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Problem 1. Check if the following functions on uniformly continuous.
1. f:(0,0) — R defined by f(x) = sinlogz.
2. f:(0,1) — R defined by f(z) = zsin %
: (0,00) — R defined by f(z) = +/x.

: R — R defined by f(x) = cos(z?).

S
- = = =

: R — R defined by f(z) = cos®z.

6. f: R — R defined by f(z) = zsinx.

Problem 2. 1. Find all positive numbers a and b such that the function f(z) = Sluiwwb) is uniformly

continuous on [0, c0).

2. Find all positive numbers a and b such that the function f(z,y) = |x|*|y|® is uniformly contin-

uous on R2.

Problem 3. Let f : R" — R™ be continuous, and lim f(z) = b exists for some b € R™. Show that

|z —a0
f is uniformly continuous on R".

Proof. Let € > 0 be given. By the fact that lim f(z) = b, there exists M > 0 such that

|z|—>00
|f(x) = b|gm < g whenever |z|gn = M .

By the Heine-Borel Theorem, B[0, M + 1] is compact; thus f is uniformly continuous on B[0, M + 1]
and there exists § € (0, %) such that

1f(z) = f)| < g whenever ||z — y|gs < 6 and z,y € B[0, M + 1]. (%)
Therefore, for z,y € R" satisfying |z — y| < 0,
1. if 2,y € B[0, M + 1], then () implies that
[f(z) = f()|em <&
2. if x ¢ B[0, M + 1] or y ¢ B[0, M + 1], then x,y € B[0, M]* which implies that

[f (@) = f@)lrm < |f (@)[rm + 1f () |rm <. o

Problem 4. Suppose that f : R” — R™ is uniformly continuous. Show that there exists a > 0 and
b > 0 such that || f(x)|gm < a|z|gn + b.



Proof. Since f is uniformly continuous on R", there exists ¢ > 0 such that

| f(z) — f(y)HRn <1 whenever |z —y|gn <0.

For a given z € R", let N € N such that |z e < N < |2/

5 5 + 1. For each k € N, define points x,

k
by z), = Nx Then {x}72, satisfies that

|

<0 VkeN

|lzx — 2p—1]lRm =

which further implies that
1f(zx) — fzp—1)|rm < 1 VkeN.

Therefore,
N
[f (@) em < |1f(2) = f(O)|em + [ £(O)[em < Z f(@r-1)|em + [ £(0) ]
1 —
SN+ fO)lrn < 5l@lzm + [ f(0)rn +1;
thus a = % and b = | f(0)|gm + 1 verify the inequality |f(z)|gm < alz|g~ + b. o

Problem 5. Let f(x) = g(i; be a rational function define on R, where p and ¢ are two polynomials.
Show that f is uniformly continuous on R if and only if the degree of ¢ is not more than the degree

of p plus 1

Proof. Note that if f is defined on R, then p(x) # 0 for all x € R. By Problem @, there exist a,b > 0
such that

‘Q(x)‘éa\x]jtb VexeR.
p(z)

Therefore, |q(x)| < |p(x)|(alz| 4+ b) for all z € R, and this inequality above can be true if and only if
the degree of ¢ is not more than the degree of p plus 1. O

Problem 6. Suppose that f : R — R is a continuous periodic function; that is, there exists p > 0
such that f(z +p) = f(z) for all x € R (and f is continuous). Show that f is uniformly continuous
on R.

Proof. Let p > 0 be such that f(x+p) = f(x) for all x € R, and € > 0 be given. Since f is uniformly

continuous on [—p, p|, there exists ¢ € (0, p) such that
lf(z) — fly)| < g whenever |z —y| <0 and z,y € [—p,p].

Therefore, if |z—y| < 0, we must have x, y € [kp—p, kp—+p)| for some k € Z so that x—kp, y—kp € [—p, p|
which, together with the fact that |(z — kp) — (y — kp)| = | — y| < 9, implies that

[f(2) = fy)] = |fle = kp) = fly = kp)| < <. o



Problem 7. Let (a,b) € R be an open interval, and f : (a,b) — R™ be a function. Show that the

following three statements are equivalent.
1. f is uniformly continuous on (a, b).

2. f is continuous on (a,b), and both limits lim f (x) and hril, f(z) exist.

r—a

3. For all € > 0, there exists N > 0 such that |f(z) — f(y)| < & whenever )W‘ > N and
z,y € (a,b), © #y.

Proof. First we note that 1 and 2 are equivalent since

1. if f is uniformly continuous on (a, b), then there is a unique continuous extension g of f on [a, b];
thus lim+ g(z) = g(a) and lian_ g(x) = g(b) exists, and 2 holds since lim+ g(z) = lim+ f(x) and
liril_ g(x) = lirlr)l_ f(z).

2. if lim f(z) and 111?7 f(z) exists, we define g : [a,b] — R by g(z) = f(z) for x € (a,b) and g(a),
g(b) are respectively the limit of f at a, b. Then g is continuous on [a, b]; thus the compactness
of [a, b] shows that ¢ is uniformly continuous on [a,b]. In particular, ¢ is uniformly continuous

on (a,b) which is the same as saying that f is uniformly continuous on (a, b).
Next we prove that 1 and 3 are equivalent.

“1 = 3” Suppose the contrary that there exists € > 0 such that for each n € N there exist z,, y,, € (a, b)
such that

Tn # Yoo |[(@n) = f(ya)] =€ Dbut ’M >n  VneN.
Tn — Yn
By the Bolzano-Weierstrass Theorem/Property, there exist convergent subsequence {x,,}7,
and {y,,}72, with limit z and y. Since z,,y, € (a,b) for all n € N, we must have z,y € [a, b].
If x =y, then |z, — y,| — 0 as n — oo; thus the uniform continuity of f on (a,b) implies that
|f(zn) = f(yn)| — 0 as n — oo which contradicts to the fact that |f(z,) — f(yn)| = € for all

n € N. Therefore, z # y which further shows that the limit

‘f(fvn) — ()
LTn = Yn

lim
n—0o0

exists since the limit {f(z,)}>, and {f(yn)}.; both exist and lim (z, —y,) =z —y # 0.
n=1 n

This is a contradiction to that ‘f(x > n for all n € N.
X

n — Yn
“3 = 1”7 Suppose the contrary that there exists ¢ > 0 such that for each n € N there exists
1 . .
T, Yn € (a,b) satistying |z, — y,| < — but |f(z,) — f(yn)| = €. For this € > 0, by assumption
n
there exists N > 0 such that

f(x) = f(y)

|f(z) — f(y)| <e whenever ‘ p—y

‘>Nandx,ye(a,b),x;ﬁy.



Since |f(zn) — f(yn)| = €, we must have x,, # y,; thus the fact that x,,y, € (a,b) implies that

Fa) =S _ v ymen
Tpn — Yn

1
This contradicts to the fact that |z, — y,| < - and |f(z,) — f(yn)| > €. o

Problem 8. Suppose that f : [a,b] — R is Holder continuous with exponent «; that is, there
exist M > 0 and « € (0, 1] such that

[f(@) = fW)l < Mz —y|*  VYa,yela,b].
Show that f is uniformly continuous on [a,b]. Show that f : [0,0) — R defined by f(z) = /x is

Holder continuous with exponent 5
Proof. Let € > 0 be given. Define § = M~aca. Then § > 0. Moreover, if |z —y| < 6 and z, y € [a, b,
[f(2) = fy)| < Mz —y|* < Mo* =e.

Therefore, f is uniformly continuous on [a, b].
1
Next we show that f(x) = 4/x is Holder continuous with exponent 7 Note that if z,y > 0 and

T # Y,
VE- Vil _ W VilNE VIl lo—yl _ vEENE
|z — y|2 |x—y]%|\/§+\/§\ VE A+l Ve Y ’
thus
|\/E—\/§\<\x—y\% Vao,y=>0and z # y.
which implies that f(z) = 4/ is Hélder continuous with exponent % on [0, 00). D

Problem 9. A function f : A x B — R™, where A € R and B < RP, is said to be separately
continuous if for each g € A, the map ¢g(y) = f(xo,y) is continuous and for yg € B, h(x) = f(z,yo)

is continuous. f is said to be continuous on A uniformly with respect to B if
Ve>0,36>053|f(z,y) - f(:zcg,y)H2 < ¢ whenever |z — x| <dandxe A,y e B.

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f

is continuous on A x B.

Proof. Let € > 0, and (a,b) € A x B be given. By assumption there exists d; > 0 such that
€
Hf(xay) - f(aay)HQ < 5

Since f is separately continuous, there exists d, > 0 such that

whenever |z —aly < andze A,ye B.

£
| f(a,y) = f(a,b)], < 5 whenever |y —bls < dy and y € B.

Define 6 = min{dy, d2}. Then if |(x,y) — (a,b)|s < §, we must have |z — al, < §; and |y — b2 < &2
so that

|f(z,y) = fla, )2 = f (2, y) = fla,y) + fla,y) — f(a, )]
<|[f(z,y) = fla,9)l2 + | f(a,y) = fla,b)]2 < &

which shows that f is continuous at (a, b). D



Problem 10. Let (M, d) be a metric space, A < M, and f,g: A — R be uniformly continuous on
A. Show that if f and g are bounded, then fg is uniformly continuous on A. Does the conclusion
still hold if f or g is not bounded?

Proof. Let {x,}2 1, {yn}2; be sequences in A satisfying that lim d(z,,y,) = 0. Suppose that
n—00
|f(z)] < M and |g(z)| < M for all z € A. Then

20)9(xn) = [(@0)9(yn) + f(@0)9(Wn) — f(Un)9(yn)|
zo)llg(@n) — g(un)| + [9(un)|| f (@) = f(yn)]
< M(|f(@n) = Flyn)| + |9(@n) — 9(yn)]) ;

|f (@) g(@n) = f(yn)g(yn)| = |
|

thus the uniform continuity of f and g, together with the Sandich Lemma, implies that

Hm | f(2n)g(xn) — f(Yn)g(yn)| = 0.

n—0o0

Therefore, fg is uniformly continuous on A.
When the boundedness is removed from the condition, the product of f and g might not be
uniformly continuous. For example, f(x) = g(x) = z are continuous on R, but (fg)(z) = 2? is no

uniformly continuous on R (from an example in class). o

Problem 11. Let £2([0,1)) be the collection of all polynomials defined on [0, 1], and | - |, be the

max-norm defined by [|p|, = m[ax] Ip(x)].
ze€|0,1

1. Show that the differential operator % : 2([0,1]) — ([0, 1)) is linear.

2. Show that di (2([0,1]), | - |) — (22(10,1]),] - | ) is unbounded; that is, show that

X

sup |[p'[l = 0.
[plloo=1

Proof. 1. Let p,q € ([0,1]) and c € R. Then by the rule of differentiation,

d d d

(e +)(2) = p'(2) +¢'(w) = cpla) + ——q(@);

thus % : 2(]0,1]) - £([0,1]) is linear.

2. Consider p,(z) = 2". Then ||p,)s = rn[ax} ™ =1 for all n € N; however,
z€|0,1

Ip!lo = max nz"t =n neN;
z€[0,1]

thus sup ||p’[. = 0. o
Iplloo=1



Problem 12. Recall that M,, ., is the collection of all m x n real matrices. For a given A € M,,,xn,
define a function f : M, «,, — R by

f(M) = tr(AM),
where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show
that f € Z(Myxm, R).
Hint: You may need the conclusion that any two norms on a finite dimensional vector spaces over

R or C are equivalent.

Proof. Let A = [aij]i<icmi<j<n and M = [myi]i1<j<ni<k<m. Then
m n
$ S0
i=1j=1

First we show that f € Z(Mxm,R). Let M = [mjrlicj<ni<kem and N = [njili<j<nickem be

N, 1xRX

matrices in M,,«,, and ¢ € R. Then

f(eM + N) = tr(A(cM + N)) ii a;;j(emj; +nji) = ZZa”mﬂqLZZawnﬂ
i=1j=1 i=1j=1 i=1j=1

= ctr(AM) + tr(AN) = ¢f (M) + f(N).

Let | - || : Mpxm — R be defined by

n m
|[mkhi<jcnicham| = Z Z [l -

j=1 k=1
Then || - | is a norm on M,,x,, and
m n m n
sup |f(M)] = sup ‘Zz%-mﬁ <22|aij\<oo;
M |=1 D=1 Xk Imgel=1" 20 55 i=1j=1

thus f: (Mysm, || - |) = (R,|-|) is bounded. Let || - || be another norm on M,,y,,. Since M, is

finite dimensional vector spaces over R, there exists ¢ and C' such that
M| < M| < CIM]| VMe M.

Therefore, {M & My | 1M < 1}  {M & My | |M] < -}

sup [f(M)| < sup [f(M)|= sup ~|f(ch)| jag| < o0;
lIMl=1 IMl<1/e leM[<1 € ;_]ZI ’
thus f : (Mo, [| - [|) — R is bounded. D

Remark 0.1. Problem @ is a special case of the theorem (about linear maps on a finite dimensional

normed space must be bounded) in class.



