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Problem 1. Let (M, d) be a metric space.
1. Show that a closed subset of a compact set is compact.
2. Show that the union of a finite number of sequentially compact subsets of M is compact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets of M is

sequentially compact.

Proof. 1. Let K be a compact set in M, I’ be a closed subset of K, and {z;}2; be a sequence
in F. Then {z:}, is a sequence in K; thus the sequential compactness of K implies that
there exists a convergent subsequence {xy,}7, with limit x € K. Note that {z,}7, itself is a

convergent sequence in F’; thus the limit x of {zy, }3’;1 belongs to F' by the closedness of F'.

N
2. Let Ky, Ky, -+, Ky be compact sets, and K = | J Ky, and {z,,};°; be a sequence in K. Then
=1

there exists 1 < ¢y < N such that
#{neN|z, e K;} =0.

Let {z, };7>, < K. By the compactness of Kj,, there exists a convergent subsequence

{0, };O_l of {x,, }7, with limit z € K,, = K. Since {z,, }jo_l is a subsequence of {z,}*_;, we
J - 7 =

conclude that every sequence in K has a convergent subsequence with limit in K; thus K is

compact.

3. Since every compact set is closed, the intersection of an arbitrary collection of compact sets of
M is closed. By 1, this intersection is also compact since the intersection is a closed set of any

compact set (in the family). D

Problem 2. Given {a;}{; < R a bounded sequence, define

such that lim a;, = x} )

A= {:C e R ‘ there exists a subsequence {akj }OO ]
j—0

j=1
Show that A is a non-empty sequentially compact set in R. Furthermore , limsup ay = sup A and
k—0o0

liminfa;, = inf A.
k—0o0

Proof. Note that A is the collection of cluster points of bounded sequence {a}7;; thus Problem 3 of
Exercise 7 shows that A is closed. Moreover, A is bounded since {ay}7”; is bounded; thus sup A € A

and infA € A. The desired result then follows from the fact that limsupa, is the largest cluster
k—o0
point of {ax}7>; and lilgn inf ay is the least cluster point of {ay};>;; thus limsupa, = sup A € A and
—0 k—o0

liminfa;, = inf A € A. O
k—o0

Problem 3. Complete the following problems that we talked about in class.



1. Let (M,d) be a complete metric space, and A is a totally bounded subset of M. Show that

cl(A) is sequentially compact.

2. Let (M,d) be a metric space. Show that M is complete if and only if every totally bounded

sequence has a convergent subsequence.

Proof. Let r > 0 be given. Since A is totally bounded, there exist x1, s, - ,xx € M such that
N T
AguB@?) (*)
J:

Note that for all x € M, B(:z:, g) cB [:z:, g} which further implies that

Cl(B(:L‘,C))QB[(L',C} < B(x,r) Ve M.
Therefore, () and 3 of Problem 8 in Exercise 6 imply that

Ac cl(QB(a;j, D)= de(g(xj, )< Og(:cj,r).

j=1 j=1

This shows that A is totally bounded. By the fact that (M, d) is complete, A is complete; thus A is

sequentially compact. =

Problem 4. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M. Then K is compact if and only
if for any family of closed subsets {F,},es, we have

Kmﬂ&#@

ael

whenever K N ﬂ F, # & for all J < [ satisfying #J < o0.

aeJ

2. Show the so-called “Nested Set Properpty”:

Let (M, d) be a metric space, and {K,})°_; be a sequence of non-empty compact sets in
Q0

M such that K; 2 Kjy4 for all j € N. Then there exists at least one point in () K
=1
that is, !
0
K +a.
j=1

Proof. 1. (=) Let K be a compact set, and {F,}.c; be a collection of closed set such that

Kn(\Fa#2@ VJCI,#J<w

aed



Suppose the contrary that K n (), ; Fo = &. Then

Kc (ﬂFa>C:UF§.

ael ael

This, together with the fact that F* is open for all « € I, implies that {F'}.cs is an open cover
of K. By the compactness of K, there exists J < I with #J < oo such that K < [J F..

aeJ
Therefore,

KmﬂFa:Km(UFa>C:@;

aeJ aed

a contradiction.

(<) Let {U,}aer be an open cover of K. Define F,, = US. Then {F,}acr is a family of closed
set satisfying that

KmﬂFa:KmﬂngKm(UUa)czg.
ael ael ael

By assumption, there must be J < [ with #.J < oo such that

KmﬂFa:@.

c
By the fact that ﬂ F, = (U Ua> , we conclude that K < |J,.; Ua; thus we conclude that

aeJ aeJ
every open cover of K has a finite subcover. Therefore, K is compact.

2. Let K = K;, and Fj = Kj for all j € N. Then for any finite subset J of N,

KﬁﬂF}:KmaxJ#Q;

jed

thus 1 implies that K n (] F; # <. o
jeN
Problem 5. 1. Let {zx};2; < R be a sequence in (R,| - |) that converges to = and let Ay =

o _
{xk, Tri1, - }. Show that {z} = [ Aj. Is this true in any metric space?
k=1

2. Suppose that { K };-021 is a sequence of non-empty compact sets satisfying the nested set property
(that is, K; 2 K;11), and diam(K;) — 0 as j — o0, where
diam(K;) = sup {d(z,y) | z,y € K;}.
©¢]
Show that there is exactly one point in () Kj.
j=1
Proof. 1. By 2, it suffices to show that A is non-empty compact set for all k € N and {A4;}, is a

nested set satisfying diam(Ay) — 0 as k — c0. Note that in class we have shown that the set

11 1
{0} U {1, 33 } is compact, and similar proof shows that Ay U {z} is compact; thus

Ay, = Ay U {x}. Therefore, {A;}? | is a nested set.



Let € > 0 be given. Since {xy};°; converges to x, there exists N > 0 such that d(zy,x) < %

whenever k¥ > N. Then )
d(y, z) < 35 Vy,z€An;
thus for j > N,
diam(K;) < & <«

which implies that diam(K;) — 0 as j — o0.

e}
2. First, by the nested set property, (| K; # &. Assume that z,y €
j=1 j=1

all j € N; thus
0 < d(z,y) < diam(Kj) VjeN.

Q0
() K;. Then z,y € K; for

By the assumption that diam(K;) — 0 as j — o0, we conclude that d(z,y) = 0; thus by the

property of the metric, x = y.

o0
Problem 6. Let ¢ be the collection of all sequences {x;};°; < R such that Y, |zx|* < c0. In other
k=1

words,

o0
0* = {{ax}} ) |zr e R for all k € N, 2 |zk|* < o0}

k=1
Define || - [l : 2 — R by

ol = ()’

1. Show that || - || is @ norm on 2. The normed space (¢2, | - |) usually is denoted by ¢2.
2. Show that | - |2 is induced by an inner product.

3. Show that (¢2]| - |2) is complete.

4. Let A= {xe ?||z|, <1}. Is A sequentially compact or not?

Problem 7. Let A, B be two non-empty subsets in R™. Define
d(A,B) =inf{|z —y|2 |z € A,y € B}
to be the distance between A and B. When A = {x} is a point, we write d(A, B) as d(z, B).
(1) Prove that d(A, B) = inf{d(z, B) |z € A}.

(2) Show that |d(x1, B) — d(z2, B)| < |z1 — 2> for all 21,2, € R™.

(3) Define B. = {x € R"|d(z, B) < €} be the collection of all points whose distance from B is less

than . Show that B. is open and [ B. = cl(B).

e>0

(4) If A is sequentially compact, show that there exists z € A such that d(A, B) = d(x, B).



(5) If A is closed and B is sequentially compact, show that there exists x € A and y € B such that
d(A, B) = d(z,y).
(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of (R™, | - |2), so in the proofs of (1)-(4)

we write d(x, y) instead of | — y].
(1) Define f : Ax B — R by f(a,b) = d(a,b). We note that similar proof for Problem 4 of
Exercise 2 also shows that if f: A x B — R, then

oottt (@0 = 28 (2 S(0.0) = juf (326 7 B).
Since gngf(a, b) = d(a, B), we conclude that
€

AA.B)= il f(a.b)= infd(aB).

(2) Let &,y € R™ and € > 0 be given. By the definition of infimum, there exists z € B such that
d(z,B) < d(z,z) < d(x,B) +¢.
By the definition of d(y, B) and the triangle inequality,
d(y,B) <d(y,z) <d(y,z) +d(z, z) < d(x,y) + d(z, B) + ¢;

thus
A symmetric argument (switching @ and y) also shows that d(z, B) — d(y, B) < d(z,y) + €.

Therefore,
‘d(wa B) - d(y7 B)} < d<m7 y) +e.

Since € > 0 is given arbitrarily, we conclude that
(3) Let € B.. Define r = ¢ — d(x, B). Then r > 0; thus there exists z € B such that

d(z,B) < d(z, z) < d(z, B) +g —c.

Therefore, if y € B(az, g), then

d(y,z) < d(y,z) +d(z, z) < g—l—d(w,B) —|—g =d(z,B)+r=c¢
which shows that B(m, g) € B.. Therefore, B, is open.

Next, we note that

dz.B)=0 < (Ye>0)d(zB)<e) < (Ve>0)(zeB.) < =ze()B:;

e>0
thus ¢ € () B. if and only if d(z, B) = 0. Since z € B if and only if d(z, B) = 0, we conclude
e>0 _
that (| B. = B.

e>0



(4) By the definition of infimum, for each n € N there exists a,, € A such that

d(A, B) < d(an, B) < d(A, B) + % .

Since A is compact, there exists a convergent subsequence {a,,}7, of {a,},—; with limit a € A.

By the Sandwich Lemma,
d(a,;, B) — d(A,B) as j— .
On the other hand, (2) implies that
d(ay,,, B) — d(a, B)| < d(ay,,a) > 0 as j — .
Therefore,
|d(a, B) — d(A, B)| < |d(a, B) — d(ay,, B)| +|d(a.,, B) — d(A,B)| > 0 as j — o
which establishes the existence of a € A such that d(a, B) = d(A, B) if A is compact.
(5) By (4), there exists b e B such that d(A, B) = d(b, A). Let C' = B[b,d(A, B) + 1] n A. Then
d(b,A) =d(b,C)

since every point € A\C satisfies that d(b, ) > d(A, B) + 1. On the other hand, the Heine-
Borel Theorem implies that C' is compact; thus (4) implies that there exists ¢ € C' such that
d(b,C) =d(b,c) = |b— c||. The desired result then follows from the fact that C' is a subset of
A (so that ce A).

(6) Let A = {(z,y) € R*|zy > 1,z > 0} and B = {(z,y) € R?|ay < —1,2 < 0}. Then A

and B are closed set since they contain their boundaries. However, since a = (%,n) e A
and b = (—%,n) € BforallneN, dA B) <d(a,b) = % for all n € N which shows that
d(A, B) = 0. However, the fact that A n B = ¢J implies that d(a,b) > 0 for all ae A and

b € B. Therefore, in this case there are not a € A and b € B such that d(A, B) =d(a,b). ©

Problem 8. Let (M, d) be a metric space, and A € M. Show that A is disconnected (not connected)
if and only if there exist non-empty closed set F; and F; such that

Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U; and Us
such that

(a) AnUnUs=g, bOA~nUL#T, (c)AnUs#g, (d)AcU ul,.

Therefore, A is disconnected if and only if there exist non-empty closed set Fy = U and Fy, = Uy
such that



(i) AnFinFs=g, ({i)AnFi#@, (i)AnF+g, (iv)AcSF UF;.

Note that (i) above is equivalent to that A < Fy u F,, while (iv) above is equivalent to that A N
Fi n Fy, = . Moreover, note that if A, B, C are sets satisfying An BnC =@, An B # J and
AnC # J, then

B#+ANBcCANC' and @#AnCc An B,

Therefore, (a), (b) and (c¢) above imply 2 and 3 above, while (i) together with 2 and 3 above implies
that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed
sets F; and F, such that

Problem 9. Prove that if A is connected in a metric space (M,d) and A € B < A, then B is

connected.

Proof. Suppose the contrary that B is disconnected. Then Problem E implies that there exist two
closed set F; and F, such that

Define Ay = FinAand Ay = Fo,n A. Then A = A; u Ay. If Ay = &, then A; = A which, together
with 3 of Problem 8 in Exercise 6, implies that

BgA:A_QgAﬁFQZAmFQ

which implies that B = B n F,. The fact that B n I} n Fy, = & then implies that B n F} <
(Bn Fy)t = BY; thus Bn Fy, = (J, a contradiction. Therefore, A; # . Similarly, A, # . However,
3 of Problem 8 in Exercise 6 implies that

A1ﬁ/_lQ:AlﬁCl(FQﬁA)gAlﬁFQQA:AlﬁFQQBﬂFlﬁFQIQ

and

AQQAI:AQQCI(FlmA)gAQﬁFlQA:AQQFlgBmFQQFIZQ,

a contradiction to the assumption that A is connected. O

Problem 10. Let (M, d) be a metric space, and A € M be a subset. Suppose that A is connected
and contain more than one point. Show that A € A’, where A’ is the collection of accumulation

points of A defined in Exercise 6.

Proof. Suppose the contrary that there exists x € A\A’. Since A\ A’ is the collection of isolated point
of A, there exists 7 > 0 such that B(z,r) n A = {z}. Let U = B(z,r) and V = Bz, g]c Then

1. AnUNV =g

2. AnU ={2} # .



3. AnV 2 A\{z} # O since A contains more than one point.
4. AcM=UuvuV.
Therefore, A is disconnected, a contradiction. O

Problem 11. Let (M, d) be a metric space. A subset A of M is said to be totally disconnected if
for all z,y € A and = # y, there exist opens sets U and V separating A as well as x € U and y e V.
Show that the Cantor set C' defined in Problem 9 of Exercise 7 is totally disconnected.

Proof. It suffices to show that for every z,y € C, ¢ < v, there exists z € C* and z < z < y. Note

1 Q0
that there exists NV > 0 such that |z — y| < T foralln > N. If C = () E,, where E, is given is

n=1

Problem 9 of Exercise 7. Then the length of each interval in F),, has length —; thus if n > N, the

3n
interval [z,y| is not contained in any interval of E,. In other words, there must be z € (x,y) such

that 2z € EC. Since EX < CF, we establish the existence of < z < y such that z € C*. o

Problem 12. Let F} be a nest of connected compact sets (that is, Fy.1 € F}, and F}, is connected

Qa0

for all £ € N). Show that (1) F) is connected. Give an example to show that compactness is an
k=1

essential condition and we cannot just assume that Fj, is a nest of closed connected sets.

a0

Proof. Let K = (] Fi. Then the nested set property implies that K # . Suppose the contrary
k=1

that there exist open sets U and V' such that

L. KnUnV=g, 2 KnU#g, 3 KnV#g, 4 KcUuUV.

Define K; = K nU' and K, = K n V', Then Ky, K, are non-empty closed sets (Check!!!) of K
such that
K:Klqu and KlﬁKQZQ.

In other words, K is the disjoint union of two compact subsets K; and Ks. By (5) of Problem 7, there
exists 21 € K and x5 € K; such that d(xq,z2) = d(K;, K3). Since K1 n Ky = J, g9 = d(x1, 22) > 0;
thus the definition of the distance of sets implies that

g0 < d(z,y) Vee Ky,ye K,.

Define Oy = | B(x, %O) and O, = | B(y, %0) Note that

rxeK1 yeKo

KlgOl, Ky < O, and 01002:@.
Claim: There exists n € N such that F,, € O; u Os.

Proof. Suppose the contrary that for each ng € N, F,,;, € O; U Oz. Then

F,nOtnOS=F,n(0,u0)#@  VneN.



Since O; and Oy are open, F, n O% n Of is a nest of non-empty compact sets; thus the nested set

property shows that

0]
KnO}nOf = ﬂ(anOEmOg) #
n=1
thus K &€ O; u O,, a contradiction. O

Having established the claim, by the fact that Ky < F,, n Oy and Ky < F,,;, n O9, we find that
FnOmOl#@ and Fn0ﬁ02¢@.

Together with the fact that F,,, n Oy n Oy = J and F,, < O; u Oq, we conclude that £, is
disconnected, a contradiction.

The compactness of F), is crucial to obtain the result or we will have counter-examples. For
example, let F, = R?\(—k,k) x (=1,1). Then clearly F}, is closed but not bounded (hence Fj,

is not compact). Moreover, F}, 2 Fyyy for all £k € N; thus {F;}2, is a nest of sets. However,

Q0
N Fr = R*\R x (—1,1) which is disconnected and is the union of two disjoint closed set R x [1,o0)
k=1

a0
and R x (—oo, —1]. Therefore, if {F}}{; is a nest of closed connected sets, it is possible that () Fj
k=1
is disconnected. o

Problem 13. Let {Ax}72, be a family of connected subsets of M, and suppose that A is a connected

subset of M such that A, n A # F for all kK € N. Show that the union ( U Ak) U A is also connected.
keN

Proof. By the induction argument, it suffices to show that if A and B are connected sets and
An B # &, then A U B is connected. Suppose the contrary that there exist open sets U and
V such that

. (AuB)nUnV =g,

-
2. (AUB)nU # &,
- (

)
)

3 AuB)mV#@,
)

4 (AUB)SUUV.

Note that 1 and 4 implies that An U nV = ¢ and A < U u V; thus by the connectedness of A,
either AnU = For AnV = @. W.L.O.G., we assume that A n U = ¢J so that A < V. Then
1 implies that BN U nV = J, 2 implies that B n U # J, and 4 implies that B < U u V. Next
we show that B n'V # (J to reach a contradiction (to that B is connected). Suppose the contrary
that BNV = . Then 3 implies that An B A=AnV # @sothat BNV 2 An B # J, a
contradiction.

For an alternative proof, see the proof of 1 of Problem 15. O

Problem 14. Let A, B < M and A is connected. Suppose that An B # ¢ and A n B® # ¢J. Show
that An 0B # (.



Proof. Suppose the contrary that A n 0B = . Let U = int(B) and V = int(B). If B = &,
then 0B = B 2 B; thus the assumption that A n B # ¢ implies that A n 0B # . Similarly, if
int(B') = &, then An 0B # .

Now suppose that U and V are non-empty open sets. If z ¢ U UV, then 2 € 0 B; thus (U u V)t <
0B and the assumption that A n 0 B = ¢ further implies that A < U u V. Moreover, U NV = (;
thus AnU nV = &. Now we prove that AnU # & and ANV # J to reach a contradiction.

Suppose the contrary that AnU = . Then AnB € AnB = An(UudB) = &, a contradiction.
Therefore, AnU = @&. Similarly, if AnV = &, AnB* € AnBt = An(VUdB®) = An(VUuédB) = &,

a contradiction. o

Problem 15. Let (M, d) be a metric space and A be a non-empty subset of M. A maximal connected

subset of A is called a connected component of A.
1. Let a € A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint

union of its connected components.
3. Show that every connected component of A is a closed subset of A.

4. If Ais open, prove that every connected component of A is also open. Therefore, when M = R",

show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational numbers
in R.

Proof. 1. Let Z be the family # = {C < A ’ z € C and C is connected}. We note that .Z is not

empty since {z} € .#. Let B = |J C. It then suffices to show that B is connected (since if
Ce7F
so, then it is the maximal connected subset of A containing z).

Claim: A subset A < M is connected if and only if every continuous function defined on A

whose range is a subset of {0, 1} is constant.

Proof. “=" Assume that A is connected and f : A — {0,1} is a continuous function, and § =
1/2. Suppose the contrary that f~'({0}) # & and f~'({1}) # &. Then A = f~((—4,9))
and B = f~}((1—4,1+0)) are non-empty set. Moreover, the continuity of f implies that
A and B are open relative to A; thus there exist open sets U and V' such that

fH(=68)=UnA and A1 =6,1+68) =V A.

Then

(1) AnUnNV =f1(=6,0))n fFH(1-61+0)) =T,
(2) AnU#Jand AnV # &,

(3) A< U vV since the range of f is a subset of {0, 1};



thus A is disconnect, a contradiction.

“<” Suppose the contrary that A is disconnected so that there exist open sets U and V' such

that
() AnUnNV =g, 2QANU#Z, B)AnV g, (@A ACUUV.
Let f : A — R be defined by

0 ifxeAnU,
ﬂ@:{liqumv.

We first prove that f is continuous on A. Let a € A. Thenae AnU orae AnV.
Suppose that a € A n U. In particular a € U; thus the openness of U provides r > 0 such
that B(a,r) < U. Note that if x € B(a,r) n A, then z € A < U; thus

|f(z) = fla)] =0 Ve Bla,r)n A

which shows the continuity of f at a. Similar argument can be applied to show that f is

continuous at a € AnV. o

Now let f : B — {0,1} be a continuous function. Let y € B. Then y € C for some C € %.
Since C' is a connected set, f : C'— {0, 1} is a constant; thus by the fact that z € C', we must
have f(x) = f(y). Therefore, f(y) = f(x) for all y € B; thus f : B — {0,1} is a constant. The

claim then shows that B is connected.

. By Problem 13, the union of two overlapping connected sets is connected; thus distinct con-

nected components of A are disjoint.

. Let C be a connected component of A.

Claim: C n A is connected.

Proof. Suppose the contrary that there exist open sets U and V' such that
(1) CnAnUnV =g, 2)CnAnU#Z, B)CnAnV g, 4)CnAcUULV.

Note that (1) and (4) implies that C " U nV = @ and C < U UV since C < C n A. If
C nU = &, then C < U’ thus the closedness of U" implies that C' = U® which shows that
CnAnU = &, a contradiction. Therefore, C nU # . Similarly, C nV # (F, so we establish

that C' is disconnected, a contradiction. O

Having established that C' n A is connected, we immediately conclude that C' = C' n A since

C < C n A and C is the largest connected component of A containing points in C.



4. Suppose that A is open and C is a connected component of A. Let x € C. Then z € A,
thus there exists r > 0 such that B(z,r) < A. Note that B(z,r) is a connected set and
B(z,r) nC 2 {z} # . Therefore, Problem 13 implies that B(z,r) u C is a connected subset
of A containing x. Since C' is the largest connected subset of A containing x, we must have
B(z,r)u C = C; thus B(z,r) < C.

If M = R", then each connected component contains a point whose components are all rational.

Since Q™ is countable, we find that an open set in R™ has countable connected components.

5. In (R,]| - |) every connected set is an interval or a set of a single point. Since Q and Q" do not

contain any intervals, the connected component of Q and Q° are points. =



