
Exercise Problem Sets 10
Dec. 11. 2020

Problem 1. Check if the following functions on uniformly continuous.

1. f : (0,8) Ñ R defined by f(x) = sin log x.

2. f : (0, 1) Ñ R defined by f(x) = x sin 1

x
.

3. f : (0,8) Ñ R defined by f(x) =
?
x.

4. f : R Ñ R defined by f(x) = cos(x2).

5. f : R Ñ R defined by f(x) = cos3 x.

6. f : R Ñ R defined by f(x) = x sinx.

Problem 2. 1. Find all positive numbers a and b such that the function f(x) =
sin(xa)
1 + xb

is uniformly
continuous on [0,8).

2. Find all positive numbers a and b such that the function f(x, y) = |x|a|y|b is uniformly contin-
uous on R2.

Problem 3. Let f : Rn Ñ Rm be continuous, and lim
|x|Ñ8

f(x) = b exists for some b P Rm. Show that
f is uniformly continuous on Rn.

Proof. Let ε ą 0 be given. By the fact that lim
|x|Ñ8

f(x) = b, there exists M ą 0 such that

}f(x) ´ b}Rm ă
ε

2
whenever }x}Rn ě M .

By the Heine-Borel Theorem, B[0,M +1] is compact; thus f is uniformly continuous on B[0,M +1]

and there exists δ P
(
0,

1

2

)
such that

}f(x) ´ f(y)} ă
ε

2
whenever }x ´ y}Rn ă δ and x, y P B[0,M + 1] . (‹)

Therefore, for x, y P Rn satisfying }x ´ y} ă δ,

1. if x, y P B[0,M + 1], then (‹) implies that

}f(x) ´ f(y)}Rm ă ε .

2. if x R B[0,M + 1] or y R B[0,M + 1], then x, y P B[0,M ]A which implies that

}f(x) ´ f(y)}Rm ď }f(x)}Rm + }f(y)}Rm ă ε . ˝

Problem 4. Suppose that f : Rn Ñ Rm is uniformly continuous. Show that there exists a ą 0 and
b ą 0 such that }f(x)}Rm ď a}x}Rn + b.



Proof. Since f is uniformly continuous on Rn, there exists δ ą 0 such that
›

›f(x) ´ f(y)
›

›

Rn ă 1 whenever }x ´ y}Rn ă δ .

For a given x P Rn, let N P N such that }x}Rn

δ
ă N ď

}x}Rn

δ
+ 1. For each k P N, define points xk

by xk ”
kx

N
. Then txku8

k=0 satisfies that

}xk ´ xk´1}Rm =
}x}Rn

N
ă δ @ k P N

which further implies that
}f(xk) ´ f(xk´1)}Rm ă 1 @ k P N .

Therefore,

}f(x)}Rm ď }f(x) ´ f(0)}Rm + }f(0)}Rm ď

N
ÿ

k=1

}f(xk) ´ f(xk´1)}Rm + }f(0)}Rm

ď N + }f(0)}Rm ď
1

δ
}x}Rm + }f(0)}Rm + 1 ;

thus a =
1

δ
and b = }f(0)}Rm + 1 verify the inequality }f(x)}Rm ď a}x}Rn + b. ˝

Problem 5. Let f(x) = q(x)

p(x)
be a rational function define on R, where p and q are two polynomials.

Show that f is uniformly continuous on R if and only if the degree of q is not more than the degree
of p plus 1.

Proof. Note that if f is defined on R, then p(x) ‰ 0 for all x P R. By Problem 4, there exist a, b ą 0

such that
ˇ

ˇ

ˇ

q(x)

p(x)

ˇ

ˇ

ˇ
ď a|x| + b @x P R .

Therefore, |q(x)| ď |p(x)|(a|x| + b) for all x P R, and this inequality above can be true if and only if
the degree of q is not more than the degree of p plus 1. ˝

Problem 6. Suppose that f : R Ñ R is a continuous periodic function; that is, there exists p ą 0

such that f(x+ p) = f(x) for all x P R (and f is continuous). Show that f is uniformly continuous
on R.

Proof. Let p ą 0 be such that f(x+p) = f(x) for all x P R, and ε ą 0 be given. Since f is uniformly
continuous on [´p, p], there exists δ P (0, p) such that

|f(x) ´ f(y)| ă
ε

2
whenever |x ´ y| ă δ and x, y P [´p, p] .

Therefore, if |x´y| ă δ, we must have x, y P [kp´p, kp+p] for some k P Z so that x´kp, y´kp P [´p, p]

which, together with the fact that |(x ´ kp) ´ (y ´ kp)| = |x ´ y| ă δ, implies that
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ =
ˇ

ˇf(x ´ kp) ´ f(y ´ kp)
ˇ

ˇ ă ε . ˝



Problem 7. Let (a, b) Ď R be an open interval, and f : (a, b) Ñ Rm be a function. Show that the
following three statements are equivalent.

1. f is uniformly continuous on (a, b).

2. f is continuous on (a, b), and both limits lim
xÑa+

f(x) and lim
xÑb´

f(x) exist.

3. For all ε ą 0, there exists N ą 0 such that
ˇ

ˇf(x) ´ f(y)
ˇ

ˇ ă ε whenever
ˇ

ˇ

ˇ

f(x) ´ f(y)

x ´ y

ˇ

ˇ

ˇ
ą N and

x, y P (a, b), x ‰ y.

Proof. First we note that 1 and 2 are equivalent since

1. if f is uniformly continuous on (a, b), then there is a unique continuous extension g of f on [a, b];
thus lim

xÑa+
g(x) = g(a) and lim

xÑb´
g(x) = g(b) exists, and 2 holds since lim

xÑa+
g(x) = lim

xÑa+
f(x) and

lim
xÑb´

g(x) = lim
xÑb´

f(x).

2. if lim
xÑa+

f(x) and lim
xÑb´

f(x) exists, we define g : [a, b] Ñ R by g(x) = f(x) for x P (a, b) and g(a),
g(b) are respectively the limit of f at a, b. Then g is continuous on [a, b]; thus the compactness
of [a, b] shows that g is uniformly continuous on [a, b]. In particular, g is uniformly continuous
on (a, b) which is the same as saying that f is uniformly continuous on (a, b).

Next we prove that 1 and 3 are equivalent.

“1 ñ 3” Suppose the contrary that there exists ε ą 0 such that for each n P N there exist xn, yn P (a, b)

such that

xn ‰ yn ,
ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ ě ε but
ˇ

ˇ

ˇ

f(xn) ´ f(yn)

xn ´ yn

ˇ

ˇ

ˇ
ą n @n P N .

By the Bolzano-Weierstrass Theorem/Property, there exist convergent subsequence txnj
u8
j=1

and tynj
u8
j=1 with limit x and y. Since xn, yn P (a, b) for all n P N, we must have x, y P [a, b].

If x = y, then |xn ´ yn| Ñ 0 as n Ñ 8; thus the uniform continuity of f on (a, b) implies that
|f(xn) ´ f(yn)| Ñ 0 as n Ñ 8 which contradicts to the fact that |f(xn) ´ f(yn)| ě ε for all
n P N. Therefore, x ‰ y which further shows that the limit

lim
nÑ8

ˇ

ˇ

ˇ

f(xn) ´ f(yn)

xn ´ yn

ˇ

ˇ

ˇ

exists since the limit tf(xn)u
8
n=1 and tf(yn)u

8
n=1 both exist and lim

nÑ8
(xn ´ yn) = x ´ y ‰ 0.

This is a contradiction to that
ˇ

ˇ

ˇ

f(xn) ´ f(yn)

xn ´ yn

ˇ

ˇ

ˇ
ą n for all n P N.

“3 ñ 1” Suppose the contrary that there exists ε ą 0 such that for each n P N there exists
xn, yn P (a, b) satisfying |xn ´ yn| ă

1

n
but |f(xn) ´ f(yn)| ě ε. For this ε ą 0, by assumption

there exists N ą 0 such that

|f(x) ´ f(y)| ă ε whenever
ˇ

ˇ

ˇ

f(x) ´ f(y)

x ´ y

ˇ

ˇ

ˇ
ą N and x, y P (a, b), x ‰ y .



Since |f(xn) ´ f(yn)| ě ε, we must have xn ‰ yn; thus the fact that xn, yn P (a, b) implies that
ˇ

ˇ

ˇ

f(xn) ´ f(yn)

xn ´ yn

ˇ

ˇ

ˇ
ď N @n P N .

This contradicts to the fact that |xn ´ yn| ă
1

n
and |f(xn) ´ f(yn)| ą ε. ˝

Problem 8. Suppose that f : [a, b] Ñ R is Hölder continuous with exponent α; that is, there
exist M ą 0 and α P (0, 1] such that

|f(x) ´ f(y)| ď M |x ´ y|α @x, y P [a, b] .

Show that f is uniformly continuous on [a, b]. Show that f : [0,8) Ñ R defined by f(x) =
?
x is

Hölder continuous with exponent 1

2
.

Proof. Let ε ą 0 be given. Define δ = M´ 1
α ε

1
α . Then δ ą 0. Moreover, if |x´ y| ă δ and x, y P [a, b],

|f(x) ´ f(y)| ď M |x ´ y|α ă Mδα = ε .

Therefore, f is uniformly continuous on [a, b].
Next we show that f(x) =

?
x is Hölder continuous with exponent 1

2
. Note that if x, y ě 0 and

x ‰ y,
|
?
x ´

?
y|

|x ´ y|
1
2

=
|
?
x ´

?
y||

?
x+

?
y|

|x ´ y|
1
2 |

?
x+

?
y|

=
|x ´ y|

1
2

|
?
x+

?
y|

ď

?
x+

?
y

|
?
x+

?
y|

ď 1 ;

thus
|
?
x ´

?
y| ď |x ´ y|

1
2 @x, y ě 0 and x ‰ y .

which implies that f(x) =
?
x is Hölder continuous with exponent 1

2
on [0,8). ˝

Problem 9. A function f : A ˆ B Ñ Rm, where A Ď R and B Ď Rp, is said to be separately
continuous if for each x0 P A, the map g(y) = f(x0, y) is continuous and for y0 P B, h(x) = f(x, y0)

is continuous. f is said to be continuous on A uniformly with respect to B if

@ ε ą 0, D δ ą 0 Q
›

›f(x, y) ´ f(x0, y)
›

›

2
ă ε whenever }x ´ x0}2 ă δ and x P A , y P B .

Show that if f is separately continuous and is continuous on A uniformly with respect to B, then f

is continuous on A ˆ B.

Proof. Let ε ą 0, and (a, b) P A ˆ B be given. By assumption there exists δ1 ą 0 such that
›

›f(x, y) ´ f(a, y)
›

›

2
ă

ε

2
whenever }x ´ a}2 ă δ1 and x P A , y P B .

Since f is separately continuous, there exists δ2 ą 0 such that
›

›f(a, y) ´ f(a, b)
›

›

2
ă

ε

2
whenever }y ´ b}2 ă δ2 and y P B .

Define δ = mintδ1, δ2u. Then if }(x, y) ´ (a, b)}2 ă δ, we must have }x ´ a}2 ă δ1 and }y ´ b}2 ă δ2

so that

}f(x, y) ´ f(a, b)}2 = }f(x, y) ´ f(a, y) + f(a, y) ´ f(a, b)}2

ď }f(x, y) ´ f(a, y)}2 + }f(a, y) ´ f(a, b)}2 ă ε

which shows that f is continuous at (a, b). ˝



Problem 10. Let (M,d) be a metric space, A Ď M , and f, g : A Ñ R be uniformly continuous on
A. Show that if f and g are bounded, then fg is uniformly continuous on A. Does the conclusion
still hold if f or g is not bounded?

Proof. Let txnu8
n=1, tynu8

n=1 be sequences in A satisfying that lim
nÑ8

d(xn, yn) = 0. Suppose that
|f(x)| ď M and |g(x)| ď M for all x P A. Then

ˇ

ˇf(xn)g(xn) ´ f(yn)g(yn)
ˇ

ˇ =
ˇ

ˇf(xn)g(xn) ´ f(xn)g(yn) + f(xn)g(yn) ´ f(yn)g(yn)
ˇ

ˇ

ď |f(xn)|
ˇ

ˇg(xn) ´ g(yn)
ˇ

ˇ+ |g(yn)|
ˇ

ˇf(xn) ´ f(yn)
ˇ

ˇ

ď M
(ˇ
ˇf(xn) ´ f(yn)

ˇ

ˇ+
ˇ

ˇg(xn) ´ g(yn)
ˇ

ˇ

)
;

thus the uniform continuity of f and g, together with the Sandich Lemma, implies that

lim
nÑ8

ˇ

ˇf(xn)g(xn) ´ f(yn)g(yn)
ˇ

ˇ = 0 .

Therefore, fg is uniformly continuous on A.
When the boundedness is removed from the condition, the product of f and g might not be

uniformly continuous. For example, f(x) = g(x) = x are continuous on R, but (fg)(x) = x2 is no
uniformly continuous on R (from an example in class). ˝

Problem 11. Let P([0, 1)) be the collection of all polynomials defined on [0, 1], and } ¨ }8 be the
max-norm defined by }p}8 = max

xP[0,1]
|p(x)|.

1. Show that the differential operator d

dx
: P([0, 1]) Ñ P([0, 1]) is linear.

2. Show that d

dx
:
(
P([0, 1]), } ¨ }8

)
Ñ

(
P([0, 1]), } ¨ }8

)
is unbounded; that is, show that

sup
}p}8=1

}p 1}8 = 8 .

Proof. 1. Let p, q P P([0, 1]) and c P R. Then by the rule of differentiation,

d

dx
(cp+ q)(x) = cp 1(x) + q 1(x) = c

d

dx
p(x) +

d

dx
q(x) ;

thus d

dx
: P([0, 1]) Ñ P([0, 1]) is linear.

2. Consider pn(x) = xn. Then }pn}8 = max
xP[0,1]

xn = 1 for all n P N; however,

}p 1
n}8 = max

xP[0,1]
nxn´1 = n n P N ;

thus sup
}p}8=1

}p 1}8 = 8. ˝



Problem 12. Recall that Mmˆn is the collection of all mˆn real matrices. For a given A P Mmˆn,
define a function f : Mnˆm Ñ R by

f(M) = tr(AM) ,

where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show
that f P B(Mnˆm,R).
Hint: You may need the conclusion that any two norms on a finite dimensional vector spaces over
R or C are equivalent.

Proof. Let A = [aij]1ďiďm,1ďjďn and M = [mjk]1ďjďn,1ďkďm. Then

tr(AM) =
m
ÿ

i=1

n
ÿ

j=1

aijmji .

First we show that f P L (Mnˆm,R). Let M = [mjk]1ďjďn,1ďkďm and N = [njk]1ďjďn,1ďkďm be
matrices in Mnˆm and c P R. Then

f(cM +N) = tr(A(cM +N)) =
m
ÿ

i=1

n
ÿ

j=1

aij(cmji + nji) = c
m
ÿ

i=1

n
ÿ

j=1

aijmji +
m
ÿ

i=1

n
ÿ

j=1

aijnji

= c tr(AM) + tr(AN) = cf(M) + f(N) .

Let } ¨ } : Mnˆm Ñ R be defined by

›

›[mjk]1ďjďn,1ďkďm

›

› =
n
ÿ

j=1

m
ÿ

k=1

|mjk| .

Then } ¨ } is a norm on Mnˆm, and

sup
}M}=1

|f(M)| = sup
řn

j=1

řm
k=1 |mjk|=1

ˇ

ˇ

ˇ

m
ÿ

i=1

n
ÿ

j=1

aijmji

ˇ

ˇ

ˇ
ď

m
ÿ

i=1

n
ÿ

j=1

|aij| ă 8 ;

thus f : (Mnˆm, } ¨ }) Ñ (R, | ¨ |) is bounded. Let ~ ¨ ~ be another norm on Mnˆm. Since Mnˆm is
finite dimensional vector spaces over R, there exists c and C such that

c}M} ď ~M~ ď C}M} @M P Mnˆm .

Therefore,
␣

M P Mnˆm

ˇ

ˇ~M~ ď 1
(

Ď

!

M P Mnˆm

ˇ

ˇ

ˇ
}M} ď

1

c

)

sup
~M~=1

|f(M)| ď sup
}M}ď1/c

|f(M)| = sup
}cM}ď1

1

c
|f(cM)| ď

1

c

m
ÿ

i=1

n
ÿ

j=1

|aij| ă 8 ;

thus f : (Mnˆm,~ ¨ ~) Ñ R is bounded. ˝

Remark 0.1. Problem 12 is a special case of the theorem (about linear maps on a finite dimensional
normed space must be bounded) in class.


