In Exercise Problem 1 through 4, we focus on another kind of connected sets, so-called path connected sets. First we introduce path connectedness in the following

Definition 0.1. Let (M, d) be a metric space. A subset $A \subseteq M$ is said to be **path connected** if for every $x, y \in A$, there exists a continuous map $\varphi : [0, 1] \to A$ such that $\varphi(0) = x$ and $\varphi(1) = y$.

Figure 1: Path connected sets

Problem 1. Show that a convex set in a normed space is path connected.

Proof. Let C be a convex set in a normed space $(\mathcal{V}, \|\cdot\|)$, and $\boldsymbol{x}, \boldsymbol{y} \in C$. Define $\varphi : [0,1] \to \mathcal{V}$ by $\varphi(t) = (1-t)\boldsymbol{x} + t\boldsymbol{y}$. Then clearly φ is continuous on [0,1] for

$$\|\varphi(t) - \varphi(s)\| = |t - s| \|\boldsymbol{x} - \boldsymbol{y}\| \qquad \forall \, t, s \in [0, 1] \,.$$

Moreover, $\varphi(0) = \boldsymbol{x}$, $\varphi(1) = \boldsymbol{y}$, and the convexity (defined in Problem 4 of Exercise 7) of C implies that $\varphi([0,1]) \subseteq C$. Therefore, $\varphi:[0,1] \to C$ so that C is path connected.

Problem 2. A set S in a vector space \mathcal{V} is called **star-shaped** if there exists $p \in S$ such that for any $q \in S$, the line segment joining p and q lies in S. Show that a star-shaped set in a normed space is path connected.

Proof. Suppose that there exists $p \in S$ such that for any $q \in S$, the line segment joining p and q lies in S. In other words, such $p \in S$ satisfies that

$$(1 - \lambda)q + \lambda p \subseteq S$$
 $\forall \lambda \in [0, 1] \text{ and } q \in S$.

Let x, y in S. Define

$$\varphi(t) = \begin{cases} (1 - 2t)x + 2tp & \text{if } 0 \le t \le \frac{1}{2}, \\ (2 - 2t)p + (2t - 1)y & \text{if } \frac{1}{2} < t \le 1. \end{cases}$$

Then φ is continuous on [0,1] (since $\lim_{t\to 0.5^+} \varphi(t) = \lim_{t\to 0.5^-} \varphi(t) = p$ so that φ is continuous at 0.5). Moreover, $\varphi([0,0.5]) = \overline{xp}$ and $\varphi([0.5,1]) = \overline{py}$ so that $\varphi: [0,1] \to A$ is continuous with $\varphi(0) = x$ and $\varphi(1) = y$. Therefore, A is path connected.

Problem 3. Let $A = \left\{ \left(x, \sin \frac{1}{x} \right) \mid x \in (0, 1] \right\} \cup (\{0\} \times [-1, 1])$. Show that A is connected in $(\mathbb{R}^2, \| \cdot \|_2)$, but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function φ : $[0,1] \to A$ such that $\varphi(0) = (x_0,y_0) \in \left\{ \left(x,\sin\frac{1}{x} \right) \, \middle| \, x \in (0,1) \right\}$ and $\varphi(1) = (0,0) \in \{0\} \times [-1,1]$. Let $t_0 = \inf \left\{ t \in [0,1] \, \middle| \, \varphi(t) \in \{0\} \times [-1,1] \right\}$. In other words, at $t=t_0$ the path touches $0 \times [-1,1]$ for the "first time". By the continuity of φ , $\varphi(t_0) \in \{0\} \times [-1,1]$. Since $\varphi(0) \notin \{0\} \times [-1,1]$, $\varphi([0,t_0)) \subseteq \left\{ \left(x,\sin\frac{1}{x} \right) \, \middle| \, x \in (0,1) \right\}$.

Suppose that $\varphi(t_0) = (0, \bar{y})$ for some $\bar{y} \in [-1, 1]$, and $\varphi(t) = (x(t), \sin \frac{1}{x(t)})$ for $0 \le t < t_0$. By the continuity of φ , there exists $\delta > 0$ such that if $|t - t_0| < \delta$, $|\varphi(t) - \varphi(t_0)| < 1$. In particular,

$$x(t)^{2} + \left(\sin\frac{1}{x(t)} - \bar{y}\right)^{2} < 1 \qquad \forall t \in (t_{0} - \delta, t).$$

On the other hand, since φ is continuous, x(t) is continuous on $[0, t_0)$; thus by the fact that $[0, t_0)$ is connected, $x([0, t_0))$ is connected. Therefore, $x([0, t_0)) = (0, \bar{x}]$ for some $\bar{x} > 0$. Since $\lim_{t \to t_0} x(t) = 0$, there exists $\{t_n\}_{n=1}^{\infty} \in [0, t_0)$ such that $t_n \to t_0$ as $n \to \infty$ and $\left|\sin \frac{1}{x(t_n)} - \bar{y}\right| \ge 1$. For $n \gg 1$, $t_n \in (t_0 - \delta, t_0)$ but

$$x(t_n)^2 + \left(\sin\frac{1}{x(t_n)} - \bar{y}\right)^2 \ge 1$$
,

a contradiction.

On the other hand, A is the closure of the connected set $B = \left\{ \left(x, \sin \frac{1}{x} \right) \, \middle| \, x \in (0,1) \right\}$ (the connectedness of B follows from the fact that the function $\psi(x) = \left(x, \sin \frac{1}{x} \right)$ is continuous on the connected set (0,1)). Therefore, by Problem 9 of Exercise 8, $A = \bar{B}$ is connected.

Problem 4. Let (M, d) be a metric space, and $A \subseteq M$. Show that if A is path connected, then A is connected.

Hint: Use the fact that connected sets on $(\mathbb{R}, |\cdot|)$ are intervals and prove by contradiction.

Proof. Assume the contrary that there are non-empty sets A_1 , A_2 such that $A = A_1 \cup A_2$ but $A_1 \cap \overline{A_2} = A_2 \cap \overline{A_1} = \emptyset$. Let $x \in A_1$ and $y \in A_2$. By the path connectedness of A, there exists a continuous map $\varphi : [0,1] \to A$ such that $\varphi(0) = x$ and $\varphi(1) = y$. Define $I_1 = \varphi^{-1}(A_1)$ and $I_2 = \varphi^{-1}(A_2)$. Then clearly $0 \in I_1$ and $1 \in I_2$, and $I_1 \cap I_2 = \emptyset$. Moreover,

$$[0,1] = \varphi^{-1}(A) = \varphi^{-1}(A_1 \cup A_2) = \varphi^{-1}(A_1) \cup \varphi^{-1}(A_2) = I_1 \cup I_2.$$

Claim: $I_1 \cap \bar{I}_2 = I_2 \cap \bar{I}_1 = \emptyset$.

Suppose the contrary that $t \in I_1 \cap \bar{I}_2$. Then $t \in \varphi(A_1)$ which shows that $\varphi(t) \in A_1$. On the other hand, $t \in \bar{I}_2$; thus there exists $\{t_n\}_{n=1}^{\infty} \subseteq I_2$ such that $t_n \to t$ as $n \to \infty$. By the continuity of φ ,

$$\varphi(t) = \lim_{n \to \infty} \varphi(t_n) \in \overline{A}_2;$$

thus we find that $\varphi(t) \in A_1 \cap \overline{A_2}$, a contradiction. Therefore, $I_1 \cap \overline{I_2} = \emptyset$. Similarly, $I_2 \cap \overline{I_1} = \emptyset$; thus we establish the existence of non-empty sets I_1 and I_2 such that

$$[0,1] = I_1 \cup I_2$$
, $I_1, I_2 \neq \emptyset$, $I_1 \cap \bar{I}_2 = I_2 \cap \bar{I}_1 = \emptyset$

which shows that [0,1] is disconnected, a contradiction.

Alternative proof. Assume the contrary that there are two open sets V_1 and V_2 such that

1.
$$A \cap V_1 \cap V_2 = \emptyset$$
; 2. $A \cap V_1 \neq \emptyset$; 3. $A \cap V_2 \neq \emptyset$; 4. $A \subseteq V_1 \cup V_2$.

Since A is path connected, for $x \in A \cap V_1$ and $y \in A \cap V_2$, there exists a continuous map $\varphi : [0, 1] \to A$ such that $\varphi(0) = x$ and $\varphi(1) = y$. Since V_1 and V_2 are open, there exist U_1 and U_2 open in $(\mathbb{R}, |\cdot|)$ such that $\varphi^{-1}(V_1) = U_1 \cap [0, 1]$ and $\varphi^{-1}(V_2) = U_2 \cap [0, 1]$. Therefore,

$$[0,1] = \varphi^{-1}(A) \subseteq \varphi^{-1}(V_1) \cup \varphi^{-1}(V_2) \subseteq U_1 \cup U_2$$
.

Since $0 \in U_1$, $1 \in U_2$, and $[0,1] \cap U_1 \cap U_2 = \varphi^{-1}(A \cap V_1 \cap V_2) = \emptyset$, we conclude that [0,1] is disconnected, a contradiction.

Problem 5. Let $T: \mathbb{R}^n \to \mathbb{R}^m$ satisfy T(x+y) = T(x) + T(y) for all $x, y \in \mathbb{R}^n$.

- 1. Show that T(rx) = rT(x) for all $r \in \mathbb{Q}$ and $x \in \mathbb{R}^n$.
- 2. Suppose that T is continuous on \mathbb{R}^n . Show that T is linear; that is, T(cx+y)=cT(x)+T(y) for all $c\in\mathbb{R}, x,y\in\mathbb{R}^n$.
- 3. Suppose that T is continuous at some point x_0 in \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 4. Suppose that T is bounded on some open subset of \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 5. Suppose that T is bounded from above (or below) on some open subset of \mathbb{R}^n . Show that T is continuous on \mathbb{R}^n .
- 6. Construct a $T: \mathbb{R} \to \mathbb{R}$ which is discontinuous at every point of \mathbb{R} , but T(x+y) = T(x) + T(y) for all $x, y \in \mathbb{R}$.

Proof. 1. By induction, T(kx) = kT(x) for all $k \in \mathbb{N}$. Moreover, T(0) = T(0+0) = T(0) + T(0) which implies that T(0) = 0; thus T(0x) = 0T(x) and if $k \in \mathbb{N}$,

$$-kT(x) = -kT(x) + T(0) = -kT(x) + T(kx + (-kx)) = -kT(x) + T(kx) + T(-kx) = T(-kx).$$

Therefore, T(kx) = kT(x) for all $k \in \mathbb{Z}$ and $x \in \mathbb{R}^n$. Let $r = \frac{q}{p}$ for some $p, q \in \mathbb{Z}$. Then for $x \in \mathbb{R}^n$,

$$pT(rx) = T(prx) = T(qx) = qT(x)$$

which implies that T(rx) = rT(x) for all $r \in \mathbb{Q}$ and $x \in \mathbb{R}^n$.

2. Let $x, y \in \mathbb{R}^n$ and $c \in \mathbb{R}$. Then there exists $\{c_k\}_{k=1}^{\infty} \subseteq \mathbb{Q}$ such that $\lim_{k \to \infty} c_k = c$. This further implies that $c_k x \to cx$ as $k \to \infty$ since

$$\lim_{k \to \infty} ||c_n x - cx|| = \lim_{k \to \infty} ||(c_k - c)x|| = ||x|| \lim_{k \to \infty} |c_k - c| = 0$$

Therefore, by the continuity of T,

$$T(cx + y) = T(cx) + T(y) = \lim_{k \to \infty} T(c_k x) + T(y) = \lim_{k \to \infty} c_k T(x) + T(y) = cT(x) + T(y)$$
.

3. Let $a \in \mathbb{R}^n$ and $\varepsilon > 0$ be given. By the continuity of T at x_0 , there exists $\delta > 0$ such that

$$||T(x - x_0)|| = ||T(x) - T(x_0)|| < \varepsilon$$
 whenever $||x - x_0|| < \delta$.

The statement above implies that if $||x|| < \delta$, then $||T(x)|| < \varepsilon$. Therefore,

$$||T(x) - T(a)|| = ||T(x - a)|| < \varepsilon$$
 whenever $||x - a|| < \delta$

which shows that T is continuous at a.

4. Suppose that T is bounded on an open set U so that $T(U) \subseteq B(0, M)$. Let $x_0 \in U$. Then there exists r > 0 such that $B(x_0, r) \subseteq U$. Therefore, if $x \in B(0, r)$, then $x + x_0 \in B(x_0, r)$ so that

$$||T(x)|| \le ||T(x+x_0)|| + ||T(x_0)|| \le M + ||T(x_0)|| \equiv R;$$

thus we establish that there exists r and R such that

$$||T(x)|| \leq R$$
 whenever $||x|| < r$.

Let $\varepsilon > 0$ be given. Choose $c \in \mathbb{Q}$ so that $0 < c < \frac{\varepsilon}{R}$. For such a fixed $c \in \mathbb{Q}$, choose $0 < \delta < cr$. If $\|x\| < \delta$, then $\|\frac{x}{c}\| < \frac{\delta}{c} < r$; thus if $\|x\| < \delta$, we have $\|T(\frac{x}{c})\| \leqslant R$ so that

$$||T(x)|| = ||T(c\frac{x}{c})|| = ||cT(\frac{x}{c})|| = c||T(\frac{x}{c})|| \le cR < \varepsilon.$$

Therefore, T is continuous at 0. By 3, T is continuous on \mathbb{R}^n .

5. Suppose that $Tx \leq M$ (so that in this case m = 1) for all $x \in U$, where U is an open set in \mathbb{R}^n . Let $x_0 \in U$. Then there exists r > 0 such that $B(x_0, r) \subseteq U$; thus if $x \in B(0, r)$,

$$Tx = T(x + x_0) - T(x_0) \le M - T(x_0) \equiv R$$
.

Therefore, we establish that there exist r and R such that

$$T(x) \leq R$$
 whenever $x \in B(0, r)$.

For $x \in B(0,r)$, we must have $-x \in B(0,r)$; thus

$$-T(x) = T(-x) \leqslant R$$
:

thus $-R \le T(x)$ whenever $x \in B(0,r)$. Therefore, $|T(x)| \le R$ whenever ||x|| < r. By 4, T is continuous on \mathbb{R}^n .

Problem 6. Let (M,d) be a metric space, $A \subseteq M$, and $f: A \to \mathbb{R}$. For $a \in A'$, define

$$\lim_{x \to a} \inf f(x) = \lim_{r \to 0^+} \inf \left\{ f(x) \mid x \in B(a, r) \cap A \setminus \{a\} \right\},$$
$$\lim_{x \to a} \sup f(x) = \lim_{r \to 0^+} \sup \left\{ f(x) \mid x \in B(a, r) \cap A \setminus \{a\} \right\}.$$

Complete the following.

1. Show that both $\liminf_{x\to a} f(x)$ and $\limsup_{x\to a} f(x)$ exist (which may be $\pm\infty$), and

$$\liminf_{x \to a} f(x) \leqslant \limsup_{x \to a} f(x).$$

Furthermore, there exist sequences $\{x_n\}_{n=1}^{\infty}$, $\{y_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ such that $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ both converge to a, and

$$\lim_{n \to \infty} f(x_n) = \liminf_{x \to a} f(x) \quad \text{and} \quad \lim_{n \to \infty} f(y_n) = \limsup_{x \to a} f(x).$$

2. Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a convergent sequence with limit a. Show that

$$\liminf_{x \to a} f(x) \leqslant \liminf_{n \to \infty} f(x_n) \leqslant \limsup_{n \to \infty} f(y_n) \leqslant \limsup_{x \to a} f(x).$$

3. Show that $\lim_{x\to a} f(x) = \ell$ if and only if

$$\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell.$$

- 4. Show that $\liminf_{x\to a} f(x) = \ell \in \mathbb{R}$ if and only if the following two conditions hold:
 - (a) for all $\varepsilon > 0$, there exists $\delta > 0$ such that $\ell \varepsilon < f(x)$ for all $x \in B(a, \delta) \cap A \setminus \{a\}$;
 - (b) for all $\varepsilon > 0$ and $\delta > 0$, there exists $x \in B(a, \delta) \cap A \setminus \{a\}$ such that $f(x) < \ell + \varepsilon$.

Formulate a similar criterion for limsup and for the case that $\ell = \pm \infty$.

5. Compute the liminf and limsup of the following functions at any point of \mathbb{R} .

(a)
$$f(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q}^{\mathbb{C}}, \\ \frac{1}{p} & \text{if } x = \frac{q}{p} \text{ with } (p, q) = 1, q > 0, p \neq 0. \end{cases}$$

(b)
$$f(x) = \begin{cases} x & \text{if } x \in \mathbb{Q}, \\ -x & \text{if } x \in \mathbb{Q}^{\complement}. \end{cases}$$

Proof. For r > 0, define $m, M : A' \to R^*$ by

$$m(r) = \inf \big\{ f(x) \, \big| \, x \in B(a,r) \, \cap \, A \backslash \{a\} \big\} \quad \text{and} \quad M(r) = \sup \big\{ f(x) \, \big| \, x \in B(a,r) \, \cap \, A \backslash \{a\} \big\} \, .$$

We remark that it is possible that $m(r) = -\infty$ or $M(r) = \infty$. Note that m is decreasing and M is increasing in $(0, \infty)$.

1. By the monotonicity of m and M, $\lim_{r\to 0^+} m(r)$ and $\lim_{r\to 0^+} M(r)$ exist (which may be $\pm\infty$). Moreover, $m(r) \leq M(r)$ for all r>0; thus $\lim_{r\to 0^+} m(r) \leq \lim_{r\to 0^+} M(r)$ so we conclude that

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} m(r) \leqslant \lim_{r \to 0^+} M(r) = \limsup_{x \to a} f(x).$$

Since $\liminf_{x\to a} f(x) = -\limsup_{x\to a} (-f)(x)$, it suffices to consider the case of the limit superior.

(a) If $\limsup_{x\to a} f(x) = \infty$, then for each $n \in \mathbb{N}$ there exists $0 < \delta_n < \frac{1}{n}$ such that

$$M(r) \geqslant n$$
 whenever $0 < r < \delta_n$.

By the definition of the supremum, for each $n \in \mathbb{N}$ there exists $x_n \in B\left(a, \frac{\delta_n}{2}\right) \cap A \setminus \{a\}$ such that $f(x_n) \ge n - 1$.

(b) If $\limsup_{x\to a} f(x) = L$, then for each $n \in \mathbb{N}$ there exists $0 < \delta_n < \frac{1}{n}$ such that

$$|M(r) - L| < \frac{1}{n}$$
 whenever $0 < r < \delta_n$.

By the definition of the supremum, for each $n \in \mathbb{N}$ there exists $x_n \in B\left(a, \frac{\delta_n}{2}\right) \cap A \setminus \{a\}$ such that

$$L - \frac{1}{n} < f(x_n) < L + \frac{1}{n}.$$

Since $\delta_n \to 0$ as $n \to \infty$, we find that $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ converges to a and $\lim_{n \to \infty} f(x_n) = \lim\sup_{x \to a} f(x)$.

2. It suffices to show the case of the limit inferior. Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ and $x_n \to a$ as $n \to \infty$. For every $k \in \mathbb{N}$, there exists $N_k > 0$ such that $0 < d(x_n, a) < \frac{1}{k}$ whenever $n \ge N_k$. W.L.O.G., we can assume that $N_k \ge k$ and $N_{k+1} > N_k$ for all $k \in \mathbb{N}$. By the definition of infimum,

$$m\left(\frac{1}{k}\right) \leqslant f(x_n) \quad whenever \quad n \geqslant N_k$$

which further implies that

$$m\left(\frac{1}{k}\right) \leqslant \inf_{n \geqslant N_k} f(x_n).$$

Note that $\lim_{r\to 0^+} m(r) = \lim_{k\to\infty} m\left(\frac{1}{k}\right)$ and $\lim_{k\to\infty} \inf_{n\geqslant N_k} f(x_k) = \lim_{k\to\infty} \inf_{n\geqslant k} f(x_k)$, we conclude that

$$\liminf_{x \to a} f(x) = \lim_{r \to 0^+} m(r) = \lim_{k \to \infty} m\left(\frac{1}{k}\right) \leqslant \lim_{k \to \infty} \inf_{n \geqslant N_k} f(x_n) = \lim_{k \to \infty} \inf_{n \geqslant k} f(x_n) = \liminf_{n \to \infty} f(x_n).$$

3. (\Rightarrow) Let $\varepsilon > 0$ be given. There exists $\delta > 0$ such that

$$|f(x) - \ell| < \varepsilon$$
 whenever $x \in B(a, \delta) \cap A \setminus \{a\}$.

Therefore,

$$\ell - \varepsilon < f(x) < \ell + \varepsilon$$
 whenever $x \in B(a, \delta) \cap A \setminus \{a\}$

which implies that

$$\ell - \varepsilon \leq m(\delta) \leq M(\delta) \leq \ell + \varepsilon$$
.

By the monotonicity of m and M, the inequality above implies that

$$\ell - \varepsilon \leqslant m(\delta) \leqslant m(r) \leqslant M(r) \leqslant M(\delta) \leqslant \ell + \varepsilon \quad \forall \, 0 < r < \delta.$$

Passing to the limit as $r \to 0^+$, we find that

$$\ell - \varepsilon \leqslant \liminf_{x \to a} f(x) \leqslant \limsup_{x \to a} f(x) \leqslant \ell + \varepsilon.$$

Since $\varepsilon > 0$ is chosen arbitrary, we conclude that $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell$.

- (\Leftarrow) Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a. Then 2 and the assumption that $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = \ell$ imply that $\liminf_{n \to \infty} f(x_n) = \limsup_{n \to \infty} f(x_n) = \ell$. Therefore, $\lim_{n \to \infty} f(x_n) = \ell$.
- 4. (\Rightarrow) This direction is proved by contradiction.
 - (a) Suppose the contrary that there exists $\varepsilon > 0$ such that for each $n \in \mathbb{N}$, there exists $x_n \in B\left(a, \frac{1}{n}\right) \cap A \setminus \{a\}$ such that $f(x_n) \leqslant \ell \varepsilon$. Then $\{x_n\}_{n=1}^{\infty} A \setminus \{a\}$ and $\lim_{n \to \infty} x_n = a$; however,

$$\liminf_{n \to \infty} f(x_n) \leqslant \ell - \varepsilon < \ell = \liminf_{x \to a} f(x),$$

a contradiction to 2.

(b) Suppose the contrary that there exist $\varepsilon > 0$ and $\delta > 0$ such that

$$f(x) \ge \ell + \varepsilon$$
 $\forall x \in B(a, \delta) \cap A \setminus \{a\}$.

Then $m(\delta) \ge \ell + \varepsilon$; thus the monotonicity of m implies that

$$\ell + \varepsilon \leq m(\delta) \leq m(r)$$
 whenever $0 < r < \delta$.

Passing to the limit as $r \to 0^+$, we conclude that

$$\ell + \varepsilon \leqslant \lim_{r \to 0^+} m(r) = \liminf_{x \to a} f(x),$$

a contradiction.

(\Leftarrow) Let $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a, and $\varepsilon > 0$ be given. Then (a) provides $\delta > 0$ such that $f(x) > \ell - \varepsilon$ whenever $x \in B(a, \delta) \cap A \setminus \{a\}$. For such $\delta > 0$, there exists N > 0 such that $0 < d(x_n, a) < \delta$ for all $n \ge N$. Therefore, if $n \ge N$, $f(x_n) > \ell - \varepsilon$ which implies that $\liminf_{n \to \infty} f(x_n) \ge \ell - \varepsilon$. Since $\varepsilon > 0$ is chosen arbitrary, we conclude that

 $\liminf_{n\to\infty} f(x_n) \geqslant \ell$ for every convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ with limit a.

On the other hand, using (b) we find that for each $n \in \mathbb{N}$, there exists $x_n \in B\left(a, \frac{1}{n}\right) \cap A \setminus \{a\}$ such that $f(x_n) < \ell + \frac{1}{n}$. Then $\liminf_{n \to \infty} f(x_n) \le \ell$, and (i) further implies that $\liminf_{n \to \infty} f(x_n) = 1$

 ℓ ; thus we establish that there exists a convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ with limit asuch that $\liminf_{n\to\infty} f(x_n) = \ell$.

By 1 and 2, we conclude that $\ell = \liminf f(x)$.

(a) $\liminf_{x \to a} f(x) = \limsup_{x \to a} f(x) = 0$ for all $a \in \mathbb{R}$.

(b)
$$\liminf_{x\to a} f(x) = -|a|$$
, $\limsup_{x\to a} f(x) = |a|$. In particular, $\lim_{x\to 0} f(x) = 0$.

Problem 7. Let (M,d) be a metric space, and $A\subseteq M$. A function $f:A\to\mathbb{R}$ is called $lower\ semi-continuous$

at $a \in A$ if either $a \in A \setminus A'$ or $\liminf_{x \to a} f(x) \geqslant f(a),$ $\limsup_{x \to a} f(x) \leqslant f(a),$ and is called $upper\ semi\text{-}continuous$

lower/upper semi-continuous on A if f is lower/upper semi-continuous at a for all $a \in A$.

- 1. Show that $f: A \to \mathbb{R}$ is lower semi-continuous on A if and only if $f^{-1}((-\infty, r])$ is closed relative to A. Also show that $f:A\to\mathbb{R}$ is upper semi-continuous on A if and only if $f^{-1}([r,\infty))$ is closed relative to A.
- 2. Show that f is lower semi-continuous on A if and only if for all convergent sequences $\{x_n\}_{n=1}^{\infty} \subseteq$ A and $\{s_n\}_{n=1}^{\infty} \subseteq \mathbb{R}$ satisfying $f(x_n) \leq s_n$ for all $n \in \mathbb{N}$, we have

$$f\Big(\lim_{n\to\infty}x_n\Big)\leqslant\lim_{n\to\infty}s_n.$$

- 3. Let $\{f_{\alpha}\}_{{\alpha}\in I}$ be a family of lower semi-continuous functions on A. Prove that $f(x)=\sup_{\alpha}f_{\alpha}(x)$ is lower semi-continuous on A.
- 4. Let A be a perfect set (that is, A contains no isolated points) and $f:A\to\mathbb{R}$ be given. Define

$$f^*(x) = \limsup_{y \to x} f(y)$$
 and $f_*(x) = \liminf_{y \to x} f(y)$.

Show that f^* is upper semi-continuous and f_* is lower semi-continuous, and $f_*(x) \leq f(x) \leq$ $f^*(x)$ for all $x \in A$. Moreover, if g is a lower semi-continuous function on A such that $g(x) \leq$ f(x) for all $x \in A$, then $g \leq f_*$.

Proof. We first note that by 1, 2 and 4 of Problem 6,

 $f:A\to\mathbb{R}$ is lower semi-continuous at a

- \Leftrightarrow for all $\varepsilon > 0$, there exists $\delta > 0$ such that $f(a) \varepsilon < f(x)$ for all $x \in B(a, \delta) \cap A$
- \Leftrightarrow for all convergent sequence $\{x_n\}_{n=1}^{\infty} \subseteq A$ with limit $a, f(a) \leq \liminf_{n \to \infty} f(x_n)$.

We note that the first statement implies the second one because of 4(a) in Problem 6, the second statement implies the third one because of $x_n \in B(a,\delta) \cap A$ when $n \ll 1$, and the third statement implies the first one because of 1 in Problem 6.

1. (\Rightarrow) It suffices to prove the case for limit inferior since $\limsup_{x\to a} f(x) = -\liminf_{x\to a} (-f)(x)$. We note that E is closed relative to A if and only if $E \cap A$ is a closed set in the metric space (A,d). Therefore, a subset of E of A is closed relative to A if and only if

every sequence $\{x_n\}_{n=1}^{\infty} \subseteq E$ that converges to a point in A must also has limit in E.

Let $r \in \mathbb{R}$ and $\{x_n\}_{n=1}^{\infty}$ be a sequence in $E \equiv f^{-1}((-\infty, r])$ such that $\{x_n\}_{n=1}^{\infty}$ converges to a point $a \in A$. Then $f(a) \leq \liminf_{n \to \infty} f(x_n) \leq r$ which implies that $a \in f^{-1}((-\infty, r])$.

(\Leftarrow) Let $a \in A$ and $\varepsilon > 0$ be given. Define $r = f(a) - \varepsilon$. Then $V = f^{-1}((r, \infty))$ is open relative to A (since $f^{-1}((-\infty, r])$ is closed relative to A). Since $a \in U$, there exists $\delta > 0$ such that $B(a, \delta) \cap A \subseteq V$. This implies that

$$f(a) - \varepsilon < f(x)$$
 $\forall x \in B(a, \delta) \cap A$.

2. (\Rightarrow) Let $\{x_n\}_{n=1}^{\infty}$ be a convergent sequence in A with limit a, $\{s_n\}_{n=1}^{\infty}$ be a real sequence with limit s, and $f(x_n) \leq s_n$ for all $n \in \mathbb{N}$. Suppose that f(a) > s. Let $\varepsilon = \frac{f(a) - s}{2}$. Since f is lower semi-continuous at a, $\liminf_{x \to a} f(x) \geq f(a)$; thus there exists $\delta > 0$ such that

$$f(a) - \varepsilon < f(x)$$
 $\forall x \in B(a, \delta) \cap A$.

On the other hand, there exists N > 0 such that $x_n \in B(a, \delta) \cap A$ and $s_n < s + \varepsilon$ whenever $n \ge N$. Therefore, if $n \ge N$,

$$s_n < s + \varepsilon = f(a) - \varepsilon < f(x_n),$$

a contradiction.

(\Leftarrow) Let $a \in A$, and $\{x_n\}_{n=1}^{\infty} \subseteq A$ be a sequence with limit a. Let $\{x_{n_j}\}_{j=1}^{\infty}$ be a subsequence of $\{x_n\}_{n=1}^{\infty}$ such that $\lim_{j\to\infty} f(x_{n_j}) = \liminf_{n\to\infty} f(x_n)$. Define $s_j = f(x_{n_j})$. Then clearly $f(x_{n_j}) \leq s_j$ for all $j \in \mathbb{N}$; thus by assumption

$$f(a) \leq \lim_{j \to \infty} s_j = \liminf_{n \to \infty} f(x_n)$$
.

3. Let $a \in A \cap A'$ and $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{a\}$ be a sequence with limit a. Then $f_{\alpha}(x_n) \leqslant f(x_n)$ for all $n \in \mathbb{N}$ and $\alpha \in I$. Since f_{α} is lower semi-continuous for each $\alpha \in I$, for $\alpha \in I$ we have

$$f_{\alpha}(a) \leqslant \liminf_{x \to a} f_{\alpha}(x) \leqslant \liminf_{x \to a} f(x)$$
.

The inequality above implies that

$$f(a) = \sup_{\alpha \in I} f_{\alpha}(a) \leqslant \liminf_{x \to a} f(x);$$

thus f is lower semi-continuous at a.