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In Exercise Problem m through @, we focus on another kind of connected sets, so-called path

connected sets. First we introduce path connectedness in the following

Definition 0.1. Let (M, d) be a metric space. A subset A € M is said to be path connected if for
every x,y € A, there exists a continuous map ¢ : [0,1] — A such that ¢(0) = z and p(1) = y.

Figure 1: Path connected sets
Problem 1. Show that a convex set in a normed space is path connected.

Proof. Let C' be a convex set in a normed space (V,| - |), and @,y € C. Define ¢ : [0,1] — V by
©(t) = (1 —t)x + ty. Then clearly ¢ is continuous on [0, 1] for

lo®) —¢(s)] = It = sllz—y|  Vtse[0,1].

Moreover, ¢(0) = @, ¢(1) = y, and the convexity (defined in Problem 4 of Exercise 7) of C' implies
that ([0, 1]) € C. Therefore, ¢ : [0,1] — C so that C' is path connected. o

Problem 2. A set S in a vector space V is called star-shaped if there exists p € S such that for
any ¢ € S, the line segment joining p and ¢ lies in S. Show that a star-shaped set in a normed space

is path connected.

Proof. Suppose that there exists p € S such that for any ¢ € S, the line segment joining p and ¢ lies
in S. In other words, such p € S satisfies that

(I-=XNg+Ipc S VAel0,1]] and g€ S.

Let z,y in S. Define
(-2 t2p  HO<t<L,
p(t) = 1
(2—20p+ (2t —1)y if 5 <t<1
Then ¢ is continuous on [0,1] (since lim ¢(t) = lim @(t) = p so that ¢ is continuous at 0.5).
t—0.5 0.5
Moreover, ¢([0,0.5]) = Zp and ¢([0.5,1]) = Py so that ¢ : [0,1] — A is continuous with ¢(0) = x

and ¢(1) = y. Therefore, A is path connected. o



Problem 3. Let A = {(x, sin %) ‘ x € (0, 1]} U ({0} x [-1,1]). Show that A is connected in (R?, |- |2),
but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function ¢ :
0,1] — A such that ¢(0) = (z0,40) € {(a;,sin %) EX (0,1)} and ¢(1) = (0,0) € {0} x [~1,1].
Let to = inf{t € [0,1] | (¢) € {0} x [~1,1]}. In other words, at ¢ = to the path touches 0 x [—1,1]
for the “first time”. By the continuity of ¢, ¢(ty) € {0} x [—1,1]. Since ¢(0) ¢ {0} x [—1,1],

0([0,10)) < {(x,sin 1) ‘x e (0, 1)}.
1

Suppose that ¢(ty) = (0,7) for some y € [—1,1], and ¢(t) = (z(t),sin %) for 0 <t < ty. By

the continuity of ¢, there exists ¢ > 0 such that if |t — to| < 0, |¢(t) — ¢(to)| < 1. In particular,

1 2
t)? ( i ——*) <1 Vte(to—94,1).
o0+ (sin s = (to — 6.1
On the other hand, since ¢ is continuous, z(t) is continuous on [0,%,); thus by the fact that [0,%,) is

connected, z([0, o)) is connected. Therefore, ([0, 1)) = (0, z] for some Z > 0. Since tlir? z(t) = 0,
—lo

—y_| > 1. Forn » 1,

there exists {t,};; € [0,%9) such that t, — to as n — o and |sin

t, € (t() — 5, to) but

1
z(tn)

1 2
e (i)
x(ty,)” + Smx(tn) ]

a contradiction.
On the other hand, A is the closure of the connected set B = {(az,sin %) ‘a: e (0, 1)} (the

. 1 .
connectedness of B follows from the fact that the function ¢(z) = (z,sin -) is continuous on the
T

connected set (0, 1)) Therefore, by Problem 9 of Exercise 8, A = B is connected. O

Problem 4. Let (M, d) be a metric space, and A € M. Show that if A is path connected, then A
is connected.

Hint: Use the fact that connected sets on (R, | -|) are intervals and prove by contradiction.

Proof. Assume the contrary that there are non-empty sets A;, As such that A = A; U Ay but
Al nAy =A,n A = & Let v € A and y € A,. By the path connectedness of A, there exists
a continuous map ¢ : [0,1] — A such that ¢(0) = z and ¢(1) = y. Define I} = p'(A;) and
I, = ¢7'(Ay). Then clearly 0 € I; and 1 € I, and I} n I, = &¥. Moreover,

0, 1] =p (A =p (A uvd)=p H {A) v (A) =L ul.

Claim: [ nLh=Lnl =J&.
Suppose the contrary that ¢t € I; N I,. Then ¢ € ¢p(A;) which shows that ¢(t) € A;. On the other
hand, ¢ € I5; thus there exists {t,}*_, < I, such that t,, — t as n — o0. By the continuity of ¢,

e(t) = lim p(t,) € Ag;

n—ao0



thus we find that ¢(t) € A; n Ay, a contradiction. Therefore, I, n I, = . Similarly, I, n [, = &J;

thus we establish the existence of non-empty sets I; and Iy such that

0,1=Lul, L,L#ZY, Lnh=Lnl,=g

which shows that [0, 1] is disconnected, a contradiction. a

Alternative proof. Assume the contrary that there are two open sets V; and V5 such that

1.

AnVinVo=g;, 2. AnVi#g; 3. AnVo#; 4. AcViuls.

Since A is path connected, for z € AnV; and y € An Vs, there exists a continuous map ¢ : [0,1] — A

such that ¢(0) = x and ¢(1) = y. Since V; and V; are open, there exist U; and Us open in (R, |- )
such that =1 (V}) = U; n[0,1] and o1 (V3) = Uy 1 [0, 1]. Therefore,

0,1]=¢ (A ce ' (V)ue (V) cU uls.

Since 0 € Uy, 1 € Uy, and [0,1] n Uy nUy = ¢ (AN Vi nVy) = &, we conclude that [0, 1] is

disconnected, a contradiction. =

Problem 5. Let T : R" — R™ satisty T'(z + y) = T'(z) + T(y) for all x,y € R".

1.

2.

Show that T'(rz) = rT'(z) for all r € Q and z € R™.

Suppose that T is continuous on R"™. Show that 7' is linear; that is, T'(cx +y) = ¢T'(x) + T(y)
forall ce R, x,y € R™.

Suppose that T is continuous at some point xy in R™. Show that T is continuous on R".
Suppose that T is bounded on some open subset of R™. Show that T" is continuous on R".

Suppose that T is bounded from above (or below) on some open subset of R"™. Show that T is

continuous on R".

Construct a T : R — R which is discontinuous at every point of R, but T'(z +vy) = T'(z) + T(y)
for all z,y € R.

Proof. 1. By induction, T'(kx) = kT'(x) for all k € N. Moreover, T(0) = T(0 + 0) = T(0) + T(0)

which implies that 7°(0) = 0; thus 7'(0z) = 07(z) and if k € N,
—kT(z) = —kT(2)+T(0) = —kT(x)+ T (kx+(—kx)) = —kT (z)+ T (kx)+T(—kx) = T(—kz).

Therefore, T'(kx) = kT'(z) for all k € Z and x € R". Let r = j—) for some p,q € Z. Then for
reR”,

pT(re) = T(pra) = T(qz) = qT'(x)

which implies that T'(rz) = rT'(x) for all r € Q and z € R™.



2. Let z,y € R" and ¢ € R. Then there exists {cx}7; < Q such that klim ¢, = ¢. This further
—00

implies that ¢,z — cx as k — o0 since
lim ||c,z — cz| = lim |[(¢x — ¢)z| = |z| lim |cx — | =0
k—o0 k—o0 k—o0

Therefore, by the continuity of T,

T(cx+y)=T(cx)+T(y) = ]}E& T(exx)+T(y) = lim e, T(z) + T(y) = cT'(x) + T(y) .

k—o0

3. Let a € R™ and € > 0 be given. By the continuity of T" at ¢, there exists ¢ > 0 such that
|T(x — o) = |T'(z) — T(x0)|| <& whenever |z —z¢|<0.
The statement above implies that if |z| < 0, then |T'(z)| < e. Therefore,
|T(x) —T(a)| = |T(x —a)| <e whenever |z —al <o
which shows that 7" is continuous at a.

4. Suppose that T is bounded on an open set U so that T'(U) < B(0, M). Let zy € U. Then there
exists r > 0 such that B(zg,r) < U. Therefore, if x € B(0,7), then x 4+ xy € B(x, ) so that

IT(@)] < T + )| + |T(@o)| < M + [T(xo)| = R:
thus we establish that there exists » and R such that
|T(x)] < R whenever |z| <.
Let £ > 0 be given. Choose ¢ € Q so that 0 < ¢ < % For such a fixed ¢ € Q, choose 0 < § < cr.
If ] < 5, then || < % < s thus if ] <8, we have [T(%) | < & so that
IT@)| = [T(c2)]| = [ ()] = AT ()| < cR <.
Therefore, T is continuous at 0. By 3, T" is continuous on R".

5. Suppose that Tx < M (so that in this case m = 1) for all z € U, where U is an open set in R".
Let xg € U. Then there exists r > 0 such that B(zg,r) € U; thus if 2 € B(0,r),

Tex=T(x+x9) —T(x9g) <M —T(x0) =R.
Therefore, we establish that there exist » and R such that
T(x) <R whenever xe B(0,r).

For z € B(0,r), we must have —z € B(0,r); thus

thus —R < T'(z) whenever x € B(0,r). Therefore, |T'(x)| < R whenever |z| <r. By 4, T is

continuous on R™. o



Problem 6. Let (M, d) be a metric space, A< M, and f: A — R. For a € A, define

liminf f(z) = Tl_i)r(% inf{ f(z) |z € B(a,r) n A\{a}},

r—a

limsup f(z) = rli%l+ sup{f(z) |z € B(a,r) n A\{a}}.

r—a

Complete the following.

1. Show that both liminf f(z) and limsup f(z) exist (which may be +o0), and

r—a r—a

liminf f(z) < limsup f(x).

r—a T—a

Furthermore, there exist sequences {x,}>, {yn,}; < A\{a} such that {z,}> , and {y,}>,

both converge to a, and

lim f(x,) = liminf f(x) and li_r)glo f(yn) = limsup f(x).

n—00 z—a T—a
2. Let {z,}°;, < A\{a} be a convergent sequence with limit a. Show that

liminf f(x) < liminf f(z,) < limsup f(y,) < limsup f(z).

T—=a n—00 n—00 T—a

3. Show that lim f(z) = ¢ if and only if

r—a

liminf f(z) = limsup f(z) = ¢.

T—a T—a

4. Show that liminf f(z) = ¢ € R if and only if the following two conditions hold:

r—a

(a) for all € > 0, there exists § > 0 such that ¢{ — e < f(x) for all z € B(a,d) n A\{a};
(b) for all e > 0 and 0 > 0, there exists z € B(a,d) n A\{a} such that f(z) < {+e.

Formulate a similar criterion for limsup and for the case that ¢ = +oo.

5. Compute the liminf and limsup of the following functions at any point of R.
0 ifzxeQt,
1 ifx:gwith(p,q):l,q>0,p7é().
p p

r ifze@Q,
b _
(b) f(z) {x if x e QC.

Proof. For r > 0, define m, M : A’ — R* by
m(r) = inf{f(x) ! x € B(a,r) n A\{a}} and M(r) = sup {f(x) ‘ x € B(a,r) N A\{a}} )

We remark that it is possible that m(r) = —oo or M(r) = co. Note that m is decreasing and M is

increasing in (0, o).



1. By the monotonicity of m and M, lim m(r) and lim+ M (r) exist (which may be +00). More-
r—0

r—0t
over, m(r) < M(r) for all » > 0; thus lim m(r) < lim M (r) so we conclude that
r—0 r—0

liminf f(z) = lim m(r) < lim M(r) = limsup f(z).

r—a r—0t r—0t Tr—a
Since liminf f(z) = — limsup(—f)(z), it suffices to consider the case of the limit superior.
r—a T—a

(a) If limsup f(x) = oo, then for each n € N there exists 0 < ¢,, < % such that

r—a

M(r)=n whenever 0<r <d,.

By the definition of the supremum, for each n € N there exists z, € B(a, %") N A\{a}

such that f(z,) >n — 1.
(b) If limsup f(z) = L, then for each n € N there exists 0 < 9,, < % such that

r—a

|M(r) - L| < L whenever 0<r< On -
n

By the definition of the supremum, for each n € N there exists z, € B(a, %") N A\{a}
such that . |
L——<f(z,) <L+ —.
n n

Since 9, — 0 as n — o, we find that {z,}°, < A\{a} converges to a and lim f(z,) =

n—a
lim sup f(z).

Tr—a

2. It suffices to show the case of the limit inferior. Let {z,}r_, < A\{a} and z,, — a as n — .
For every k € N, there exists Ny > 0 such that 0 < d(z,,a) < z whenever n > N,. W.L.O.G.,

we can assume that N > k and Ny, > Ny for all k£ € N. By the definition of infimum,
m(+) < f(z,) whenever n = N

which further implies that
m(l) < inf f(z,).

. . 1 o o
Note that TE%1+ m(r) = klgrolo m(%) and 1}1_{2; n;nj\f[k flzy) = ;}1_{{.10 igif(xk), we conclude that

it f (o) = i, m(r) = Jim m(p) < Jim Iof, f(en) = ity Juf J(za) = lin il f ).

3. (=) Let € > 0 be given. There exists ¢ > 0 such that
|f(z) —¢] <e whenever xe€ B(a,0)n A\{a}.

Therefore,
{—e< f(x) <l+¢e whenever ze€ B(a,d)n A\{a}



which implies that
l—e<m(0) < M@O)<l+¢e.

By the monotonicity of m and M, the inequality above implies that
C—e<m(0)<m(r) < M(r)<M@G)<l+e YVO<r<od.
Passing to the limit as » — 07, we find that

¢ — e < liminf f(x) < limsup f(z) <l +¢.

T—a T—a

Since £ > 0 is chosen arbitrary, we conclude that liminf f(x) = limsup f(z) = ¢.

T—a T—a

(<) Let {x,}, < A\{a} be a sequence with limit a. Then 2 and the assumption that
liminf f(z) = limsup f(z) = ¢ imply that liminf f(x,) = limsup f(x,) = ¢. Therefore,
r—a n—0o0

T—a n—00
lim f(z,) =(.
n—00
4. (=) This direction is proved by contradiction.

(a) Suppose the contrary that there exists € > 0 such that for each n € N, there exists
z, € B(a, %) n A\{a} such that f(x,) <{—e. Then {z,} ;A\{a} and nh_r)rolo Ty = @
however,

liminf f(z,) < { —e < ¢ =liminf f(z),

n—o0 Tr—a

a contradiction to 2.

(b) Suppose the contrary that there exist ¢ > 0 and ¢ > 0 such that
flx)=l+¢ Vx e B(a,0) n A\{a}.
Then m(6) = ¢ + ¢; thus the monotonicity of m implies that
(+e<m(d) <m(r) whenever 0<r<9d.
Passing to the limit as » — 07, we conclude that

{4+ < lim m(r) = liminf f(x),

r—0+ r—a

a contradiction.

(<) Let {z,}, < A\{a} be a sequence with limit a, and £ > 0 be given. Then (a) provides
d > 0 such that f(x) > ¢ — e whenever x € B(a,d) n A\{a}. For such § > 0, there exists
N > 0 such that 0 < d(x,,a) < 0 for all n > N. Therefore, if n > N, f(z,) > ¢ — e which

implies that liminf f(z,) = ¢ — . Since € > 0 is chosen arbitrary, we conclude that
n—0o0

liminf f(x,) = ¢ for every convergent sequence {z,}n_; < A\{a} with limit a.
n—00

On the other hand, using (b) we find that for each n € N, there exists z,, € B(a, %) nA\{a}

such that f(z,) < E—I—%. Then liminf f(x,) < ¢, and (i) further implies that liminf f(z,) =
n—0o0 n—o0



¢; thus we establish that there exists a convergent sequence {z,}*_; < A\{a} with limit a
such that liminf f(z,) = ¢.

n—o0
By 1 and 2, we conclude that ¢ = liminf f(x).

r—a

5. (a) liminf f(z) = limsup f(x) =0 for all a € R.

T—a T—a

(b) liminf f(z) = —|al, limsup f(x) = |a|. In particular, lir% f(z) =0. o

r—a

Problem 7. Let (M,d) be a metric space, and A < M. A function f : A — R is called

liminf f(x) = f(a),

. . ’ T—a .
at a € A if either a € A\A’ or limsup £(z) < f(a), and is called

r—a

lower semi-continuous
upper semi-continuous

lower /upper semi-continuous on A if f is lower/uppser semi-continuous at a for all a € A.

1. Show that f : A — R is lower semi-continuous on A if and only if f~!((—o0,7]) is closed relative
to A. Also show that f: A — R is upper semi-continuous on A if and only if f=*([r, o)) is

closed relative to A.

2. Show that f is lower semi-continuous on A if and only if for all convergent sequences {z,}>_ , <

A and {s,}; < R satistying f(z,) < s, for all n € N, we have

f( lim xn) < lim s, .
n—00 n—0o0

3. Let {fa}aer be a family of lower semi-continuous functions on A. Prove that f(z) = sup f,(z)
ael

is lower semi-continuous on A.

4. Let A be a perfect set (that is, A contains no isolated points) and f : A — R be given. Define

f*(x) = limsup f(y) and f«(x) = liminf f(y).

y—x y—z

Show that f* is upper semi-continuous and f, is lower semi-continuous, and f.(x) < f(z) <
f*(x) for all x € A. Moreover, if g is a lower semi-continuous function on A such that g(z) <
f(x) for all x € A, then g < f,.

Proof. We first note that by 1, 2 and 4 of Problem 6,
f A — Ris lower semi-continuous at a

< for all € > 0, there exists 6 > 0 such that f(a) —e < f(z) for all x € B(a,d) n A

< for all convergent sequence {z,,}°; € A with limit a, f(a) < liTIlIi g}f flzn) .

We note that the first statement implies the second one because of 4(a) in Problem 6, the second
statement implies the third one because of x,, € B(a,d) n A when n « 1, and the third statement

implies the first one because of 1 in Problem 6.



1. (=) It suffices to prove the case for limit inferior since limsup f(x) = —liminf(—f)(z). We

r—a

note that F is closed relative to A if and only if £ n A is a closed set in the metric space
(A, d). Therefore, a subset of E of A is closed relative to A if and only if

every sequence {x,}._; € F that converges to a point in A must also has limit in F.

Let 7 € R and {z,}®_, be a sequence in E = f~1((—o0,7]) such that {x,}*_, converges to
a point a € A. Then f(a) < liminf f(z,) < r which implies that a € f~!((—c0,]).
n—o0

(<) Let a € A and € > 0 be given. Define r = f(a) —e. Then V = f~1((r,0)) is open relative
to A (since f~'((—o0,r]) is closed relative to A). Since a € U, there exists 6 > 0 such that
B(a,0) n A < V. This implies that

fla) —e < f(x) Ve Bla,0)nA.

2. (=) Let {x,}°_; be a convergent sequence in A with limit a, {s,}>_, be a real sequence with

limit s, and f(x,) < s, for all n € N. Suppose that f(a) > s. Let ¢ = f(a)2— ®. Since f

is lower semi-continuous at a, liminf f(z) > f(a); thus there exists 6 > 0 such that
fla) —e < f(x) Vre Bla,0)nA.

On the other hand, there exists N > 0 such that z,, € B(a,d) n A and s,, < s+¢ whenever
n = N. Therefore, if n > N,

sp<s+e=fla)—e < f(z,),

a contradiction.

(=) Let a € A, and {x,};_, < A be a sequence with limit a. Let {,,}72, be a subsequence
of {z,};2, such that lim f(z,,) = liminff(z,). Define s; = f(z,,). Then clearly
j—00 n—0o

f (SL’nJ) < s; for all j € N; thus by assumption

fla) < thé s; = hﬂglff(x”) :

3. Let ae An A" and {z,}2, < A\{a} be a sequence with limit a. Then f,(x,) < f(z,) for all

n e N and a € I. Since f, is lower semi-continuous for each o € I, for a € I we have

fa(a) <liminf f,(z) < liminf f(x).

r—a r—a

The inequality above implies that

f(a) = sup fu(a) < lmint f(z);

acl T—a

thus f is lower semi-continuous at a. =



