Problem 1. Let $A = \bigcup_{k=1}^{\infty} B\left(\frac{1}{k}, \frac{1}{2^k}\right) = \bigcup_{k=1}^{\infty} \left(\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right)$ be a subset of \mathbb{R} . Does A have volume?

Proof. We first show that $\bar{A} = \{0\} \cup \bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right].$

- 1. Clearly $\bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k} \right] \subseteq \overline{A}$. In fact, we have $\bigcup_{\alpha \in I} \overline{B_{\alpha}} \subseteq \operatorname{cl}\left(\bigcup_{\alpha \in I} B_{\alpha}\right)$: if $x \in \bigcup_{\alpha \in I} \overline{B_{\alpha}}$, then $x \in \overline{B_{\alpha}}$ for some $\alpha \in I$ which implies that there exists $\alpha \in I$ and $\{x_{\ell}\}_{\ell=1}^{\infty} \in B_{\alpha} \subseteq \bigcup_{\alpha \in I} B_{\alpha}$ such that $x_{\ell} \to x$ as $\ell \to \infty$. Therefore, $x \in \operatorname{cl}\left(\bigcup_{\alpha \in I} B_{\alpha}\right)$.
- 2. Suppose that $x \in \overline{A}$. Then there exists $\{x_\ell\}_{\ell=1}^{\infty} \subseteq A$ such that $x_\ell \to x$ as $\ell \to \infty$. Since every element in A is positive, we conclude that $x \ge 0$.
 - (a) the case x = 0: Since $\{x_{\ell}\}_{\ell=1}^{\infty}$ defined by $x_{\ell} = \frac{1}{\ell}$ is a sequence in A, we conclude that $0 \in \bar{A}$ since $\lim_{\ell \to \infty} x_{\ell} = 0$.
 - (b) **the case** x > 0: By the definition of the limit of sequences, there exists N > 0 such that $x_{\ell} \in \left(\frac{x}{2}, \frac{3x}{2}\right)$ for all $\ell \geqslant N$. Since $\lim_{k \to \infty} \frac{1}{k} + \frac{1}{2^k} = 0$, there exists M > 0 such that $\frac{1}{k} + \frac{1}{2^k} < \frac{x}{2}$ for all $k \geqslant M$. Therefore,

$$A \cap \left(\frac{x}{2}, \frac{3x}{2}\right) = \bigcup_{k=1}^{M-1} \left(\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right);$$

thus there exists $1 \leq j \leq M-1$ such that

$$\#\{\ell \in \mathbb{N} \mid x_{\ell} \in (\frac{1}{j} - \frac{1}{2^{j}}, \frac{1}{j} + \frac{1}{2^{j}}) = \infty.$$

Let $\{x_{\ell_k}\}_{k=1}^{\infty}$ be a subsequence of $\{x_{\ell}\}_{\ell=1}^{\infty}$ satisfying that $\{x_{\ell_k}\}_{k=1}^{\infty} \subseteq (\frac{1}{j} - \frac{1}{2^j}, \frac{1}{j} + \frac{1}{2^j})$, we conclude that $x \in [\frac{1}{j} - \frac{1}{2^j}, \frac{1}{j} + \frac{1}{2^j}]$ since $\lim_{k \to \infty} x_{\ell_k} = x$.

Having shown that $\bar{A} = \{0\} \cup \bigcup_{k=N+1}^{\infty} \left[\frac{1}{k} - \frac{1}{2^k}, \frac{1}{k} + \frac{1}{2^k}\right]$, we conclude that

$$\partial A = \bar{A} \backslash \mathring{A} = \bar{A} \backslash A \subseteq \{0\} \cup \left\{ \frac{1}{k} - \frac{1}{2^k} \,\middle|\, k \in \mathbb{N} \right\} \cup \left\{ \frac{1}{k} + \frac{1}{2^k} \,\middle|\, k \in \mathbb{N} \right\};$$

thus ∂A is a countable set which has measure zero. This implies that A has volume.

Problem 2. Complete the following.

1. Let $A \subseteq [a, b]$ be a set of measure zero (in \mathbb{R}). Show that $[a, b] \setminus A$ does not have measure zero (in \mathbb{R}).

- 2. Show that the Cantor set (defined in Problem 9 of Exercise 7 from the previous semester) has volume zero.
- *Proof.* 1. Suppose the contrary that $[a,b]\backslash A$ has measure zero. By the fact that countable union of measure zero sets has measure zero, we conclude that

$$[a,b] = A \cup ([a,b] \backslash A)$$

has measure zero, a contradiction.

2. Let E_n be the set defined in Problem 9 of Exercise 7. Then E_n is the union of finite intervals whose volumes sum to $\frac{2^n}{3^n}$. Therefore, for each $\varepsilon > 0$ there exist finite rectangles S_1, S_2, \dots, S_N whose disjoint union is E_N and $\sum_{k=1}^N \nu(S_k) = \frac{2^N}{3^N} < \varepsilon$. This shows that the Cantor set has volume zero.

Problem 3. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f: A \to \mathbb{R}$ be a bounded function. Show that if f is Riemann integrable on A, then |f| is also Riemann integrable on A.

- Proof. Method 1: Since f is Riemann integrable on A, the Lebesgue Theorem implies that the collection of discontinuities of \overline{f}^A has measure zero. Note that if \overline{f}^A is continuous at $a \in A$, then $\overline{|f|}^A$ is also continuous at a since $\overline{|f|}^A = |\overline{f}^A|$. Therefore, the collection of discontinuities of $\overline{|f|}^A$ is a subset of a measure zero set, the collection of discontinuities of \overline{f}^A ; thus the collection of discontinuities of $\overline{|f|}^A$ has measure zero. The Lebesgue Theorem then shows that |f| is Riemann integrable on A.
- **Method 2**: Let $\varepsilon > 0$ be given. Since f is Riemann integrable on A, by Riemann's condition there exists a partition \mathcal{P} of A such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon$$
.

Note that for each $\Delta \in P$,

$$\sup_{x \in \Delta} \left| \overline{f}^{A}(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^{A}(x) \right| \leqslant \sup_{x \in \Delta} \overline{f}^{A}(x) - \inf_{x \in \Delta} \overline{f}^{A}(x);$$

thus

$$U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) = \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \left| \overline{f}^{A}(x) \right| - \inf_{x \in \Delta} \left| \overline{f}^{A}(x) \right| \right) \nu(\Delta)$$

$$\leq \sum_{\Delta \in \mathcal{P}} \left(\sup_{x \in \Delta} \overline{f}^{A}(x) - \inf_{x \in \Delta} \overline{f}^{A}(x) \right) \nu(\Delta) = U(f, \mathcal{P}) - L(f, \mathcal{P}) < \varepsilon.$$

Therefore, by Riemann's condition we conclude that |f| is Riemann integrable on A.

Problem 4. Suppose that $f:[a,b] \to \mathbb{R}$ is Riemann integrable, and the set $\{x \in [a,b] \mid f(x) \neq 0\}$ has measure zero. Show that $\int_a^b f(x) dx = 0$.

Proof. First we note that for each $[c,d] \subseteq [a,b]$, then there exists $x \in [c,d]$ such that f(x) = 0 for otherwise $f(x) \neq 0$ for all $x \in [c,d]$ so that

$$[c,d] \subseteq \{x \in [a,b] \mid f(x) \neq 0\}$$

and this implies that [c,d] is a set of measure zero, a contradiction. Therefore, $L(|f|,\mathcal{P})=0$ for all partitions \mathcal{P} of [a,b] which shows that $\int_a^b |f(x)| \, dx=0$. Since f is Riemann integrable on [a,b], |f| is also Riemann integrable on [a,b] so that we have $\int_a^b |f(x)| \, dx=0$. The desired conclusion then follows from the fact that

$$\left| \int_{a}^{b} f(x) \, dx \right| \leqslant \int_{a}^{b} \left| f(x) \right| dx \, .$$

Remark: Similar argument can be used to show the following:

- 1. Let $A \subseteq \mathbb{R}^n$ be a bounded set and $f: A \to \mathbb{R}$ be Riemann integrable on A. If the set $\{x \in A \mid f(x) \neq 0\}$ has measure zero, then $\int_A f(x) dx = 0$.
- 2. Let $A \subseteq \mathbb{R}^n$ be a bounded set and $f: A \to \mathbb{R}$ be a function. If the set $\{x \in A \mid f(x) \neq 0\}$ has measure zero, then $\int_A f(x) dx \leq 0$.

Problem 5. Prove the following statements.

- 1. The function $f(x) = \sin \frac{1}{x}$ is Riemann integrable on (0,1).
- 2. Let $f:(0,1]\to\mathbb{R}$ be given by

$$f(x) = \begin{cases} \frac{1}{p} & \text{if } x = \frac{q}{p} \in \mathbb{Q}, \ (p, q) = 1, \\ 0 & \text{if } x \text{ is irrational.} \end{cases}$$

Then f is Riemann integrable on (0,1]. Find $\int_{(0,1]} f(x)dx$ as well.

- 3. Let $A \subseteq \mathbb{R}^n$ be a bounded set, and $f: A \to \mathbb{R}$ is Riemann integrable. Then f^k (f 的 k 次方) is integrable for all $k \in \mathbb{N}$.
- *Proof.* 1. Note that (0,1) has volume, f is bounded on (0,1) and f is continuous on (0,1). Therefore, the Lebesgue Theorem (or its corollary) implies that f is Riemann integrable on (0,1).
 - 2. In Calculus we have shown that f is continuous on $\mathbb{Q}^{\mathbb{C}} \cap (0,1]$ so that the collection of discontinuities of $\overline{f}^{(0,1]}$ is $\mathbb{Q} \cap (0,1]$. Since $\mathbb{Q} \cap (0,1]$ is countable, we find that the collection of discontinuities of $\overline{f}^{(0,1]}$ has measure zero. Therefore, f is Riemann integrable on (0,1].

Let \mathcal{P} be a partition of (0,1]. Then $L(f,\mathcal{P})=0$ since

$$\inf_{x \in \Delta} \overline{f}^{(0,1]}(x) = 0 \qquad \forall \, \Delta \in \mathcal{P} \,.$$

Therefore, $\int_A f(x) dx = 0$. The Riemann integrability of f then shows that $\int_{(0,1]} f(x) dx = 0$.

3. First we note that the fact that f is Riemann integrable on A implies that f is bounded on A. Therefore, f^k is bounded on A. Moreover, the Lebesgue Theorem implies that the collection D of discontinuities of \overline{f}^A has measure zero. Since $\overline{f^k}^A = (\overline{f}^A)^k$, we find that the collection of discontinuities of $\overline{f^k}^A$ is exactly D; thus has measure zero. The Lebesgue Theorem then implies that f^k is Riemann integrable on A.

Problem 6. Find an example that

$$\int_{A} f(x) \, dx + \int_{A} g(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} (f+g)(x) \, dx < \int_{A} f(x) \, dx + \int_{A} g(x) \, dx.$$

Solution. Let $f, g : [0,1] \to \mathbb{R}$ be defined by

$$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0, 1], \\ 0 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0, 1], \end{cases} \quad \text{and} \quad g(x) = \begin{cases} 0 & \text{if } x \in \mathbb{Q} \cap [0, 1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0, 1], \end{cases}$$

Then

$$(f+g)(x) = \begin{cases} 1 & \text{if } x \in \mathbb{Q} \cap [0,1], \\ 2 & \text{if } x \in \mathbb{Q}^{\complement} \cap [0,1], \end{cases}$$

so that we have
$$\int_{[0,1]} f(x) dx = \int_{[0,1]} g(x) dx = 0$$
, $\bar{\int}_{[0,1]} f(x) dx = \int_{[0,1]} (f+g)(x) dx = 1$, and $\bar{\int}_{[0,1]} g(x) dx = \bar{\int}_{[0,1]} (f+g)(x) dx = 2$.