Problem 1. Investigate the differentiability of

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Solution. First we note that

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$
 and $f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0$.

For $(x, y) \neq (0, 0)$,

$$\frac{\left| f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y \right|}{\sqrt{x^2 + y^2}} = \frac{xy}{x^2 + y^2}$$

whose limit, as $(x, y) \to (0, 0)$, does not exist. Therefore, f is not differentiable at (0, 0).

On the other hand, for $(x, y) \neq (0, 0)$,

$$f_x(x,y) = \frac{y\sqrt{x^2 + y^2} - \frac{x^2y}{\sqrt{x^2 + y^2}}}{x^2 + y^2} = \frac{y^3}{(x^2 + y^2)^{\frac{3}{2}}}$$

and similarly, $f_y(x,y) = \frac{x^3}{(x^2+y^2)^{\frac{3}{2}}}$. Clearly f_x and f_y are continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$; thus f is differentiable on $\mathbb{R}^2 \setminus \{(0,0)\}$.

Problem 2. Investigate the differentiability of

$$f(x,y) = \begin{cases} \frac{xy}{x+y^2} & \text{if } x+y^2 \neq 0, \\ 0 & \text{if } x+y^2 = 0. \end{cases}$$

Solution. For $x + y^2 \neq 0$,

$$f_x(x,y) = \frac{y(x+y^2) - xy}{(x+y^2)^2} = \frac{y^3}{(x+y^2)^2}$$
 and $f_y(x,y) = \frac{x(x+y^2) - 2xy^2}{(x+y^2)^2} = \frac{x^2 - xy^2}{(x+y^2)^2}$

Clearly f_x and f_y are continuous on $\mathbb{R}^2 \setminus \{(x,y)|x+y^2=0\}$; thus f is differentiable at point (x,y) satisfying $x+y^2 \neq 0$ (by Theorem 5.40 of the lecture note).

Now we consider the differentiability of f at (a,b) when $a+b^2=0$. First we note that

$$f_x(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h} = \lim_{h \to 0} \frac{(a+h)b}{h(a+h+b^2)} = \begin{cases} 0 & (a,b) = (0,0), \\ \text{D.N.E.} & (a,b) \neq (0,0); \end{cases}$$

thus f is not differentiable at (a, b) if $a + b^2 = 0$ and $(a, b) \neq (0, 0)$ (because of Theorem 5.27). Finally we justify the differentiability of f at (0, 0). Note that

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0.$$

For $x = y^2$ with $y \neq 0$, we have

$$\frac{\left|f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y\right|}{\sqrt{x^2 + y^2}} = \frac{|y^3|}{2y^2\sqrt{y^4 + y^2}} = \frac{1}{2\sqrt{y^2 + 1}}$$

whose limit, as $y \to 0$, cannot be zero; thus

$$\lim_{(x,y)\to(0,0)} \frac{\left| f(x,y) - f(0,0) - f_x(0,0)x - f_y(0,0)y \right|}{\sqrt{x^2 + y^2}} \neq 0.$$

Therefore, f is not differentiable at (0,0).

Problem 3. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} (x^2 + y^2) \sin \frac{1}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Discuss the differentiability of f.

Solution. If $(x,y) \neq (0,0)$, then

$$f_x(x,y) = 2x \sin \frac{1}{\sqrt{x^2 + y^2}} + (x^2 + y^2) \cos \frac{1}{\sqrt{x^2 + y^2}} \cdot \frac{-x}{(x^2 + y^2)^{\frac{3}{2}}}$$
$$= 2x \sin \frac{1}{\sqrt{x^2 + y^2}} - \frac{1}{\sqrt{x^2 + y^2}} \cos \frac{1}{\sqrt{x^2 + y^2}}$$

and similarly,

$$f_y(x,y) = 2y\sin\frac{1}{\sqrt{x^2 + y^2}} - \frac{1}{\sqrt{x^2 + y^2}}\cos\frac{1}{\sqrt{x^2 + y^2}}.$$

Clearly f_x and f_y are continuous on $\mathbb{R}^2 \setminus \{(0,0)\}$; thus f is differentiable at point $(x,y) \neq (0,0)$ (by Theorem 5.40 of the lecture note).

Now we justify the differentiability of f at (0,0). First we compute $f_x(0,0)$ and $f_y(0,0)$ and find that

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} h \sin \frac{1}{|h|} = 0$$

and

$$f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = \lim_{k \to 0} k \sin \frac{1}{|k|} = 0,$$

where the limits above are obtained by the Sandwich Lemma. For $(x,y) \neq (0,0)$, we have

$$\frac{\left|f(x,y) - f(0,0) - 0 \cdot (x-0) - 0 \cdot (y-0)\right|}{\sqrt{x^2 + y^2}} = \sqrt{x^2 + y^2} \sin \frac{1}{\sqrt{x^2 + y^2}} \leqslant \sqrt{x^2 + y^2};$$

thus the Sandwich Lemma implies that

$$\lim_{(x,y)\to(0,0)} \frac{\left| f(x,y) - f(0,0) - 0 \cdot (x-0) - 0 \cdot (y-0) \right|}{\sqrt{x^2 + y^2}} = 0.$$

Therefore, f is also differentiable at (0,0); thus f is differentiable on \mathbb{R}^2 .

Problem 4. Let

$$f(x,y) = \begin{cases} \frac{x^3y}{x^4 + y^2} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

and $u \in \mathbb{R}^2$ be a unit vector. Show that the directional derivative of f at the origin exists in all direction, and

$$(D_u f)(0,0) = \left(\frac{\partial f}{\partial x}(0,0), \frac{\partial f}{\partial y}(0,0)\right) \cdot u.$$

Is f differentiable at (0,0)?

Solution. Let $u = (\cos \theta, \sin \theta)$ be a unit vector. Then the directional derivative of f at (0,0) in direction u is

$$(D_u f)(0,0) = \lim_{t \to 0^+} \frac{f(t\cos\theta, t\sin\theta) - f(0,0)}{t} = \lim_{t \to 0^+} \frac{t^4 \cos^3\theta \sin\theta}{t(t^4 \cos^4\theta + t^2 \sin^2\theta)}$$
$$= \lim_{t \to 0^+} \frac{t\cos^3\theta \sin\theta}{t^2 \cos^4\theta + \sin^2\theta} = 0.$$

On the other hand,

$$f_x(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = 0$$
 and $f_y(0,0) = \lim_{k \to 0} \frac{f(0,k) - f(0,0)}{k} = 0$;

thus we conclude that $(D_u f)(0,0) = (f_x(0,0), f_y(0,0)) \cdot u$.

Since $f_x(0,0) = f_y(0,0) = 0$, if f is differentiable at (0,0), we must have

$$\lim_{(x,y)\to(0,0)} \frac{\left| f(x,y) - f(0,0) - 0 \cdot (x-0) - 0 \cdot (y-0) \right|}{\sqrt{x^2 + y^2}} = \lim_{(x,y)\to(0,0)} \frac{|x^3y|}{\sqrt{x^2 + y^2}(x^4 + y^2)} = 0;$$

however, by passing to the limit as $(x,y) \to (0,0)$ along the curve $y=x^2$, we find that

$$0 = \lim_{x \to 0} \frac{|x^3 \cdot x^2|}{\sqrt{x^2 + x^4}(x^4 + x^4)} = \lim_{x \to 0} \frac{1}{2\sqrt{1 + x^2}} = \frac{1}{2},$$

a contradiction. Therefore, f is not differentiable at (0,0).

Problem 5. Let $U \subseteq \mathbb{R}^n$ be open, and $f: U \to \mathbb{R}$. Suppose that the partial derivatives $\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_n}$ are bounded on U; that is, there exists a real number M > 0 such that

$$\left| \frac{\partial f}{\partial x_j}(x) \right| \le M \qquad \forall x \in U \text{ and } j = 1, \dots, n.$$

Show that f is continuous on U.

Hint: Mimic the proof of the sufficient condition for differentiability.

Proof. Assume that $\left|\frac{\partial f}{\partial x_i}(x)\right| \leqslant M$ for all $x \in U$ and $1 \leqslant i \leqslant n$. Let $a \in U$ be given. Then there exists r > 0 such that $B(a,r) \subseteq U$. For $x \in B(a,r)$, let k = x - a. Then

$$|f(x) - f(a)| = |f(a_1 + k_1, a_2 + k_2, \dots, a_n + k_n) - f(a_1, a_2, \dots, a_n)|$$

$$= \left| \sum_{j=1}^{n} \left[f(a_1, \dots, a_{j-1}, a_j + k_j, \dots, a_n + k_n) - f(a_1, \dots, a_j, a_{j+1} + k_{j+1}, \dots, a_n + k_n) \right] \right|$$

$$\leq \sum_{j=1}^{n} \left| f(a_1, \dots, a_{j-1}, a_j + k_j, \dots, a_n + k_n) - f(a_1, \dots, a_j, a_{j+1} + k_{j+1}, \dots, a_n + k_n) \right|.$$

By the Mean Value Theorem, for each $1 \leq j \leq n$ there exists $\theta_j \in (0,1)$ such that

$$\begin{aligned}
&|f(a_1,\dots,a_{j-1},a_j+k_j,\dots,a_n+k_n)-f(a_1,\dots,a_j,a_{j+1}+k_{j+1},\dots,a_n+k_n) \\
&=\frac{\partial f}{\partial x_j}(a_1,\dots,a_{j-1},a_j+\theta_jk_j,a_{j+1}+k_{j+1},\dots,a_n+k_n)k_j;
\end{aligned}$$

thus

$$|f(a_1, \dots, a_{j-1}, a_j + k_j, \dots, a_n + k_n) - f(a_1, \dots, a_j, a_{j+1} + k_{j+1}, \dots, a_n + k_n)| \le M|k_j|.$$

Therefore, if $x \in B(a, r)$,

$$|f(x) - f(a)| = \sum_{j=1}^{n} M|k_j| \le M\sqrt{n} \Big(\sum_{j=1}^{n} |k_j|^2\Big)^{\frac{1}{2}} = \sqrt{n}M|x - a|_{\mathbb{R}^n}.$$

This shows that f is continuous at a.

Problem 6. Let $U \subseteq \mathbb{R}^n$ be open, and $f: U \to \mathbb{R}$. Show that f is differentiable at $a \in U$ if and only if there exists a vector-valued function $\varepsilon: U \to \mathbb{R}^n$ such that

$$f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)(x_j - a_j) = \varepsilon(x) \cdot (x - a)$$

and $\varepsilon(x) \to 0$ as $x \to a$.

Proof. " \Rightarrow " Suppose that f is differentiable at a. Define $\varepsilon: U \to \mathbb{R}^n$ by

$$\varepsilon(x) = \begin{cases} \left[f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)(x_j - a_j) \right] \frac{x - a}{\|x - a\|^2} & \text{if } x \neq a, \\ 0 & \text{if } x = a. \end{cases}$$

Then for $x \neq a$,

$$\left| \varepsilon(x) \right| \leqslant \frac{\left| f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)(x_j - a_j) \right|}{\|x - a\|}$$

which, by the differentiability of f at a, implies that

$$\lim_{x \to a} \left| \varepsilon(x) \right| = 0.$$

Moreover,

$$\varepsilon(x) \cdot (x - a) = f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)(x_j - a_j).$$

"\(\infty \) Suppose that there exists a vector-valued function $\varepsilon: U \to \mathbb{R}^n$ such that

$$f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_j}(a)(x_j - a_j) = \varepsilon(x) \cdot (x - a)$$

and $\varepsilon(x) \to 0$ as $x \to a$. Then for $x \neq a$, the Cauchy-Schwarz inequality implies that

$$\frac{\left|f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)(x_{j} - a_{j})\right|}{\|x - a\|} = \frac{\left|\varepsilon(x) \cdot (x - a)\right|}{\|x - a\|} \leqslant \|\varepsilon(x)\|;$$

thus

$$\lim_{x \to a} \frac{\left| f(x) - f(a) - \sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(a)(x_{j} - a_{j}) \right|}{\|x - a\|} = 0.$$

Therefore, f is differentiable at a with $[(Df)(a)] = \left[\frac{\partial f}{\partial x_1}(a), \cdots, \frac{\partial f}{\partial x_n}(a)\right]$.