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Problem 1. Let A < R™. Define the sequence of sets A™ as follows: A©® = A and A™+) =

the

1

2

3

4

ot

derived set of A" for m e N. Complete the following.
. Prove that each A" for m € N is a closed set; thus AM 2 A®) o ...,
. Show that if there exists some m € N such that A is a countable set, then A is countable.

. For any given m € N, is there a set A such that A™ = ¢f but Am+1) = &?

0
. Let A be uncountable. Then each A is an uncountable set. Is it possible that () A = g5?

m=1

et A= {% + % ‘m 1> k(b —1),m,k e N}. Find A®, A? and A®).

Proof. 1. See Problem 2 for that A’ is closed for all A < M. Moreover, A = AU A’ so that A < A’ if

A'is closed (in fact, A is closed if and only if A < A’). Therefore, knowing that A™) is closed

for all m € N, we obtain that A™ 2 A+ for all m e N.

Note that A\A’ consists of all isolated points of A. For m € N, define B(m=1) = A(m=\ A0m),
Then B~V consists of isolated points of A™~1: thus B~ is countable for all m € N. Since

for any subset A of M, we have
Ac (AA)uU A

and equality holds if A is closed, 1 implies that
AcC (A\A(l)) u AL = O , 40 — BO) [(A(l)\A(Q)) U A(Q)} — BO , BM , A®
—...=BO , M) ..., Bm=1) , glm)

If At is countable, we find that A is a subset of a finite union of countable sets; thus A is

countable.

For each m € N, define

1 1 1. . . ,
Am:{f+.—+---+f zm>zm71>zm,2>-~>z1}.
11 192 Im

Then A}, = U;”:_ll A; U {0}. To see this, let {z;};°; be a convergent sequence in A,,. W.L.O.G.

we can assume that {x;}72, has distinct terms; that is, x # z; if k¥ # j for otherwise

(a) if finitely many terms are the same, eliminating all but one such terms from the original

sequence does not change the limit of the sequence;

(b) if infinitely many terms are the same, then this term is a cluster point of the sequence;

thus the sequence converges to this term which is one particular element of A,,.



If {zx}{, has distinct terms, then there exists 1 < j < m such that
#{keN|i"} =0

that is, at least one ig-k) has infinitely many

A =75P A 0 {0}, -, ARV = Ay {0}, ARY = {0}, ARV = 2.

4. By 2, if At is countable for some m € N, then A is countable; thus if A is uncountable, A

must be uncountable for all m € N.
5. Similar to 3, we have A% = {% ‘ ke N} U {0}, A® = {0} and A® = . o

Problem 2. Let (M, d) be a metric space, and A be a subset of M. Show that A, the derived set

of A consisting of all accumulation points of A (defined in Exercise 6), is closed.
Proof. Let y ¢ A’. Then there exists € > 0 such that
B(y,e) n (A\{y}) = (Bly,e\wH) n A= .
Then A < (B(y,e)\{y})". Since
(Bly.e\y}h)" = (By,e) 0 {y)")" = Bly.e)* v {u},

by the fact that (B(y, <€)\{y})C is closed,

Ac (B(y,s)\{y})c or equivalently, A n B(y,e)\{y} =J.
Since A < A’, the equality above implies that

A'n By, e)\{y} = I;
thus the fact that y ¢ A" implies that B(y,e) n A’ = (. D
Problem 3. Recall that a cluster point = of a sequence {z,}°_, satisfies that
Ve>0,#{neN|z, e B(z,e)} =m.

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Proof. Let (M,d) be a metric space, {x};2; be a sequence in M, and A be the collection of cluster
points of {x3}?,. We would like to show that A 2 A.
Let y € A*. Then y is not a cluster point of {x;}_,; thus

Je>03#{neN|z, e B(y,e)} <.

For z € B(y,e), let r = ¢ —d(y,z) > 0. Then B(z,r) < B(y,¢) (see Figure El or check rigorously
using the triangle inequality). As a consequence, #{n eN ’ x, € B(z, 7“)} < o0 which implies that
z¢ A



Figure 1: B(z,e —d(y,2)) < B(y,¢) if z € B(y, ¢)
Therefore, if z € B(y,¢) then z € A% thus B(y,e) n A = #. We then conclude that if y € A then
y ¢ A o
Problem 4. Let (V.| - |) ba a normed vector space. A subset C' of V is said to be convex if
Ve, ye C A Xel0,1])Az+ (1 -NyeC).
Let C be a non-empty convex set in V.
1. Show that C is convex.

2. Show that if z € C and y € C, then (1—N)z+ Ay € C for all A € (0,1). This result is sometimes

called the line segment principle.
3. Show that C is convex (you may need the conclusion in 2 to prove this).
4. Show that cl(C)) = cl(C).
5. Show that int(C) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that z € int(C) can be written as (1 — Ay + Az for some y € C and z € B(z,¢) < C.

Proof. 1. Let x,y e C and 0 < A < 1. Then there exist sequences {x;}?> , and {y,}_, in C such that
x, — xand y, — yas k — oo. Since C is convex, (1 — Az + Ay, € C for each k € N; thus by
the fact that C < C, (1 —\)xx + Ay, € C for each k € N. Since (1 - Nz, + Ay, — (1-N)z+\y

as k — o0 and C is closed, we must have (1 — A\)x + Ay € C; thus C is convex if C' is convex.

2. Suppose the contrary that there exists A € (0,1) such that (1 — A)& + Ay ¢ C. Then for each
k € N, there exists z; ¢ C' such that

[1-Nz+ry—z]<i  VheN.
Since y € C, there exists a sequence {y,}?> , € C satisfying

1
lye —yl <5 VkeN.



Therefore, if k€ N,

2
(= N+ Ay — 2 < [0 - N+ Ay — 2] + My - gl < 2

thus \ 5
2k — \Yy,
o - 2 < tmyy VEEN.
) > . 2 . Zk — AYy,

Since x € C, there exists N > 0 such that B(:c, A—AN )\)N) c (; thus T e C' whenever
k = N. By the convexity of C,

—A

zk:(l—)\)zkl—):yk%—AykeC,

a contradiction.

3. Let @,y € C. By the line segment principle, (1 — Az + Ay e C for all A € (0,1) (since C < C).
This further implies that (1 — Xz + Ay € C for all X € [0,1] since @, y € C; thus C is convex.

4. Tt suffices to show that cl(C)) 2 cl(C). Let z € cl(C). Pick any y € C. By the line segment
principle,

1 1 °
a:kz(l—%)a:—i-%yec Vk=>2.

Since @, — x as k — o0, we find that z € cl(C).

5. It suffices to show that int(C') < int(C). Let x € int(C'). Then there exists € > 0 such that
B(z,e) € C. Let y € int(C). If y = x, then = € int(C). If y # =z, define 2 = = + a(z — y),
where

£

o= ——":.
2|z -yl

Then ||z — z| = g; thus z € B(x,¢) which further implies that z € C. By the line segment
principle implies that (1 — Ay + Az € C for all \ e (0,1). Taking A = %, we find that
o

1
1=Ny+Az= 1iay+1+a(m+a(w—y)) =z

which shows that x € int(C'). o

Problem 5. Let (V, |- |) be a normed vector space. Show that for all z € V and r > 0,
int(B[z,r]) = B(z,7).

Proof. Let y €V such that |z — y|| = r. Then &+ \(y — @) € B[z, r|" for all |A\| > 1. In particular,
y,=x+ (1+ l)(y — x) € Blz,r]' for all n € N. Moreover,
n

1 r
Hyn—y||:—\|a:—yH:f_>() as mn — 0.
n n



Therefore, lim y, = y which implies that y € 0 B[z, 7] (since y € Blz,r] and y is the limit of a
n—0oo

sequence from Bz, T]C); thus
{yeV||z—y|=r}<oBler].
On the other hand, B(z,r) is open and

Blz,r] = B(z,r) u{yeV||z—y| =r}.

Therefore, B(z,r) is the largest open set contained inside Bz, r|; thus B(x,r) = int(Blx, r]). D
Problem 6. Let M,,,,, denote the collection of all n x n square real matrices, and (M,,xy, | - ||) be
a normed space with norm | - || given in Problem 3 of Exercise 5 (with p = ¢ = 2). Show that the set

GL(n) = {4 € My, | det(A) # 0}
is an open set in M,,«,,. The set GL(n) is called the general linear group.

Proof. Let A € GL(n) be given. Then A™! € M,,,, exists. We show that

1

VBeB(A —
( A= 2,2

) ,det(B) # 0.
By the definition of the norm, for all € R™ we have
|22 < [A7 Azl < AT 22] A2

thus for all z € R",

1
Mﬂw\b < [Az|y < (A= B)z|2 + | Bz|2 < [A — Bllaa|z|2 + | Bxlls
which implies that
1
B >(——A—B ) VzeR".
|Bale > (fpmrr; — 14 - Blas)lals Vae
Therefore, if B € B(A, Al1’>7 then Bx = 0, then & = 0. This shows that B is invertible if
2,2
1 1
Be B(A, 7); thus B(A,i) < GL(n).
A [ATz) < G )

Problem 7. Show that every open set in R is the union of at most countable collection of disjoint

open intervals; that is, if U < R is open, then

U= U(ak, bk) s
kel
where Z is countable, and (ax, bx) N (ag, b)) = & if k # £.
Hint: For each point x € U, define L, = {y € R‘ (yz) U} and R, = {y € R‘ (z,y) < U}. Define
I, = (inf L,,sup R,). Show that I, = I, if (z,y) e U.



Proof. As suggested in the hint, for each point x € U we define L, = {y € R‘ (y,x) < U} and
R, = {y € R| (x,y) < U}. We note that a = inf L, ¢ U since if a € U, by the openness of U there
exists 7 > 0 such that (a —r,a 4+ r) € U which implies that (a — r,x) < U so that a —r € L,, a
contradiction to the fact that a = inf L,. Similarly, sup R, ¢ U. Therefore, I, = (inf L,,sup L) is
the maximal connected subset of U containing x.

If 2,y e U and (z,y) < U, then (L,,y) = (Ly,z) u {z} U z,y) < U which implies that L, < L,.
On the other hand, if z € L,, then z < z and (2,2) < U; thus L, < L, which implies that L, = L,
if x,y € U and (z,y) < U. This shows that [, = I, if 2,y € U and (z,y) < U. Moreover, if z,y € U
but (z,y) ¢ U, then there exists © < z < y such that z ¢ U; thus sup R, < z < inf L,, which implies
that I, n I, = J. Therefore, we establish that

1. if z,y € U and (x,y) < U, then I, = I,.
2. ifz,ye U and (z,y) € U, then I, n I, = .

This implies that U is the union of disjoint open intervals. Since every such open interval contains a

rational number, we can denote each such open interval as I, where k£ belongs to a countable index

set Z. Write [k = (ak,bk), then U = U ((lk,bk). O
kel
Problem 8. In class we introduce the normed vector space (€%, || - |»):

(* = {zp )il S R|[IM > 053 |z,| < M for all n e N}

equipped with

Hantisi], = sup 2] -

Complete the following.
1. Show that || - |, is indeed a norm.
2. Show that (¢, - [|s) is a Banach space; that is, show that (¢*, | - |,) is complete.
3. Show that the set A = {{xn}le €L |z,| < % for all n e N} is closed.

Problem 9. Let (M, d) be a metric space. A set A € M is said to be perfect if A = A’ (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let Eq = [0, 1].

12
Remove the segment (3’ 5)’ and let E; be the union of the intervals

Remove the middle thirds of these intervals, and let E5 be the union of the intervals
1 2 3 6 7, 8
0,51 [5:5) 550 51

Continuing in this way, we obtain a sequence of closed set Ej such that



(a) EioE;DEy D -
(b) E, is the union of 2" intervals, each of length 3.

0
The set C' = () E, is called the Cantor set.
n=1

1. Show that C' is a perfect set.
2. Show that C is uncountable.
3. Find int(C).

Proof. 1. Let x € C. Then x € Ey for some N € N. For each n € N, E,, is the union of disjoint closed

1
intervals with length T and 0 F, consists of the end-points of these disjoint closed intervals

1

whose union is FE,. Therefore, there exists x,, € 0 Exi,—1\{z} such that |z, — z| < T

Since 0E, < C for each n € N, we find that {z,}>, € C\{z}. Moreover, lim z, = x; thus
n—00

x € C" which shows C' < (C". Since C' is the intersection of closed sets, C' is closed; thus

CcC'cC=0C

N

so we establish that C' = C.

2. For x € [0, 1], write z in ternary expansion (= i& =& B ); that is,

Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,

we write % as 0.02222 - - - instead of 0.1. Define
A= {J] = O.dldgdg"' ’d] € {072} for alleN}

Note each point in 0 E, belongs to A; thus A € C. On the other hand, A has a one-to-one
dy do

22
in binary expansion (= i& /& B ) with repeated 1’s instead of terminating decimals). Since

correspondence with [0,1] (z = 0.didy--- € A = y = 0. -+ € [0,1], where y is expressed

[0, 1] is uncountable, A is uncountable; thus C' is uncountable.

3. If int(C) is non-empty, then by the fact that int(C) is open in (R, |-|), by Problem 7 the Cantor
set C' contains at least one interval (x,y). Note that there exists N > 0 such that |z —y| < 3%
for all n = N. Since the length of each interval in E,, has length 3%, we find that if n > N, the

interval (x,y) is not contained in any interval of F,. In other words, there must be z € (x,¥)

0
such that z € E. which shows that (z,y) € [ E,. Therefore, int(C') = &. o
n=1



