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Problem 1. Let (M,d) be a metric space.

1. Show that a closed subset of a compact set is compact.

2. Show that the union of a finite number of sequentially compact subsets of M is compact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is
sequentially compact.

Proof. 1. Let K be a compact set in M , F be a closed subset of K, and txku8
k=1 be a sequence

in F . Then txku8
k=1 is a sequence in K; thus the sequential compactness of K implies that

there exists a convergent subsequence txkju
8
j=1 with limit x P K. Note that txkju

8
j=1 itself is a

convergent sequence in F ; thus the limit x of txkju
8
j=1 belongs to F by the closedness of F .

2. Let K1, K2, ¨ ¨ ¨ , KN be compact sets, and K =
N
Ť

ℓ=1

Kℓ, and txnu8
n=1 be a sequence in K. Then

there exists 1 ď ℓ0 ď N such that

#
␣

n P N
ˇ

ˇxn P Kℓ0

(

= 8 .

Let txnk
u8
k=1 Ď Kℓ0 . By the compactness of Kℓ0 , there exists a convergent subsequence

␣

xnkj

(8

j=1
of txnk

u8
k=1 with limit x P Kℓ0 Ď K. Since

␣

xnkj

(8

j=1
is a subsequence of txnu8

n=1, we
conclude that every sequence in K has a convergent subsequence with limit in K; thus K is
compact.

3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of
M is closed. By 1, this intersection is also compact since the intersection is a closed set of any
compact set (in the family). ˝

Problem 2. Given taku8
k=1 Ď R a bounded sequence, define

A =
␣

x P R
ˇ

ˇ there exists a subsequence
␣

akj
(8

j=1
such that lim

jÑ8
akj = x

(

.

Show that A is a non-empty sequentially compact set in R. Furthermore , lim sup
kÑ8

ak = supA and
lim inf
kÑ8

ak = infA.

Proof. Note that A is the collection of cluster points of bounded sequence taku8
k=1; thus Problem 3 of

Exercise 7 shows that A is closed. Moreover, A is bounded since taku8
k=1 is bounded; thus supA P A

and infA P A. The desired result then follows from the fact that lim sup
kÑ8

ak is the largest cluster
point of taku8

k=1 and lim inf
kÑ8

ak is the least cluster point of taku8
k=1; thus lim sup

kÑ8

ak = supA P A and
lim inf
kÑ8

ak = infA P A. ˝

Problem 3. Complete the following problems that we talked about in class.



1. Let (M,d) be a complete metric space, and A is a totally bounded subset of M . Show that
cl(A) is sequentially compact.

2. Let (M,d) be a metric space. Show that M is complete if and only if every totally bounded
sequence has a convergent subsequence.

Proof. Let r ą 0 be given. Since A is totally bounded, there exist x1, x2, ¨ ¨ ¨ , xN P M such that

A Ď

N
ď

j=1

B
(
xj,

r

2

)
. (‹)

Note that for all x P M , B
(
x,

r

2

)
Ď B

[
x,

r

2

]
which further implies that

cl
(
B
(
x,

r

2

))
Ď B

[
x,

r

2

]
Ď B(x, r) @x P M .

Therefore, (‹) and 3 of Problem 8 in Exercise 6 imply that

sA Ď cl
( N
ď

j=1

B
(
xj,

r

2

))
=

N
ď

j=1

cl
(
B
(
xj,

r

2

))
Ď

N
ď

j=1

B(xj, r) .

This shows that sA is totally bounded. By the fact that (M,d) is complete, sA is complete; thus sA is
sequentially compact. ˝

Problem 4. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M . Then K is compact if and only
if for any family of closed subsets tFαuαPI , we have

K X
č

αPI

Fα ‰ H

whenever K X
č

αPJ

Fα ‰ H for all J Ď I satisfying #J ă 8.

2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space, and tKnu8
n=1 be a sequence of non-empty compact sets in

M such that Kj Ě Kj+1 for all j P N. Then there exists at least one point in
8
Ş

j=1

Kj;
that is,

8
č

j=1

Kj ‰ H .

Proof. 1. (ñ) Let K be a compact set, and tFαuαPI be a collection of closed set such that

K X
č

αPJ

Fα ‰ H @ J Ď I ,#J ă 8 .



Suppose the contrary that K X
Ş

αPI Fα = H. Then

K Ď

(
č

αPI

Fα

)A

=
ď

αPI

F A
α .

This, together with the fact that F A
α is open for all α P I, implies that tF A

αuαPI is an open cover
of K. By the compactness of K, there exists J Ď I with #J ă 8 such that K Ď

Ť

αPJ

F A
α.

Therefore,
K X

č

αPJ

Fα = K X

(
ď

αPJ

Fα

)A

= H ,

a contradiction.

(ð) Let tUαuαPI be an open cover of K. Define Fα = U A
α. Then tFαuαPI is a family of closed

set satisfying that

K X
č

αPI

Fα = K X
č

αPI

U A
α = K X

(
ď

αPI

Uα

)A

= H .

By assumption, there must be J Ď I with #J ă 8 such that

K X
č

αPJ

Fα = H .

By the fact that
č

αPJ

Fα =
(
ď

αPJ

Uα

)A

, we conclude that K Ď
Ť

αPJ Uα; thus we conclude that

every open cover of K has a finite subcover. Therefore, K is compact.

2. Let K = K1, and Fj = Kj for all j P N. Then for any finite subset J of N,

K X
č

jPJ

Fj = Kmax J ‰ H ;

thus 1 implies that K X
Ş

jPN
Fj ‰ H. ˝

Problem 5. 1. Let txku8
k=1 Ď R be a sequence in (R, | ¨ |) that converges to x and let Ak =

txk, xk+1, ¨ ¨ ¨ u. Show that txu =
8
Ş

k=1

sAk. Is this true in any metric space?

2. Suppose that tKju
8
j=1 is a sequence of non-empty compact sets satisfying the nested set property

(that is, Kj Ě Kj+1), and diam(Kj) Ñ 0 as j Ñ 8, where

diam(Kj) = sup
␣

d(x, y)
ˇ

ˇx, y P Kj

(

.

Show that there is exactly one point in
8
Ş

j=1

Kj.

Proof. 1. By 2, it suffices to show that sAk is non-empty compact set for all k P N and t sAku8
k=1 is a

nested set satisfying diam( sAk) Ñ 0 as k Ñ 8. Note that in class we have shown that the set
t0u Y

␣

1,
1

2
,
1

3
, ¨ ¨ ¨ ,

1

n
¨ ¨ ¨

(

is compact, and similar proof shows that Ak Y txu is compact; thus
sAk = Ak Y txu. Therefore, t sAku8

k=1 is a nested set.



Let ε ą 0 be given. Since txku8
k=1 converges to x, there exists N ą 0 such that d(xk, x) ă

ε

3
whenever k ě N . Then

d(y, z) ă
2ε

3
@ y, z P AN ;

thus for j ě N ,
diam(Kj) ď

2ε

3
ă ε

which implies that diam(Kj) Ñ 0 as j Ñ 8.

2. First, by the nested set property,
8
Ş

j=1

Kj ‰ H. Assume that x, y P
8
Ş

j=1

Kj. Then x, y P Kj for

all j P N; thus
0 ď d(x, y) ď diam(Kj) @ j P N .

By the assumption that diam(Kj) Ñ 0 as j Ñ 8, we conclude that d(x, y) = 0; thus by the
property of the metric, x = y. ˝

Problem 6. Let ℓ2 be the collection of all sequences txku8
k=1 Ď R such that

8
ř

k=1

|xk|2 ă 8. In other
words,

ℓ2 =
␣

txku8
k=1

ˇ

ˇxk P R for all k P N,
8
ÿ

k=1

|xk|2 ă 8
(

.

Define } ¨ }2 : ℓ
2 Ñ R by

›

›txku8
k=1

›

›

2
=

( 8
ÿ

k=1

|xk|2
) 1

2
.

1. Show that } ¨ }2 is a norm on ℓ2. The normed space (ℓ2, } ¨ }) usually is denoted by ℓ2.

2. Show that } ¨ }2 is induced by an inner product.

3. Show that (ℓ2, } ¨ }2) is complete.

4. Let A =
␣

x P ℓ2
ˇ

ˇ }x}2 ď 1
(

. Is A sequentially compact or not?

Problem 7. Let A,B be two non-empty subsets in Rn. Define

d(A,B) = inf
␣

}x ´ y}2
ˇ

ˇx P A, y P B
(

to be the distance between A and B. When A = txu is a point, we write d(A,B) as d(x,B).

(1) Prove that d(A,B) = inf
␣

d(x,B)
ˇ

ˇx P A
(

.

(2) Show that
ˇ

ˇd(x1, B) ´ d(x2, B)
ˇ

ˇ ď }x1 ´ x2}2 for all x1, x2 P Rn.

(3) Define Bε =
␣

x P Rn
ˇ

ˇ d(x,B) ă ε
(

be the collection of all points whose distance from B is less
than ε. Show that Bε is open and

Ş

εą0

Bε = cl(B).

(4) If A is sequentially compact, show that there exists x P A such that d(A,B) = d(x,B).



(5) If A is closed and B is sequentially compact, show that there exists x P A and y P B such that
d(A,B) = d(x, y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of (Rn, } ¨ }2), so in the proofs of (1)-(4)
we write d(x,y) instead of }x ´ y}.

(1) Define f : A ˆ B Ñ R by f(a, b) = d(a, b). We note that similar proof for Problem 4 of
Exercise 2 also shows that if f : A ˆ B Ñ R, then

inf
(a,b)PAˆB

f(a, b) = inf
a PA

(
inf
b PB

f(a, b)
)
= inf

b PB

(
inf
a PA

f(a, b)
)
.

Since inf
b PB

f(a, b) = d(a, B), we conclude that

d(A,B) = inf
(a,b)PAˆB

f(a, b) = inf
a PA

d(a, B) .

(2) Let x,y P Rn and ε ą 0 be given. By the definition of infimum, there exists z P B such that

d(x, B) ď d(x, z) ă d(x, B) + ε .

By the definition of d(y, B) and the triangle inequality,

d(y, B) ď d(y, z) ď d(y,x) + d(x, z) ă d(x,y) + d(x, B) + ε ;

thus
d(y, B) ´ d(x, B) ă d(x,y) + ε .

A symmetric argument (switching x and y) also shows that d(x, B) ´ d(y, B) ă d(x,y) + ε.
Therefore,

ˇ

ˇd(x, B) ´ d(y, B)
ˇ

ˇ ă d(x,y) + ε .

Since ε ą 0 is given arbitrarily, we conclude that
ˇ

ˇd(x, B) ´ d(y, B)
ˇ

ˇ ď d(x,y) .

(3) Let x P Bε. Define r = ε ´ d(x, B). Then r ą 0; thus there exists z P B such that

d(x, B) ď d(x, z) ă d(x, B) +
r

2
= ε .

Therefore, if y P B
(
x, r

2

)
, then

d(y, z) ď d(y,x) + d(x, z) ă
r

2
+ d(x, B) +

r

2
= d(x, B) + r = ε

which shows that B
(
x, r

2

)
Ď Bε. Therefore, Bε is open.

Next, we note that

d(x, B) = 0 ô (@ ε ą 0)(d(x, B) ă ε) ô (@ ε ą 0)(x P Bε) ô x P
č

εą0

Bε ;

thus x P
Ş

εą0

Bε if and only if d(x, B) = 0. Since x P sB if and only if d(x, B) = 0, we conclude

that
Ş

εą0

Bε = sB.



(4) By the definition of infimum, for each n P N there exists an P A such that

d(A,B) ď d(an, B) ă d(A,B) +
1

n
.

Since A is compact, there exists a convergent subsequence tanj
u8
j=1 of tanu8

n=1 with limit a P A.
By the Sandwich Lemma,

d(anj
, B) Ñ d(A,B) as j Ñ 8 .

On the other hand, (2) implies that
ˇ

ˇd(anj
, B) ´ d(a, B)

ˇ

ˇ ď d(anj
,a) Ñ 0 as j Ñ 8 .

Therefore,
ˇ

ˇd(a, B) ´ d(A,B)
ˇ

ˇ ď
ˇ

ˇd(a, B) ´ d(anj
, B)

ˇ

ˇ+
ˇ

ˇd(anj
, B) ´ d(A,B)

ˇ

ˇ Ñ 0 as j Ñ 8

which establishes the existence of a P A such that d(a, B) = d(A,B) if A is compact.

(5) By (4), there exists b P B such that d(A,B) = d(b, A). Let C = B[b, d(A,B) + 1] X A. Then

d(b, A) = d(b, C)

since every point x P AzC satisfies that d(b,x) ą d(A,B) + 1. On the other hand, the Heine-
Borel Theorem implies that C is compact; thus (4) implies that there exists c P C such that
d(b, C) = d(b, c) = }b ´ c}. The desired result then follows from the fact that C is a subset of
A (so that c P A).

(6) Let A =
␣

(x, y) P R2
ˇ

ˇxy ě 1, x ą 0
(

and B =
␣

(x, y) P R2
ˇ

ˇxy ď ´1, x ă 0
(

. Then A

and B are closed set since they contain their boundaries. However, since a =
( 1
n
, n

)
P A

and b =
(

´
1

n
, n

)
P B for all n P N, d(A,B) ď d(a, b) =

2

n
for all n P N which shows that

d(A,B) = 0. However, the fact that A X B = H implies that d(a, b) ą 0 for all a P A and

b P B. Therefore, in this case there are not a P A and b P B such that d(A,B) = d(a, b). ˝

Problem 8. Let (M,d) be a metric space, and A Ď M . Show that A is disconnected (not connected)
if and only if there exist non-empty closed set F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 .

Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U1 and U2

such that

(a) A X U1 X U2 = H , (b) A X U1 ‰ H , (c) A X U2 ‰ H , (d) A Ď U1 Y U2 .

Therefore, A is disconnected if and only if there exist non-empty closed set F1 ” U A
1 and F2 ” U A

2

such that



(i) A X F A
1 X F A

2 = H , (ii) A X F A
1 ‰ H , (iii) A X F A

2 ‰ H , (iv) A Ď F A
1 Y F A

2 .

Note that (i) above is equivalent to that A Ď F1 Y F2, while (iv) above is equivalent to that A X

F1 X F2 = H. Moreover, note that if A,B,C are sets satisfying A X B X C = H, A X B ‰ H and
A X C ‰ H, then

H ‰ A X B Ď A X CA and H ‰ A X C Ď A X BA .

Therefore, (a), (b) and (c) above imply 2 and 3 above, while (i) together with 2 and 3 above implies
that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed
sets F1 and F2 such that

1. A X F1 X F2 = H ; 2. A X F1 ‰ H ; 3. A X F2 ‰ H ; 4. A Ď F1 Y F2 . ˝

Problem 9. Prove that if A is connected in a metric space (M,d) and A Ď B Ď sA, then B is
connected.

Proof. Suppose the contrary that B is disconnected. Then Problem 8 implies that there exist two
closed set F1 and F2 such that

1. B X F1 X F2 = H ; 2. B X F1 ‰ H ; 3. B X F2 ‰ H ; 4. B Ď F1 Y F2 .

Define A1 = F1 X A and A2 = F2 X A. Then A = A1 Y A2. If A1 = H, then A2 = A which, together
with 3 of Problem 8 in Exercise 6, implies that

B Ď sA = sA2 Ď sA X sF2 = sA X F2

which implies that B = B X F2. The fact that B X F1 X F2 = H then implies that B X F1 Ď

(BXF2)
A = BA; thus BXF1 = H, a contradiction. Therefore, A1 ‰ H. Similarly, A2 ‰ H. However,

3 of Problem 8 in Exercise 6 implies that

A1 X sA2 = A1 X cl(F2 X A) Ď A1 X sF2 X sA = A1 X F2 Ď B X F1 X F2 = H

and
A2 X sA1 = A2 X cl(F1 X A) Ď A2 X sF1 X sA = A2 X F1 Ď B X F2 X F1 = H ,

a contradiction to the assumption that A is connected. ˝

Problem 10. Let (M,d) be a metric space, and A Ď M be a subset. Suppose that A is connected
and contain more than one point. Show that A Ď A1, where A1 is the collection of accumulation
points of A defined in Exercise 6.

Proof. Suppose the contrary that there exists x P AzA1. Since AzA1 is the collection of isolated point
of A, there exists r ą 0 such that B(x, r) X A = txu. Let U = B(x, r) and V = B

[
x,

r

2

]A. Then

1. A X U X V = H.

2. A X U = txu ‰ H.



3. A X V Ě Aztxu ‰ H since A contains more than one point.

4. A Ď M = U Y V .

Therefore, A is disconnected, a contradiction. ˝

Problem 11. Let (M,d) be a metric space. A subset A of M is said to be totally disconnected if
for all x, y P A and x ‰ y, there exist opens sets U and V separating A as well as x P U and y P V .
Show that the Cantor set C defined in Problem 9 of Exercise 7 is totally disconnected.

Proof. It suffices to show that for every x, y P C, x ă y, there exists z P CA and x ă z ă y. Note
that there exists N ą 0 such that |x ´ y| ă

1

3n
for all n ě N . If C =

8
Ş

n=1

En, where En is given is

Problem 9 of Exercise 7. Then the length of each interval in En has length 1

3n
; thus if n ě N , the

interval [x, y] is not contained in any interval of En. In other words, there must be z P (x, y) such
that z P EA

n. Since EA
n Ď CA, we establish the existence of x ă z ă y such that z P CA. ˝

Problem 12. Let Fk be a nest of connected compact sets (that is, Fk+1 Ď Fk and Fk is connected
for all k P N). Show that

8
Ş

k=1

Fk is connected. Give an example to show that compactness is an

essential condition and we cannot just assume that Fk is a nest of closed connected sets.

Proof. Let K =
8
Ş

k=1

Fk. Then the nested set property implies that K ‰ H. Suppose the contrary
that there exist open sets U and V such that

1. K X U X V = H , 2. K X U ‰ H , 3. K X V ‰ H , 4. K Ď U Y V .

Define K1 = K X U A and K2 = K X V A. Then K1, K2 are non-empty closed sets (Check!!!) of K
such that

K = K1 Y K2 and K1 X K2 = H .

In other words, K is the disjoint union of two compact subsets K1 and K2. By (5) of Problem 7, there
exists x1 P K1 and x2 P K2 such that d(x1, x2) = d(K1, K2). Since K1 X K2 = H, ε0 ” d(x1, x2) ą 0;
thus the definition of the distance of sets implies that

ε0 ď d(x, y) @x P K1, y P K2 .

Define O1 =
Ť

xPK1

B
(
x,

ε0
3

)
and O2 =

Ť

yPK2

B
(
y,

ε0
3

)
. Note that

K1 Ď O1 , K2 Ď O2 and O1 X O2 = H .

Claim: There exists n P N such that Fn Ď O1 Y O2.

Proof. Suppose the contrary that for each n0 P N, Fn0 Ę O1 Y O2. Then

Fn X OA
1 X OA

2 = Fn X (O1 Y O2)
A ‰ H @n P N .



Since O1 and O2 are open, Fn X OA
1 X OA

2 is a nest of non-empty compact sets; thus the nested set
property shows that

K X OA
1 X OA

2 =
8
č

n=1

(Fn X OA
1 X OA

2

)
‰ H ;

thus K Ę O1 Y O2, a contradiction. ˝

Having established the claim, by the fact that K1 Ď Fn0 X O1 and K2 Ď Fn0 X O2, we find that

Fn0 X O1 ‰ H and Fn0 X O2 ‰ H .

Together with the fact that Fn0 X O1 X O2 = H and Fn0 Ď O1 Y O2, we conclude that Fn0 is
disconnected, a contradiction.

The compactness of Fn is crucial to obtain the result or we will have counter-examples. For
example, let Fk = R2z(´k, k) ˆ (´1, 1). Then clearly Fk is closed but not bounded (hence Fk

is not compact). Moreover, Fk Ě Fk+1 for all k P N; thus tFku8
k=1 is a nest of sets. However,

8
Ş

k=1

Fk = R2zR ˆ (´1, 1) which is disconnected and is the union of two disjoint closed set R ˆ [1,8)

and R ˆ (´8,´1]. Therefore, if tFku8
k=1 is a nest of closed connected sets, it is possible that

8
Ş

k=1

Fk

is disconnected. ˝

Problem 13. Let tAku8
k=1 be a family of connected subsets of M , and suppose that A is a connected

subset of M such that Ak XA ‰ H for all k P N. Show that the union
(
Ť

kPN
Ak

)
YA is also connected.

Proof. By the induction argument, it suffices to show that if A and B are connected sets and
A X B ‰ H, then A Y B is connected. Suppose the contrary that there exist open sets U and
V such that

1.
(
A Y B

)
X U X V = H ,

2.
(
A Y B

)
X U ‰ H ,

3.
(
A Y B

)
X V ‰ H ,

4.
(
A Y B

)
Ď U Y V .

Note that 1 and 4 implies that A X U X V = H and A Ď U Y V ; thus by the connectedness of A,
either A X U = H or A X V = H. W.L.O.G., we assume that A X U = H so that A Ď V . Then
1 implies that B X U X V = H, 2 implies that B X U ‰ H, and 4 implies that B Ď U Y V . Next
we show that B X V ‰ H to reach a contradiction (to that B is connected). Suppose the contrary
that B X V = H. Then 3 implies that A X B Ď A = A X V ‰ H so that B X V Ě A X B ‰ H, a
contradiction.

For an alternative proof, see the proof of 1 of Problem 15. ˝

Problem 14. Let A,B Ď M and A is connected. Suppose that AXB ‰ H and AXBA ‰ H. Show
that A X BB ‰ H.



Proof. Suppose the contrary that A X BB = H. Let U = int(B) and V = int(BA). If B̊ = H,
then BB = sB Ě B; thus the assumption that A X B ‰ H implies that A X BB ‰ H. Similarly, if
int(BA) = H, then A X BB ‰ H.

Now suppose that U and V are non-empty open sets. If x R U YV , then x P BB; thus (U YV )A Ď

BB and the assumption that A X BB = H further implies that A Ď U Y V . Moreover, U X V = H;
thus A X U X V = H. Now we prove that A X U ‰ H and A X V ‰ H to reach a contradiction.

Suppose the contrary that AXU = H. Then AXB Ď AX sB = AX(UYBB) = H, a contradiction.
Therefore, AXU = H. Similarly, if AXV = H, AXBA Ď AXĎBA = AX(V YBBA) = AX(V YBB) = H,
a contradiction. ˝

Problem 15. Let (M,d) be a metric space and A be a non-empty subset of M . A maximal connected
subset of A is called a connected component of A.

1. Let a P A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint
union of its connected components.

3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore, when M = Rn,
show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational numbers
in R.

Proof. 1. Let F be the family F =
␣

C Ď A
ˇ

ˇx P C and C is connected
(

. We note that F is not
empty since txu P F . Let B =

Ť

CPF

C. It then suffices to show that B is connected (since if

so, then it is the maximal connected subset of A containing x).

Claim: A subset A Ď M is connected if and only if every continuous function defined on A

whose range is a subset of t0, 1u is constant.

Proof. “ñ” Assume that A is connected and f : A Ñ t0, 1u is a continuous function, and δ =

1/2. Suppose the contrary that f´1(t0u) ‰ H and f´1(t1u) ‰ H. Then A = f´1((´δ, δ))

and B = f´1((1´ δ, 1+ δ)) are non-empty set. Moreover, the continuity of f implies that
A and B are open relative to A; thus there exist open sets U and V such that

f´1((´δ, δ)) = U X A and f´1((1 ´ δ, 1 + δ)) = V X A .

Then

(1) A X U X V = f´1((´δ, δ)) X f´1((1 ´ δ, 1 + δ)) = H ,
(2) A X U ‰ H and A X V ‰ H ,
(3) A Ď U Y V since the range of f is a subset of t0, 1u ;



thus A is disconnect, a contradiction.

“ð” Suppose the contrary that A is disconnected so that there exist open sets U and V such
that

(1) A X U X V = H , (2) A X U ‰ H , (3) A X V ‰ H , (4) A Ď U Y V .

Let f : A Ñ R be defined by

f(x) =

"

0 if x P A X U ,
1 if x P A X V .

We first prove that f is continuous on A. Let a P A. Then a P A X U or a P A X V .
Suppose that a P A X U . In particular a P U ; thus the openness of U provides r ą 0 such
that B(a, r) Ď U . Note that if x P B(a, r) X A, then x P A Ď U ; thus

ˇ

ˇf(x) ´ f(a)
ˇ

ˇ = 0 @x P B(a, r) X A

which shows the continuity of f at a. Similar argument can be applied to show that f is
continuous at a P A X V . ˝

Now let f : B Ñ t0, 1u be a continuous function. Let y P B. Then y P C for some C P F .
Since C is a connected set, f : C Ñ t0, 1u is a constant; thus by the fact that x P C, we must
have f(x) = f(y). Therefore, f(y) = f(x) for all y P B; thus f : B Ñ t0, 1u is a constant. The
claim then shows that B is connected.

2. By Problem 13, the union of two overlapping connected sets is connected; thus distinct con-
nected components of A are disjoint.

3. Let C be a connected component of A.

Claim: sC X A is connected.

Proof. Suppose the contrary that there exist open sets U and V such that

(1) sC X A X U X V = H , (2) sC X A X U ‰ H , (3) sC X A X V ‰ H , (4) sC X A Ď U Y V .

Note that (1) and (4) implies that C X U X V = H and C Ď U Y V since C Ď sC X A. If
C X U = H, then C Ď U A; thus the closedness of U A implies that sC Ď U A which shows that
sCXAXU = H, a contradiction. Therefore, CXU ‰ H. Similarly, CXV ‰ H, so we establish
that C is disconnected, a contradiction. ˝

Having established that sC X A is connected, we immediately conclude that C = sC X A since
C Ď sC X A and C is the largest connected component of A containing points in C.



4. Suppose that A is open and C is a connected component of A. Let x P C. Then x P A;
thus there exists r ą 0 such that B(x, r) Ď A. Note that B(x, r) is a connected set and
B(x, r) X C Ě txu ‰ H. Therefore, Problem 13 implies that B(x, r) Y C is a connected subset
of A containing x. Since C is the largest connected subset of A containing x, we must have
B(x, r) Y C = C; thus B(x, r) Ď C.

If M = Rn, then each connected component contains a point whose components are all rational.
Since Qn is countable, we find that an open set in Rn has countable connected components.

5. In (R, | ¨ |) every connected set is an interval or a set of a single point. Since Q and QA do not
contain any intervals, the connected component of Q and QA are points. ˝


