ BY)
NBY) =0AuUdB.

and similarly 0B <€ A u B u d(A u B). Therefore,
0JAuvdB<d(AuB)uUAuB.
Note that if A =[~1,0] U (Q " [0,1]) and B = [-1,0] U (Q" N [0,1]), then AU B = [-1,1],
0A = 0B = {-1} u [0,1] which implies that
J(AuB)={-1,1}cdAuvidBc AuB=0(AuB)UAUB.

3. By 2, it suffices to shows that )AUdB € 0(AuB)if AnB = . Letz e 0AudB. W.L.O.G.,
assume that © € 0A. Then = € A; thus x ¢ B which further implies that there exists gg > 0
such that B(z,g0) n B = & or equivalently, B(z,g9) < B°. Therefore, for given r > 0, if
r < &g, then

B(z,r)n(AuB)2B(x,r)nA# J
and
B(z,r)n ((AuB)') = B(z,r) n (A" n B*) = B(z,r) n A" # &
while if » > ¢y, then
B(z,r)n(Au B) € B(x,e0) n (AU B) 2 B(x,e9) nA#
and
B(z,r) n ((Au B)") 2 B(z,e0) n (A" n BY) = B(x,50) n A" # ..
As a consequence, for each r > 0,
B(z,r)n(AuB)# & and B(z,r)n(AuB)";
thus z € AU B and z € cl((A U B)") which implies that = € (A U B).
4. Using 2 and 3 of Problem E,
(AnB)=AnBnc((AnB)")=AnBncd(A" uB)c (AnB)n (ACU@)
:[(ﬁmB)mE]u[(AmB)mﬁ]g(flmAC)u( E)_&AuﬁB.
Note that if A=Q and B = Q°, then 0A = 0B = R but
C(AnB)=<R=0AnJB.
5. Since 0 A is closed, 1 implies that 0(0(0A)) = d(0A). o



