Exercise Problem Sets 3
Mar. 12. 2021

Problem 1. Define a set S < [0, 1] x [0, 1] by

S={(2, 2y e0,1x[0,1]|mp ke N ged(m,p) = Tand 1<k <m—1}.

Jol <L1 15(z,y) dy)d:z: = fol (Ll 1s(z,y) da:)dy —0

but 1g is not Riemann integrable on [0, 1] x [0, 1].

Show that

Proof. Note that for each x € [0, 1], then 1g(x,y) # 0 for only finitely many y € [0, 1]. Therefore, for

each x € [0, 1], 1s(z, -) is Riemann integrable on [0, 1] and

1
J 1s(z,y)dy = 0.
0

Similarly, for each y € [0, 1], then 1g(z,y) # 0 for only finitely many x € [0, 1]; thus for each y € [0, 1],

1s(z,-) is Riemann integrable on [0, 1] and

1
J 1s(z,y)dx =0.
0

Ll (Ll 1s(x,y) dy)dx = Ll (Ll 1s(x,y) dx)dy —0.

However, for each partition P of [0,1] x [0, 1], we have A n S # ¢F for all A € P; thus U(1lg,P) =1
for all partition P of [0, 1] x [0, 1]. Therefore,

J 1s(z,y)dy =1
AxB

Therefore,

which, by the Fubini Theorem, implies that 1g is not Riemann integrable on [0, 1] x [0, 1]. o
Problem 2. Let f:[0,1] x [0,1] — R be given by
22 if (z,y) € [277, 277 x [277,27") pe N,

0 otherwise .

1

1. Show that f flx,y)dr =0 forall y € [0, %)
0
1

2. Show that J f(z,y)dy =0 for all x € [0,1).
0

11 11
3. Justify if the iterated (improper) integrals J J f(z,y)dxdy and f f f(z,y) dydz are iden-
0 Jo 0 Jo

tical.



1
Proof. 1. Since f(z,0) = 0 for all x € [0, 1], we have J f(z,0)dz = 0. Suppose that y € (O, 1)
0
Then y € [27",27""!) for a unique natural number n > 2. In this case,
92 if p e [27n, 27N
f(l‘, y) — 722n71 ifre [2fn+1’ 27n+2)

0 otherwise ,

Y

so that

1
f f(xy y) dl’ = J 2277, dl’ -+ J _22n—1 dl’
0 [2—n,2—n+l) [2-nt+1 2-n+2)

— 22n(2—n+1 . 2—n) . 22n—1(2—n+2 . 2—n+1) — 0.

1
2. Since f(0,y) for all y € [0,1], we have J f(0,y)dy = 0. Suppose tat x € (0,1). Then
0

x €[27™,27"*1) for a unique n € N. In this case,

22 ifye 27" 277H) ne N,

0 otherwise ,

so that

1
J flz,y)dy = f 22" dx + J —22n L dy
0 [2—n72—n+1) [2—n—172—n)

— 22n(2—n+1 - 2—71,) - 221’L+1 (2—n o 2—n—1) — 0 ]

3. By 2, we immediately conclude that

Llfolf(x,y)dydm:().

1
4 if -1
On the other hand, note that if y € [1, 1), then f(x,y) = e [2’ ) " so that
2 0 otherwise,
1 1
J f(a:,y)dx:f ddxr =2.
0 :
Therefore,
1 1 1l 1
| | tenardy=[" | swdedy+ | [ fegdeay= [ 21
0o Jo o Jo 1 Jo 1
11 11
which shows that f f f(z,y)dzdy # J f f(z,y) dydz for this particular f. D
0 Jo 0 Jo

Problem 3. Suppose that f : (0,b] — R is continuous, positive, integrable on (0, b], and that f(x)

increases monotonically to oo as x approaches 0 from the right. Show that lim+ xf(z) =0.
z—0



Proof. Let limsupzf(x) = L. Then L > 0, and there exists a sequence {zx}7; < (0,b] such that

z—0t

klim xpf(xg) = L. W.L.O.G. we can assume that the sequence zj,1 < % for all ke N. If L > 0,
—00
then there exists N > 0 such that

2o |

l’kf(l‘k) > Vk>=N

so that f(xy) > QL whenever k£ > N. Therefore, by the monotonicity of f we find that

T
L
flz) > — Vo e |rgpy,x,] and k= N.
Ql'k
Therefore,
0 0
L xp L L_
f(l’)dx? (%k—l’k 1)— = —_ —
a contradiction to that f is integrable on (0, b]. D

Problem 4. Let A € R", B < R™ be Riemann measurable sets, and f : Ax B — R be non-negative,

uniformly continuous and integrable on A x B. Define F'(x J f(z,y) dy.

1. Show that if B is bounded, then F': A — R is continuous. How about if B is not bounded?

2. Let f have the additional property that for each ¢ > 0, there exists N > 0 such that
‘J (fAk)(x,y)dy—Jf(x,y)dy‘<6 Vk>=Nandze A.
BAB(0,k B

Show that F' is continuous on A. In particular, show that if f(z,y) < g(y) for all (x,y) € Ax B,

and g is integrable on B, then F'is continuous.

Proof. 1. If B is bounded, then B has volume. Let € > 0 be given. By the uniform continuity of f,
there exists 0 > 0 such that

|f(x17y1) - f($2792)| < v ’(Ihyl) - (x27y2)‘ < ¢ and T1,T2 € AvyhyQ €B.

v(B)+1

Therefore, if |11 — 23] < § and z1, 29 € A,

| ':L‘Q ‘_ ‘J xla 1'2, J ‘f I,y :L‘27 ‘dy

dr <

\JB v(B)+1 V(B)+1
This implies that F' is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

X
f(x,y)zlfx;yz,, A=10,1] and B=R.



Then f is non-negative and uniformly continuous on A x B (why?). Note that F'(0) = 0 while
if v >0,

TV

1+:v2y

Y= T

y=—o0 /T

5 dy = Ve arctan(zy)
x

sz(w,y) dy =

Therefore, the Tonelli Theorem implies that

1

LXBf(a:,y)d(w,y)zL( Bf(x,y)dy)dmzjo %dw:2w<w

which shows that f is integrable on A x B. However, F' is not continuous at x = 0.

2. Let € > 0 be given. Since f has the property mentioned above, there exists N > 0 such that
‘f (]‘ﬁ/\kz)@,y)dy—Jf(:v,y)aly’<E Vk>Nandxe A.
BAB(0,k B 3

By the uniform continuity of f on A x B, there exists 6 > 0 such that

£

[F ) = flaa vl < G5

V‘(wbyl) - (35273/2)‘ <0 and 1,22 € A, y1,y2 € B.

Suppose that |x; — x9| <, 1,29 € A and y € B.

(a) If f(x1,y) and f(z,y) are both not greater than N, then

€
3v(B(0,N))

|(F AN) (@1 y) = (F AN (@2, )] = |f(z1.y) = fla2y)| <
(b) If f(x1,y) and f(zs,y) are both greater than N, then
|(f A NY(@1,y) = (f A N)(@a,y)] = [N = N| =0.
(¢) If one and only one of f(x1,y) and f(z,,y) is greater than N, then

(7 AN 1) = (F A N 9)] < [ w) = £ < 503

Case (a), (b) and (c) show that

|(f AN (@1, y) = (f AN)(22,9)| <

£
BON) mmml<o Aandye B.
3v(B(0,N)) |21 — @2 < d,x1,22€ Aand y €

Therefore, if 21,25 € A and |z — z5| <,

Fa)=Fal<| [ aM@md= [ e
* ‘ JB(\B(O N)(f Ay oy - JB fleny)dy ‘
* ‘ meB(O N o W) y)dy = meB(O N)<f Py ‘

€ £
<§+§+JBHB(ON)‘<]0/\N)((L’1, ) (fAN T2, Y }dy



This implies that F is uniformly continuous on A.

Now suppose that f(z,y) < g(y) for all (z,y) € A x B, and g is integrable on B. Then
Jim (g~ F)(y)dy = f 9(y) dy;
—%© JBAB(0,k) B

thus there exists N > 0 such that
‘f (gnk)(y)dy — J 9(y) dy‘ <e whenever k> N.
BnB(0,k B

Therefore, for all kK > N and z € A,
[ G- [ s
BAB(0,k) B

< ( meB " (f AE)(2,y) dy — thB(ka) f(@y) dy‘ * J J(w,y)dy

BAB(0,k)C

LB (F ARz, y) — <x,y>|dy+j 9(y) dy

BAB(0,k)°

[f(z,y) — k] dy + J 9(y) dy

J{yeBmB 0,k) | f(z,y)>k} BnB(0,k)"

o) ~Kdv | gty

< JBHB(M) [9(y) — (9 A E)(y)] dy + f 9(y) dy

BAB(0,k)°

= L 9(y) dy — JBmB(O,k) (9Ak)(y)dy <e.

This shows that f satisfies the condition mentioned in 2; thus F' is continuous on A. =

JyeBmB 0,k) | g(y)>k}

Problem 5. Let f : R — R be an integrable Riemann measurable function, and F' : R — R be
defined by

S T

(which exists for all € R since f is integrable). Show that F'is differentiable on R and

— [ )5 costa =)o = = | ) sinte — ) o

Hint: Apply the Dominated Convergence Theorem.

Proof. Let x € R be given, and {h};>; be a non-zero sequence with limit 0. Define

auly) = Fly) TP Z 08wy
k

Then for all y € R, lim gs(y) = f(y) —(cos(x —y)) = —f(y)sin(z — y).
—00
Since ‘— coS x‘ 1, the mean value theorem implies that

| cos(z + by, — y) — cos(z — y)| < |hi|.



Therefore,
l9:(v)| < |f(v)] VeeR.

Since f is integrable on R, | f| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Flo+ he) = Fla) = lim | gx(y)dx = —f f(z)sin(z —y)dx .

k—o0 hk k—o0 R
The equality above shows that for each non-zero sequence {hy};>; with limit 0, the limit

F
lim (x4 he) = Jf sin(z — y) dz
k—0 h

exists. By the definition of the limit of functions,

F h
lim (@ +

h—0

J f(z)sin(z —y) dz . o
Problem 6. Let f : R — R be an mtegrable Riemann measurable function, and F : R — R be
defined by
==‘f f(y) cos(zy) dy
R
(which exists for all z € R since f is integrable). Show that if the function g(x) = x f(z) is integrable,
then F'is differentiable on R and

"(y) = J f(x)i cos(zy) dr = —J xf(x)sin(xy) dz .
R dy R
Hint: Apply the Dominated Convergence Theorem.

Proof. Let y € R be given, and {hy};2, be a non-zero sequence with limit 0. Define
cos(x(y + hi)) — cos(zy
gu(a) = J () D) = os(E)
Then for all z € R, klim gr(x) = f(a:);y(cos(a:y)) = —xf(x)sin(zy).
—00

. d o
Since ‘d— cos x‘ < 1, the mean value theorem implies that
X

| cos(z(y + hi)) — cos(zy)| < |zhyl .
Therefore,
gk (2)] < |z f(z)| =|9(z)] VzeR.

Since g is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Fly+h) = Fly) = lim | hg(z)de = —f xf(z)sin(zy) dx .

k—o0 hk k—o0 R
The equality above shows that for each non-zero sequence {hy}7; with limit 0, the limit

klgxolo Fly+ h;: — ) =— JR zf(z)sin(zry) dx

exists. By the definition of the limit of functions,

F(y+h) —F(y)
h

lim
h—0

_ fR o f(x) sin(zy) da :



e "Ysiny

Problem 7. Let f(z,y) = ity =0, )
1 ify=0.
1. Show that f,(x,y) is continuous everywhere, and show that f(z,-) is integrable on [0, c0) for
all z > 0.
®© 1
2. Define F(x) = Jo f(z,y)dy for x > 0. Show that F'(z) = T

3. Show that F(z) = g —arctanz if > 0, and conclude that

“ sin x T
de = —.
0o T 2

Proof. 1. Note that if y # 0, f.(z,y) = e"®siny while f,(x,0) = 0. Clearly f, is continuous on R?

except perhaps on the z-axis. On the other hand, since ( I)III% : f(z,y) = 0, we conclude that
z,y)—(a,0
fz is also continuous on the x-axis. Therefore, f, is continuous everywhere.

Let x > 0 be given. Then ‘f(:v, y)‘ < e™™. Since the right-hand side function, for given x > 0,

is integrable on [0, ), the comparison test implies that f(z,-) is integrable on [0, o).

2. Let 2 > 0 be given, and {hy};~; be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hg| < g since x > 0. Define

—yhr _
e 1 -

9(y) = hy,

v p 20,

0 ify=0.

—yhr _ 1’

™ < e? |y|; thus

The mean value theorem implies that ‘e

zy

ge(y)] <e”2 Yy =0.

Since the right-hand side function, for given z > 0, is integrable on [0,00), the Dominated

Convergence Theorem implies that

_ 00 _ 00
k—00 hk k—0o0 0 hk k—00 0
0 o0
= f lim g (y)dy = — f e sinydy
o k—o 0

Integrating by parts, by the fact x > 0 we find that

Q0

o0 y=00
J e Weinydy = —e Y cos y’ — f e cosydy
0 y=0 0

y=00 *©
+u J e Ysinydy
y=0 0

=1—=x [e‘wy sin y

Q0
=1 —a:QJ e sinydy;



thus we conclude that

F hy) — F
lim (z+ he) (z) = — for all z > 0 and non-zero sequence {hy};._; with limit 0.
k—o0 hk 1 + 1'2

F(x+h)— F(x)

exists (so that F is differentiable on (0, 0))

Therefore, for > 0 the limit }llim

—0
and Fle+h) —F 1
Fl(a) = lim LEED = @) Vr>0.
h—0 h 1+ 22

. By the (generalized version of) Fundamental Theorem of Calculus, for a,b > 0 we have

x=b
= arctana — arctanb.

r=a

b b
1
F(b)—F(a):J F’(x)da::—f 1+x2dx:arctana:

Note that for a > 0 we have

o0 —ay  y=00 1
Pl < | emay ==
0 —aly=0 a
thus lim F(a) = 0 by the Sandwich lemma. Therefore, for z > 0,

a—00

F(z) = F(z) — lim F(a) = lim [F(z) — F(a)] = lim (arctana — arctanz) = g — arctanx .

a—00 a—00 a—00

Finally, we show that F'(0) = lim F(x). Let € > 0 be given. Since

z—0t

0 (—e*xy cosy — xe "siny

3 2 +cosy) = (e — 1)siny,

integrating by parts shows that for all n > 0,

* siny 1 /—e ™cosy — e siny Y=o
J (e™ —1) ; dy:;( o +cosy>yn
*© r—e W cosy — xe siny 1
+L ( 2 —i—cosy);dy.
By the fact that
—e Wcosy —xe *siny ‘ r+1 5)
< < -
| 27+ 1 oSy s tisg st
we have " ) ® 3 T 6
f (e™™ — 1)Smydy’ <J —dy+—=—.
n Y n Y non
Therefore, for all n > 0,
* sin
|F(z) — F(0) :U (e — 1) dy)
0

< U (e = 1) ay| +

w .
J (e — 1) gy
y

0 Yy n
< [a-cmas
0
e TN y=r 6 e ™ —1
T y=0 N T n




so that

limsup |F(z) — F(0)] < Vn>0.

z—0t

S|o

Since n > 0 is given arbitrarily, we conclude that limsup |F(z) — F(0)| = 0 which shows that
z—0+t

lim F (x) = F(0). As a consequence,

z—0

© .
J sin x dx = F(0) = lim F(z)= lim (g - arctanx) = g o

0 T z—0t r—0t



