Problem 1. Let (M,d) and (N,ρ) be metric spaces, $A \subseteq M$, and $f_k : A \to N$ be a sequence of functions such that for some function $f : A \to N$, we have that for all $x \in A$, if $\{x_k\}_{k=1}^{\infty} \subseteq A$ and $x_k \to x$ as $k \to \infty$, then

$$\lim_{k \to \infty} f_k(x_k) = f(x) .$$

Show that

- 1. $\{f_k\}_{k=1}^{\infty}$ converges pointwise to f.
- 2. If $\{f_{k_j}\}_{j=1}^{\infty}$ is a subsequence of $\{f_k\}_{k=1}^{\infty}$, and $\{x_j\}_{j=1}^{\infty}\subseteq A$ is a convergent sequence satisfying that $\lim_{j\to\infty}x_j=x$, then

$$\lim_{j \to \infty} f_{k_j}(x_j) = f(x) .$$

3. Show that if in addition A is compact and f is continuous on A, then $\{f_k\}_{k=1}^{\infty}$ converges uniformly f on A.

Proof. 1. Let $x \in A$ be given. Define $\{x_k\}_{k=1}^{\infty}$ by $x_k = x$ for all $k \in \mathbb{N}$. Then $\lim_{k \to \infty} x_k = x$; thus

$$\lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} f_k(x_k) = f(x)$$

which shows that $\{f_k\}_{k=1}^{\infty}$ converges pointwise to f.

2. Let $\{f_{k_j}\}_{j=1}^{\infty}$ be a subsequence of $\{f_k\}_{k=1}^{\infty}$, and $\{x_j\}_{j=1}^{\infty}$ be a convergent sequence with limits x. Define a new sequence $\{y_\ell\}_{\ell=1}^{\infty}$ by

$$y_1, \dots, y_{k_1} = x_1, y_{k_1+1}, \dots, y_{k_1+k_2} = x_2, \dots, y_{k_1+k_2+\dots+k_{\ell+1}}, \dots, y_{k_1+k_2+\dots+k_{\ell+1}} = x_{\ell+1}, \dots;$$

that is, the first k_1 terms of $\{y_\ell\}_{\ell=1}^{\infty}$ is x_1 , the next k_2 terms of $\{y_\ell\}_{\ell=1}^{\infty}$ is x_2 , and so on. Then $\{y_\ell\}_{\ell=1}^{\infty}$ converges to x;

$$\lim_{\ell \to \infty} f_{\ell}(y_{\ell}) = f(x) .$$

Since $\{f_{k_j}(x_j)\}_{j=1}^{\infty}$ is a subsequence of $\{f_{\ell}(y_{\ell})\}_{\ell=1}^{\infty}$, $\lim_{j\to\infty} f_{k_j}(x_j) = f(x)$.

3. Suppose the contrary that $\{f_k\}_{k=1}^{\infty}$ does not converge uniformly to f on A. Then there exists $\varepsilon > 0$ and N > 0 such that

$$\sup_{x \in A} \rho(f_{\ell}(x), f(x)) \geqslant \varepsilon \qquad \forall \, \ell \geqslant N \,.$$

Therefore, for each $\ell \geq N$, there exists $x_{\ell} \in A$ such that

$$\rho(f_{\ell}(x_{\ell}), f(x_{\ell})) \geqslant \frac{\varepsilon}{2}.$$

By the compactness of A, there exists a convergent subsequence $\{x_{\ell_j}\}_{j=1}^{\infty}$ of $\{x_{\ell}\}_{\ell=N}^{\infty}$. Suppose that $\lim_{j\to\infty} x_{\ell_j} = x$. Since

$$\rho(f_{\ell_j}(x_{\ell_j}), f(x_{\ell_j})) \geqslant \frac{\varepsilon}{2} \quad \forall j \in \mathbb{N},$$

by the fact that $\lim_{\ell\to\infty} f_\ell(x_\ell) = f(x)$ and that f is continuous at x, we obtain that

$$\rho(f(x), f(x)) = \lim_{j \to \infty} \rho(f_{\ell_j}(x_{\ell_j}), f(x_{\ell_j})) \geqslant \frac{\varepsilon}{2},$$

a contradiction.

Remark 0.1. Using the inequality

$$\rho(f_k(x_k), f(x)) \leq \rho(f_k(x_k), f(x_k)) + \rho(f(x_k), f(x)) \leq \rho(f(x_k), f(x)) + \sup_{x \in A} \rho(f_k(x), f(x)),$$

we find that if $\{f_k\}_{k=1}^{\infty}$ converges uniformly to a continuous function f, then $\lim_{k\to\infty} f_k(x_k) = f(x)$ as long as $\lim_{k\to\infty} x_k = x$. Together with the conclusion in 3, we conclude that

Let (M,d), (N,ρ) be metric spaces, $K\subseteq M$ be a compact set, $f_k:K\to N$ be a function for each $k\in\mathbb{N}$, and $f:K\to N$ be continuous. The sequence $\{f_k\}_{k=1}$ converges uniformly to f if and only if $\lim_{k\to\infty}f_k(x_k)=f(x)$ whenever sequence $\{x_k\}_{k=1}^\infty\subseteq K$ converges to x.

Problem 2. Let (M, d) be a metric space, $A \subseteq M$, and $f_k : A \to \mathbb{R}$ be a sequence of functions (not necessary continuous) which converges uniformly on A. Suppose that $a \in cl(A)$ and

$$\lim_{x \to a} f_k(x) = L_k$$

exists for all $k \in \mathbb{N}$. Show that $\{L_k\}_{k=1}^{\infty}$ converges, and

$$\lim_{x \to a} \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} \lim_{x \to a} f_k(x).$$

Proof. Let $\varepsilon > 0$ be given. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly, there exists $N_1 > 0$ such that

$$|f_k(x) - f_\ell(x)| < \frac{\varepsilon}{3} \quad \text{whenever} \quad k, \ell \geqslant N_1 \text{ and } x \in A.$$
 (*)

If $a \in cl(A)$, then the inequality above implies that

$$|L_k - L_\ell| = \lim_{x \to a} |f_k(x) - f_\ell(x)| \le \frac{\varepsilon}{3} < \varepsilon \quad whenever \quad k, \ell \ge N_1;$$

thus $\{L_k\}_{k=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . Therefore, $\{L_k\}_{k=1}^{\infty}$ converges. Suppose that $\lim_{k\to\infty} L_k = L$ and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f. There exists $N_2 > 0$ such that $|L_k - L| < \frac{\varepsilon}{3}$ whenever $k \ge N_2$. Moreover, passing to the limit as $\ell \to \infty$ in (\star) , we obtain that

$$|f_k(x) - f(x)| \le \frac{\varepsilon}{3}$$
 whenever $k \ge N_1$ and $x \in A$.

Let $N = \max\{N_1, N_2\}$. Since $\lim_{x\to a} f_N(x) = L_N$, there exists $\delta > 0$ such that

$$|f_N(x) - L_N| < \frac{\varepsilon}{3} \quad whenever \quad x \in B(a, \delta) \cap A.$$

Then if $x \in B(a, \delta) \cap A \setminus \{a\},\$

$$|f(x) - L| \le |f(x) - f_N(x)| + |f_N(x) - L_N| + |L_N - L| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Therefore, $\lim_{x\to a} f(x) = L$ which shows that $\lim_{x\to a} \lim_{k\to\infty} f_k(x) = \lim_{k\to\infty} \lim_{x\to a} f_k(x)$.

Problem 3. Prove the Dini theorem:

Let K be a compact set, and $f_k: K \to \mathbb{R}$ be continuous for all $k \in \mathbb{N}$ such that $\{f_k\}_{k=1}$ converges pointwise to a continuous function $f: K \to \mathbb{R}$. Suppose that $f_k \leq f_{k+1}$ for all $k \in \mathbb{N}$. Then $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on K.

Hint: Mimic the proof of showing that $\{c_k\}_{k=1}^{\infty}$ converges to 0 in Lemma 6.64 of the Lecture Note.

Proof. Suppose the contrary that there exist $\varepsilon > 0$ such that

$$\limsup_{k\to\infty} \sup_{x\in K} |f_k(x) - f(x)| \ge 2\varepsilon.$$

Then there exists $1 \le k_1 < k_2 < \cdots$ such that

$$\max_{x \in K} |f_{k_j}(x) - f(x)| = \sup_{x \in K} |f_{k_j}(x) - f(x)| > \varepsilon.$$

In other words, for some $\varepsilon > 0$ and strictly increasing sequence $\{k_j\}_{j=1}^{\infty} \subseteq \mathbb{N}$,

$$F_j \equiv \{x \in K \mid f(x) - f_{k_j}(x) \ge \varepsilon\} \ne \emptyset \qquad \forall j \in \mathbb{N}$$

Note that since $f_k \leq f_{k+1}$ for all $k \in \mathbb{N}$, $F_j \supseteq F_{j+1}$ for all $j \in \mathbb{N}$. Moreover, by the continuity of f_k and f, F_j is a closed subset of K; thus F_j is compact. Therefore, the nested set property for compact sets implies that $\bigcap_{j=1}^{\infty} F_j$ is non-empty. In other words, there exists $x \in K$ such that $f(x) - f_{k_j}(x) \ge \varepsilon$ for all $j \in \mathbb{N}$ which contradicts to the fact that $f_k \to f$ p.w. on K.

Problem 4. Let (M,d) and (N,ρ) be metric spaces, $A \subseteq M$, and $f_k : A \to N$ be uniformly continuous functions, and $\{f_k\}_{k=1}^{\infty}$ converges uniformly to $f : A \to N$ on A. Show that f is uniformly continuous on A.

Proof. Let $\varepsilon > 0$ be given. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f, there exists N > 0 such that

$$\rho(f_k(x), f(x)) < \frac{\varepsilon}{3}$$
 whenever $k \ge N$ and $x \in A$.

Since f_N is uniformly continuous, there exists $\delta > 0$ such that

$$\rho(f_N(x_1), f_N(x_2)) < \frac{\varepsilon}{3}$$
 whenever $x_1, x_2 \in A$ and $d(x_1, x_2) < \delta$.

Therefore, if $x_1, x_2 \in A$ satisfying $d(x_1, x_2) < \delta$, we have

$$\rho(f(x_1), f(x_2)) \leq \rho(f(x_1), f_N(x_1)) + \rho(f_N(x_1), f_N(x_2)) + \rho(f_N(x_2), f(x_2))$$
$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon;$$

thus f is uniformly continuous on A.

Problem 5. In this problem, do NOT use the Dominated Convergence Theorem. Complete the following.

- 1. Suppose that $f_k, f, g : [0, \infty) \to \mathbb{R}$ are functions such that
 - (a) $\forall R > 0, f_k$ and g are Riemann integrable on [0, R];
 - (b) $|f_k(x)| \leq g(x)$ for all $k \in \mathbb{N}$ and $x \in [0, \infty)$;
 - (c) $\forall R > 0, \{f_k\}_{k=1}^{\infty}$ converges to f uniformly on [0, R];

(d)
$$\int_0^\infty g(x)dx \equiv \lim_{R \to \infty} \int_0^R g(x)dx < \infty.$$

Show that $\lim_{k\to\infty} \int_0^\infty f_k(x)dx = \int_0^\infty f(x)dx$; that is,

$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$$

- 2. Let $f_k(x)$ be given by $f_k(x) = \begin{cases} 1 & \text{if } k-1 \leq x < k \\ 0 & \text{otherwise.} \end{cases}$ Find the (pointwise) limit f of the sequence $\{f_k\}_{k=1}^{\infty}$, and check whether $\lim_{k \to \infty} \int_0^{\infty} f_k(x) dx = \int_0^{\infty} f(x) dx$ or not. Briefly explain why one can or cannot apply 1.
- 3. Let $f_k:[0,\infty)\to\mathbb{R}$ be given by $f_k(x)=\frac{x}{1+kx^4}$. Find $\lim_{k\to\infty}\int_0^\infty f_k(x)dx$.

Proof. 1. First we note that since $|f_k(x)| \leq g(x)$ for all $x \in \mathbb{R}$, passing to the limit as $k \to \infty$ shows that $|f(x)| \leq g(x)$ for all $x \in \mathbb{R}$.

Let $\varepsilon > 0$ be given. Since $\lim_{R \to \infty} \int_0^R g(x) \, dx = \int_0^\infty g(x) \, dx$ exists, there exists M > 0 such that

$$\int_{R}^{\infty} g(x) dx = \left| \int_{0}^{R} g(x) dx - \int_{0}^{\infty} g(x) dx \right| < \frac{\varepsilon}{3} \qquad \forall R \geqslant M.$$

Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly on [0, M], $\lim_{k \to \infty} \int_0^M f_k(x) dx = \int_0^M f(x) dx$; thus there exists $N \ge 0$ such that

$$\left| \int_0^M f_k(x) \, dx - \int_0^M f(x) \, dx \right| < \frac{\varepsilon}{3} \quad \text{whenever} \quad k \geqslant N \, .$$

Therefore, if $k \ge N$, we have

$$\left| \int_0^\infty f_k(x) \, dx - \int_0^\infty f(x) \, dx \right| \le \left| \int_0^M f_k(x) \, dx - \int_0^M f(x) \, dx \right| + \int_M^\infty |f(x)| \, dx + \int_M^\infty |f_k(x)| \, dx$$
$$< \frac{\varepsilon}{3} + 2 \int_M^\infty g(x) \, dx < \frac{\varepsilon}{3} + \frac{2\varepsilon}{3} = \varepsilon.$$

thus $\lim_{k\to\infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx$. This implies that

$$\lim_{k \to \infty} \lim_{R \to \infty} \int_0^R f_k(x) dx = \lim_{k \to \infty} \int_0^\infty f_k(x) dx = \int_0^\infty f(x) dx = \lim_{R \to \infty} \int_0^R f(x) dx$$
$$= \lim_{R \to \infty} \lim_{k \to \infty} \int_0^R f_k(x) dx.$$

2. If $x \in [0, \infty)$, we have $x \leq N$ for some $N \in \mathbb{N}$ (by the Archimedean property); thus for $k \geq N$ we have $f_k(x) = 0$. In other words, $\{f_k\}_{k=1}^{\infty}$ converges pointwise to the zero function. Let f be the zero function. Then

$$\int_0^\infty f_k(x) \, dx = \int_{k-1}^k 1 \, dx = 1$$

so that $\lim_{k\to\infty}\int_0^\infty f_k(x)\,dx=1\neq 0=\int_0^\infty f(x)\,dx$. This is because we cannot find an integrable g satisfying that $\left|f_k(x)\right|\leqslant g(x)$ for all $x\in[0,\infty)$. In fact, if $\left|f_k(x)\right|\leqslant g(x)$ for all $x\in[0,\infty)$, then $g(x)\geqslant 1$ for all $x\in[0,\infty)$.

3. Let $g(x) = \frac{x}{1+x^4}$. Then $|f_k(x)| \leq g(x)$ for all $x \in [0,\infty)$ and $k \in \mathbb{N}$. Since $g(x) \leq x$ for $x \in [0,1]$ and $g(x) \leq \frac{1}{x^3}$ for $x \geq 1$, we find that

$$\int_0^\infty g(x) \, dx \le \int_0^1 x \, dx + \int_1^\infty \frac{1}{x^3} \, dx = \frac{1}{2} + \frac{1}{2} = 1 < \infty.$$

Moreover,

$$f'_k(x) = \frac{1 + kx^4 - 4kx^4}{(1 + kx^4)^2} = \frac{1 - 3kx^4}{(1 + kx^4)^2}$$

which implies that for each R > 0,

$$\sup_{x \in [0,R]} |f_k(x)| \le |f_k(0)| + |f_k(R)| + \left| \frac{(3k)^{-\frac{1}{4}}}{1 + k \cdot \frac{1}{3k}} \right| = \frac{R}{1 + kR^4} + \frac{3}{4} \left(\frac{1}{3k} \right)^{\frac{1}{4}}.$$

Therefore, the Sandwich Lemma implies that $\lim_{k\to\infty}\sup_{x\in[0,R]}|f_k(x)|=0$ which shows that $\{f_k\}_{k=1}^{\infty}$ converges uniformly to the zero function on [0,R] for every R>0. By 1,

$$\lim_{k \to \infty} \int_0^\infty f_k(x) \, dx = 0 \,.$$