Problem 1. Let $\{T_k\}_{k=1}^{\infty} \subseteq \mathcal{B}(\mathbb{R}^n, \mathbb{R}^m)$ be a sequence of bounded linear maps from $\mathbb{R}^n \to \mathbb{R}^m$. Prove that the following three statements are equivalent:

- 1. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\{T_k \boldsymbol{x}\}_{k=1}^{\infty}$ converges to $T\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$;
- $2. \lim_{k,\ell\to\infty} ||T_k T_\ell||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} = 0;$
- 3. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that for every compact $K \subseteq \mathbb{R}^n$ and $\varepsilon > 0$ there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \varepsilon$$
 whenever $\boldsymbol{x} \in K$ and $k \geqslant N$.

Proof. "1 \Rightarrow 3" Let K be a compact set in \mathbb{R}^n , and $\varepsilon > 0$ be given. Then there exists R > 0 such that $K \subseteq B[0, R]$. By assumption, for each $1 \leq i \leq n$, there exist $N_i > 0$ such that

$$||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \frac{\varepsilon}{Rn}$$
 whenever $k \geqslant N_i$.

For $\boldsymbol{x} \in \mathbb{R}^n$, write $\boldsymbol{x} = x^{(1)}\mathbf{e}_1 + x^{(2)}\mathbf{e}_2 + \dots + x^{(n)}\mathbf{e}_n$. Then if $\boldsymbol{x} \in K$, $\left|x^{(i)}\right| \leq R$ for all $1 \leq i \leq n$. Therefore, if $\boldsymbol{x} \in K$ and $k \geq N \equiv \max\{N_1, \dots, N_n\}$,

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} = ||T_k \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right) - T \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right)||_{\mathbb{R}^m} = ||\sum_{i=1}^n x^{(i)} \left(T_k \mathbf{e}_i - T \mathbf{e}_i \right)||_{\mathbb{R}^m}$$

$$\leq \sum_{i=1}^n |x^{(i)}| ||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \sum_{i=1}^n R \frac{\varepsilon}{Rn} = \varepsilon.$$

"3 \Rightarrow 2" Let K = B[0,1] (which is compact), and $\varepsilon > 0$ be given. By assumption there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{\varepsilon}{3}$$
 whenever $\boldsymbol{x} \in B[0,1]$ and $k \geqslant N$.

If $k, \ell \geqslant N$ and $\boldsymbol{x} \in B[0, 1]$,

$$||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant ||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} + ||T_\ell \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{2\varepsilon}{3}$$

which shows that

$$||T_k - T_\ell|| = \sup_{\boldsymbol{x} \in B[0,1]} ||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant \frac{2\varepsilon}{3} < \varepsilon \qquad \forall \, k, \ell \geqslant N \,.$$

Therefore, $\lim_{k,\ell\to\infty} ||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} = 0.$

"2 \Rightarrow 1" By assumption, for each $\boldsymbol{x} \in \mathbb{R}^n$ we have

$$||T_k \boldsymbol{x} - T_\ell \boldsymbol{x}||_{\mathbb{R}^m} = ||(T_k - T_\ell) \boldsymbol{x}||_{\mathbb{R}^m} \leqslant ||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)} ||\boldsymbol{x}||_{\mathbb{R}^n} \to 0 \quad \text{as} \quad k, \ell \to \infty.$$

Therefore, for each $\boldsymbol{x} \in \mathbb{R}^n$ the sequence $\{T_k \boldsymbol{x}\}_{k=1}^{\infty}$ is Cauchy in \mathbb{R}^m ; thus convergent. So we establish a map $x \mapsto \lim_{k \to \infty} T_k \boldsymbol{x}$ which is denoted by T. In other words, $T : \mathbb{R}^n \to \mathbb{R}^m$ is defined by $T(\boldsymbol{x}) = \lim_{k \to \infty} T_k \boldsymbol{x}$.

If $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^n$ and $c \in \mathbb{R}$, then

$$T(c\boldsymbol{x}_1 + \boldsymbol{x}_2) = \lim_{k \to \infty} T_k(c\boldsymbol{x}_1 + \boldsymbol{x}_2) = \lim_{k \to \infty} \left(cT_k \boldsymbol{x}_1 + T_k \boldsymbol{x}_2 \right) = cT(\boldsymbol{x}_1) + T(\boldsymbol{x}_2).$$

Therefore, $T \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$. Since $\dim(\mathbb{R}^n) = n < \infty$, we conclude that $T \in \mathcal{B}(\mathbb{R}^n, \mathbb{R}^m)$.

Problem 2. Let $f: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $f(x, y, z) = (x^2 + y^2)\mathbf{i} + xyz\mathbf{j}$. Show that f is differentiable on \mathbb{R}^3 and find (Df)(a, b, c).

Proof. For $(h, k, \ell) \in \mathbb{R}^3$,

$$f(a+h,b+k,c+\ell) - f(a,b,c)$$
= $((a+h)^2 + (b+k)^2)\mathbf{i} + (a+h)(b+k)(c+\ell)\mathbf{j} - (a^2+b^2)\mathbf{i} - abc\mathbf{j}$
= $(2ah + 2bk + h^2 + k^2)\mathbf{i} + (ab\ell + bch + ack + ak\ell + bh\ell + chk + hk\ell)\mathbf{j}$;

thus we expect that

$$(Df)(a,b,c)(h,k,\ell) = (2ah + 2bk)\mathbf{i} + (ab\ell + bch + ack)\mathbf{j}.$$
 (\$\darksim\$)

Let $L: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $L(h, k, \ell) = (2ah + 2bk)\mathbf{i} + (ab\ell + bch + ack)\mathbf{j}$. Clearly $L \in \mathscr{B}(\mathbb{R}^3, \mathbb{R}^2)$. Moreover, for $(h, k, \ell) \neq (0, 0, 0)$,

$$\frac{\left\|f(a+h,b+k,c+\ell) - f(a,b,c) - L(h,k,\ell)\right\|}{\sqrt{h^2 + k^2 + \ell^2}}$$

$$= \frac{\left\|(h^2 + k^2)\mathbf{i} + (ak\ell + bh\ell + chk + hk\ell)\mathbf{j}\right\|}{\sqrt{h^2 + k^2 + \ell^2}} \leqslant \frac{(h^2 + k^2) + |ak\ell| + |bh\ell| + |chk| + |hk\ell|}{\sqrt{h^2 + k^2 + \ell^2}}$$

$$\leqslant \sqrt{h^2 + k^2 + \ell^2} + |a||k| + |b||h| + c|h| + |hk|$$

thus

$$\lim_{(h,k,\ell)\to(0,0,0)} \frac{\|f(a+h,b+k,c+\ell) - f(a,b,c) - L(h,k,\ell)\|}{\sqrt{h^2 + k^2 + \ell^2}} = 0.$$

Therefore, f is differentiable at (a, b, c) and (Df)(a, b, c) is given by (\diamond) .

Problem 3. Let $X = \mathcal{B}(\mathbb{R}^n, \mathbb{R}^n)$ equipped with norm $\|\cdot\|$, and $f : GL(n) \to \mathcal{B}(\mathbb{R}^n, \mathbb{R}^n)$ be defined by $f(L) = L^{-2} \equiv L^{-1} \circ L^{-1}$. Show that f is differentiable on GL(n) and find (Df)(L) for $L \in GL(n)$.

Proof. Let $L \in GL(n)$. By the fact that

$$K^{-1} - L^{-1} = -K^{-1}(K - L)L^{-1}$$
 and $K^{-2} - L^{-2} = -K^{-2}(K - L)L^{-1} - K^{-1}(K - L)L^{-2}$,

we have

$$\begin{split} K^{-2} - L^{-2} &= - \big[L^{-2} - K^{-2} (K - L) L^{-1} - K^{-1} (K - L) L^{-2} \big] (K - L) L^{-1} \\ &- \big[L^{-1} - K^{-1} (K - L) L^{-1} \big] (K - L) L^{-2} \\ &= - L^{-2} (K - L) L^{-1} - L^{-1} (K - L) L^{-2} + K^{-2} (K - L) L^{-1} (K - L) L^{-1} \\ &+ K^{-1} (K - L) L^{-2} (K - L) L^{-1} + K^{-1} (K - L) L^{-1} (K - L) L^{-2} \,; \end{split}$$

thus

$$\|K^{-2} - L^{-2} + L^{-2}(K - L)L^{-1} + L^{-1}(K - L)L^{-2}\| \leqslant \left[\|K^{-2}\|\|L^{-1}\|^2 + 2\|K^{-1}\|\|L^{-1}\|\|L^{-2}\|\right]\|K - L\|^2 \ . \ (\star)$$

This motivates us to define $(Df)(L) \in \mathcal{B}(X,X)$ by

$$(Df)(L)(H) = -L^{-2}HL^{-1} - L^{-1}HL^{-2} \qquad \forall H \in X,$$

and (\star) implies that

$$\lim_{K \to L} \frac{\|f(K) - f(L) - (Df)(L)(K - L)\|}{\|K - L\|} = 0.$$

Therefore, f is differentiable on GL(n), and (Df)(L) is given by (\clubsuit) .

Problem 4. Let $X = \mathscr{C}([-,1,1];\mathbb{R})$ and $\|\cdot\|_X$ be defined by $\|f\|_X = \max_{x \in [-1,1]} |f(x)|$, and $(Y,\|\cdot\|_Y) = (\mathbb{R},|\cdot|)$. Consider the map $\delta: X \to \mathbb{R}$ be defined by $\delta(f) = f(0)$. Show that δ is differentiable on X. Find $(D\delta)(f)$ (for $f \in \mathscr{C}([-1,1];\mathbb{R})$).

Proof. Let $f \in X$ be given. For $h \in X$, we have

$$\delta(f+h) - \delta f = (f(0) + h(0)) - f(0) = h(0) = \delta h;$$

thus we expect that $(D\delta)(f)(h) = \delta h$. We first show that $\delta \in \mathcal{B}(X, \mathbb{R})$.

1. For linearity, for $h_1, h_2 \in X$ and $c \in \mathbb{R}$, we have

$$\delta(ch_1 + h_2) = (ch_1 + h_2)(0) = ch_1(0) + h_2(0) = c\delta h_1 + \delta h_2.$$

2. For boundedness, if $||h||_X = 1$, then $\max_{x \in [-1,1]} |h(x)| = 1$ so that

$$|\delta h| = |h(0)| \le \max_{x \in [-1,1]} |h(x)| = 1 < \infty.$$

Having established that $\delta \in \mathcal{B}(X,\mathbb{R})$, we note that

$$\lim_{h \to 0} \frac{\left| \delta(f+h) - \delta f - \delta h \right|}{\|h\|_X} = \lim_{h \to 0} \frac{0}{\|h\|_X} = 0;$$

thus δ is differentiable at f (for all $f \in X$), and $(D\delta)(f) = \delta$ for all $f \in X$.

Problem 5. Let $X = \mathscr{C}([a,b];\mathbb{R})$ and $\|\cdot\|_2$ be the norm induced by the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx$. Define $I:X\to X$ by

$$I(f)(x) = \int_{a}^{x} f(t)^{2} dt \qquad \forall x \in [a, b].$$

Show that I is differentiable on X, and find (DI)(f).

Proof. Let $f \in X$ be given. For $h \in X$

$$I(f+h)(x) - I(f)(x) = \int_{a}^{x} (f(t) + h(t))^{2} dt - \int_{a}^{x} f(t)^{2} dt = \int_{a}^{x} [2f(t)h(t) + h(t)^{2}] dt; \qquad (\star\star)$$

thus we expect that

$$(DI)(f)(h)(x) = 2\int_{a}^{x} f(t)h(t) dt. \qquad (\diamond\diamond)$$

Define L by $(Lh)(x) = 2 \int_a^x f(t)h(t) dt$. Claim: $L \in \mathcal{B}(X, X)$.

1. For linearity, let $h_1, h_2 \in X$ and $c \in \mathbb{R}$. Then

$$L(ch_1 + h_2)(x) = 2\int_a^x f(t)(ch_1(t) + h_2(t)) dt = 2c\int_a^x f(t)h_1(t) dt + 2\int_a^x f(t)h_2(t) dt$$

which shows that $L(ch_1 + h_2) = cL(h_1) + L(h_2)$.

2. Note that by the Cauchy-Schwarz inequality,

$$\left| \int_{a}^{x} f(t)h(t) dt \right| \leq \int_{a}^{b} |f(t)| |h(t)| dt \leq ||f||_{2} ||h||_{2};$$

thus for $||h||_2 = 1$,

$$||L(h)||_2 = \left[\int_a^b \left(\int_a^x f(t)h(t) dt \right)^2 dx \right]^{\frac{1}{2}} \le \left(\int_a^b ||f||_2^2 ||h||_2^2 dx \right)^{\frac{1}{2}} \le \sqrt{b-a} ||f||_2.$$

Therefore,

$$||L|| = \sup_{\|h\|_2=1} ||L(h)||_2 \le \sqrt{b-a} ||f||_2 < \infty$$

which shows that L is bounded.

Finally, using $(\star\star)$ we obtain that

$$\begin{aligned} \left\| I(f+h) - I(f) - L(h) \right\|_2 &= \left[\int_a^b \left(\int_a^x h(t)^2 dt \right)^2 dx \right]^{\frac{1}{2}} \leqslant \left[\int_a^b \left(\int_a^b h(t)^2 dt \right)^2 dx \right]^{\frac{1}{2}} \\ &= \left[\int_a^b \|h\|_2^4 dx \right]^{\frac{1}{2}} = \sqrt{b-a} \|h\|_2^2; \end{aligned}$$

thus

$$\lim_{h \to 0} \frac{\|I(f+h) - I(f) - (DI)(f)(h)\|_2}{\|h\|_2} = 0.$$

Therefore, I is differentiable at f for all $f \in X$ and (DI)(f) is given by (∞) .