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Jan. 01. 2021

Problem 1. Let U < R"™ be open, and f : U — R™ with f = (fi, -, fm)-

1. Suppose that f is differentiable on U and the line segment joining x and y lies in U. Then

there exist points ¢y, - - , ¢, on that segment such that
fily) = filz) = (Df)(e)y—z)  Vi=1,---,m.

2. Suppose in addition that U is convex. Show that for each x,y € U and vector v € R™, there

exists ¢ on the line segment joining  and y such that

v [f(@) = )] =v- (D))= —y).

In particular, show that if sup |[(Df)(z)||z@n rm) < M, then
zeU
|f(x) = f(W)lem < M|z —ylen  Vz,yeU.

Proof. Let v : [0,1] — R™ be given by ~(t) = (1 — t)x 4+ ty. Then by the chain rule, for each
i=1,---,m, (fiovy) :[0,1] — R is differentiable on (0,1); thus the mean value theorem (for

functions of one real variable) implies that there exists t; € (0, 1) such that

fily) = filz) = (fio)(1) = (fio7)(0) = (fi 07)'(t:) = (Dfi) (i) (v'(8:)) ,

where ¢; = (¢;). Part 1 is concluded since v'(¢;) =y — x.
For v € R™, let g(t) = v - f(ty + (1 — t)z). Then g : [0,1] — R is differentiable; thus the mean

value theorem (for functions of one real variable) implies that there exists 0 < ¢y < 1 such that

v [f(y) = f(@)] = g(1) — g(0) = g'(to) = v (Df)(toy + (1 — to)z)(z — y) .

Letting ¢ = toy + (1 — to)x, we conclude that v - [f(z) — f(y)] =v - (Df)(c)(z — y).
Finally, let v = f(y) — f(x). By the discussion above there exists ¢ € Ty such that

1f(y) = f@)|fm = v [f(y) = f(@)] = v (Df)(e)(x —y).

The Cauchy-Schwarz inequality further implies that

1 () = F @) < 1F @) = @) rn [ (D)) (@ =)o < [£(y) = F (@) e [(DF)(0) | pmn om) |2 = yllren

Therefore, if sup |(Df)(z)]z®@nrm) < M, we conclude that
xeU

If(y) = f(x)|gm < M|z —y[gn  Va,yeU.
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Problem 2. Let U < R" be open and connected, and f : U — R be a function such that () =0

for all z € U. Show that f is constant in U.

Proof. First, we show that if B(a,r) is a ball in U, then f is constant on U. In fact, by the fact that

balls are convex set, Problem 1 implies that

[fy) = f@)] < swp [(DN)()s@plr—ylen  V,yeBlar).

z€B(a,r)

Since %(m) = 0 for all € B(a,r), we find that [(Df)(2)|z®@rr) = 0 for all z € B(a,r); thus
J

fy) = f(x) for all z,y € B(a,r).
of

Suppose that f = cin B(a,r). Let E = f~'({c}). Note that the fact 67@) =0forallz e U
J

implies that Df is continuous on U; thus f is continuously differentiable on U. In particular, f is
continuous; thus f~!({c}) is closed relative to U. Suppose that f~!({c}) = F n U for some closed
set F'in R". Next we show that U\F = & so that f = con U.

Suppose the contrary that U\F # . Let By = U n F' and By = U n F. Then U = E; U E,

and Problem 8 of Exercise 6 shows that
EinEycEinF=UnF'nF=g.

Therefore, Ey, n By # & for otherwise U is disconnected. This implies that there exists x € Ei N Ey;
thus there exists {zy}{2,; € U\F such that x, — x as k — oo. Since z € U, there exists € > 0
such that B(z,¢) < U; thus the convergence of {x}};2, implies that there exists N > 0 such that
xy € B(x,¢) for all k > N. By the discussion above, f is constant on B(z,€); thus f(zy) = f(x) = ¢
for all kK > N, a contradiction to that x; ¢ F. =

Problem 3. Let U < R" be open, and for each 1 <4, j < n, a;; : U — R be differentiable functions.
Define A = [a;j] and J = det(A). Show that

0J 6A> Vi<k<n,

where for a square matrix M = [m;;], tr(M) denotes the trace of M, Adj(M) denotes the adjoint
é’mij

matrix of M, and g— denotes the matrix whose (7, j)-th entry is given by
T

6;1%

Hint: Apply the chain rule to the composite function F' o g of maps g : U — R™ and F : R™” > R

defined by g(z) = (a11(2),a12(2), -+, ann(x)) and F(ai1, -, ann) = det ([az;]). Check first what
oF
é’aij

iS.

Proof. Let A = [a;;] and Adj(A) = [¢;;]. Then ;F

= ¢j; since the cofactor expansion implies that
Qi

det(A) = ajc1; + aipco; + -+ - + QinCps for each 1 <7 < n.



Therefore, for J = det(A), we have

6J _0(Fog), ., < OF daij, .+ daij
and the result is concluded from the fact that tr (Adj(A)aA> = > cji% D
al'k; ij=1 533
%,

exists and is continuous

Problem 4. Let ¢ : R — R" be a differentiable function such that 5

T, 0T;
in R” for each 1 < 4, j, k < n. Suppose that (Dy)(z) € GL(n) for all x € R, and define J = det([Dv)])
and A = [Dy]™!, where [Dy)] is the Jacobian matrix of ¢. Write [A] = [a;;].

1. Show that for each 1 <4, 7j,k < n, a;; : R" — R is differentiable, and

n

aal] _ 2%
FIT SZJ W&xk(?a:s

2. Show the Piola identity

n

Zaﬂu%)(m):o Vi<j<nandzel.

2
i=1 "t

Proof. Note that since A = [Dy]™!, we have

o 0
;airﬁ.l's -

3

= 51'57

where §;, is the Kronecker delta.

1. The product rule implies that

i <aa1r a¢r 82¢r ) —0:
oz 0zs | CTazpoms)

r=1
thus ) )
Z Oair 0y _ w 62¢r
= oxy 0xs o P zra$kax8 .
Therefore,
a3 Qi O 0%y O
;asj 7;1 axk axs SZI Zl Zraxkaxs Tgl W (%:k@xs Fzpdz,
LI da 0aij
and Part 1 follows from the fact that ), = 6,; and Z 50 - '
s=1 a s axk 5$k

2. Note that since (D) € GL(n), by the property of the adjoint matrix we obtain that

JA = det([Dy])[Dy] ! = Adj([Dy])



which implies that the (7, j)-entry of Adj([Dv]) is Ja;;. Therefore, using the result in Problem
3 shows that

oJ 0 s _ %
; tr<Ad“[ > Tg; Jrs 5 o, rg;‘]TSaiaxr’
thus the product rule implies that
S0 o 6aw B 02 s < 0%,
;axi<t]a1])_ila l]+2rj Zgljarsa 03} igle]azraxiaxsasj
_ N s s
_”2521 Jamﬁazzﬁxr “;1J Tsaxrﬁacl
- 0%y 0
N ”28_1 Jars ((Qxi(?:cr B axrax)aij
and the conclusion follows from Clairaut’s Theorem. o

Problem 5. 1. If f: ACR" - R™ and g : B < R™ — R’ are twice differentiable and f(A) < B,
then for a € A, u,v € R", show that

D*(go f)(a)(u,v)
= (D*g)(f(a)((Df)(a)(u), Df(a)(v)) + (Dg)(f(a)) ((D*f)(a)(u,v)) -

2. If p: R* — R™ is a linear map plus some constant; that is, p(x) = Lz + ¢ for some L €
ABR"R™), and f: A< R™ — R® is k-times differentiable, prove that

DH(f o p)(a)(™, - u®) = (D*£) (p(a)) (Dp)(a) (u). . (Dp)(a) (u)

Problem 6. Let f(z,y) be a real-valued function on R?. Suppose that f is of class €' (that is, all

2 2
first partial derivatives are continuous on R?) and o°f exists and is continuous. Show that 0°f
oxdy oyox
. o f 0% f
ts and = .
exists an dr0y  dpia

Hint: Mimic the proof of Clairaut’s Theorem.
Proof. Let (a,b) € R?. For real numbers h, k # 0, define Q : R* > R and ¢ : R> - R by

Q(h, k) = fla+h,b+k)— fla+h,b)— fla,b+ k) + f(a,b)]

l
and

b(@,y) = flz+hy) = f(z,y).
Then Q(h, k) = i[w(a,b + k) — 1(a,b)]. By the mean value theorem (for functions of one real

variable),

1 oy of

C1pof
Q(h, k) = hkaymbwlk)k_h[} (-4 hob o 0uk) = 52 (0 b+ 018
1% o
= 3 3gay (0 Oah bk k) = S0+ Ooh b+ 61)



0% f

for some function 6, = 6(h, k) and 6y = 02(h, k) satisfying 60,60, € (0,1). Since 5007

we find that

is continuous,

lim Qi k)= lim O (s ohbt 0ik) = 2L (o)
(h,k)—(0,0) ’ (h,k)—(0,0) 0T Y 20 YT dpoy

On the other hand, since the limit " hm Q(h, k) exists,
)—(0,0)

j;éfy(a b) = o kl)m% Q(h, k) = hir[l”llli% Q(h, k)
e )
—tim [ n - L)

thus the limit hir(l) fola,b+ k}i — fz(a,b) exists and equals ;;gy(a,b). By the definition of partial
derivatives, 5 Qaf (a,b) exists and aa:afx(a, b) = aa;gy (a,b). .

Problem 7. Let U < R" beopen, and f : U — R be of class €% and (D’ f)(a) = 0forj =1,--- k-1,
but (D¥f)(a)(u,u, -+ ,u) <0 for all ue R*, u # 0. Show that f has a local maximum at a; that is,
there exists 0 > 0 such that

f(z) < f(a) Ve B(a,0).

Proof. See Theorem 5.73 in Lecture Note. D



