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Problem 1. Show that the series
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converges uniformly on every bounded interval.
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2. > M < oo (by the integral test).
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Therefore, the Weierstrass M-test implies that )| (—l)kﬁ converges uniformly on [—R, R]. o
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Problem 2. Determine which of the following real series >, gx converge (pointwise or uniformly).
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Check the continuity of the limit in each case.
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3. gr(x) = (=" cos(kx) on R.
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Proof. 1. By the definition of g, we find that the partial sum S, (z) = >, gr(x) satisfies that for all
k=1
neN,
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Son(x) = { 0 otherwise,
and

Son1(2) = -1 ifze(1,2]u(3,4u---u(2n—3,2n—-2] U (2n — 1,0),
n—1\T) = 0 otherwise.



Therefore, {S,}°_, converges pointwise to the function
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S(z) = { 0 otherwise

or more precisely,
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The convergence is uniformly on any bounded subset of R, and the limit function S has dis-

continuities on N.
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. Let My = —. Then sup|gr(z)| < My and > My converges (by the integral test). Therefore,
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the Weierstrass M-test implies that Y g converges uniformly on R. Since g is continuous on
k=1

Q0
R, we find that ). g is continuous on R.
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. If 2 = (2n + 1)7 for some n € Z, then cos(kx) = (—1)* for all k € N; thus > gn(z) diverges at
k=1

= (2n + 1)7 (by the integral test).

Now suppose that ¢ {(2n + 1)m|n € Z}. Let S,(z) = i (=1)*cos(kz). Then S,(z) =
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>, cos(k(x +m)) and
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The equality above shows that
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which is bounded independent of n. The Dirichlet test then shows that >} gx(z) converges for
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all x € R\{(2n + 1)7 |n € Z}. Therefore, Y gi converges pointwise on R\{(2n + 1) |n € Z}.
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Let A € R be a set satisfying that

d(z,{(2n+)r|neZ}) =inf{lr—y||lye {2n+1)n|neZ}} >6 VzeA.



Then the computation above shows that |S,(z)] < R = + Lorallze A Tfn > m,

N
(@)
o
|5}

IS%)
()

we have

= Lnsn(x) Sin(1) + nzl (\/LE — kl—l— 1>Sk<x) ;
thus if z € A,
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Therefore, for a given € > 0, by choosing N > 0 satisfying
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By the Cauchy criterion, >’ g, converges uniformly on A; thus >} gx is continuous at every
k=1 k=1
point at which the series converges. O
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Problem 3. Suppose that the series >, a,, =0, and f(z) = Z apx™ for —1 < x < 1. Show that f
n=0 n=0

is continuous at x = 1 by complete the following.
1. Write s, =ag+a; + -+ a, and S, (z) = ag + a1z + - - - + a,z". Show that

Sp(x) = (1 —2)(s0+ 810+ + 8,_12" ") + s,2"
and f(z) = (1 —x) io Spx™.
2. Using the representation of f from above to conclude that J;liglf f(z)=0.
e
3. What if nZ::o a, is convergent but not zero?
Proof. 1. Let s, =ap+ a1+ -+ a, and S,(x) = ag + a1z + - - - + a,a™.
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Sp(x) = Z apxr® = ag + Z aprt = s + Z(Sk — Sp_1)z”
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= Sg + Z skx — Z sk_la:k = Z skmk - Z skxk“
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= s,2" + Z o Z spa
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=(1—2)(so+ 812+ + 812" ) + s,2"



Therefore, by the fact that lim s, = 0, we find that if x € (-1, 1],
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f(z) = lim S,(z) = (1 — ) Z spa’ .
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2. Let € > 0 be given. Since lim s, = 0, there exists N > 0 such that |s,| < g for all n > N.
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Therefore, lim f(z) =0 = f(1) which shows that f is continuous at 1.
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3. If s = > ap # 0, we define a new series Y, b,z" by by = a9 — s and b, = a, for all n € N.
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Then g(z) = >, b,a™ also converges for = € (—1,1] and satisfies that g(1) = 0. Therefore, 1
n=0
and 2 imply that g is continuous at 1; thus lim g(x) = 0. By the fact that g(z) = f(x) — s,
z—1—
we conclude that .
Jim f(z) = nz_oa F(1) -

Problem 4. Construct the function g(z) by letting g(x) = |z| if z € [—%, %} and extending g so
that it becomes periodic (with period 1). Define

1. Use the Weierstrass M-test to show that f is continuous on R.
2. Prove that f is differentiable at no point.
Hint: Google Blancmange function!

Proof. 1. Since g is periodic with period 1, we find that

sup ‘g(a:)‘ = sup ‘g(x)| =1.
zeR z€[—1/2,1/2]
g(4k_1$) 1 0
Let gx(z) = = and M, = =g Then sup |gx(z)| < My, and Y, M < o0. Therefore, the
zeR k=1
Q0
Weierstrass M-test implies that > g converges uniformly on R. Moreover, since each gy, is
k=1
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continuous, Y. gy is also continuous on R.
k=1



2. We first claim that if f is differentiable at z, then for every sequence {a,}> ; and {b,}r_

satisfying a,, < x < by, b, # a,, and lim (b, — a,) = 0, we have
n—o0

lim f(bn) — flan)

n—00 bn — Qp

= /().

It suffices to show the case that a, < x < b, for all n € N. To see the identity above, we note

that if a,, < x < b,,, we have

bb:__; <1 and Z;__(ZZ <1.
Therefore, for a, < x < b, we have
fbn) = flan)
‘ b — ay, —f(:c)‘
by —x ( f(by) — f(2) / r—a, (f(x)— flan) '
( b, — x _f<x>>+bn—an< T — ay —f(:c))‘
f —flx) f(z) = flan)
‘ b - f(x‘—k‘ T — a, —f(x)’

so that the Sandwich Lemma implies that lim
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Let D = {j4™"|j,n € Z}. Suppose that f is differentiable at 2 € R. Then there exists {a,}_,

{b,}°_, < D such that a, <z < b, and b, n:4T1—1' Then
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which does not converge by the n-th term test. D

Problem 5. Let (M, d) be a metric space, and K < M be a compact subset.

1. Show that the set U = {f € ¢(K;R)|a < f(z) < b for all z € K} is open in (€'(K;R), | - [)
for all a,b € R.

2. Show that the set F' = {f € €(K;R)|a < f(z) <bfor all z € K} is closed in (¢(K;R), | |)
for all a,b € R.



3. Let A < M be a subset, not necessarily compact. Prove or disprove that the set B = { fe
€, (A;R) | f(x) > 0 for all z € A} is open in (G,(A;R), |- o).

Proof. 1. Let g € U. By the Extreme Value Theorem, there exists z1, x5 € K such that

g(a:) = inf g(z)  and  g(za) = supg(x).
zeK zeK

Therefore, a < inf g(z) < sup g(z) < b. Let » = min {b — sup g(z), inf g(z) — a}. Then r > 0.
zeK e K e K zeK

Moreover, if f € B(g,r) and x € K, we have
U@ﬁ—g@ﬂ<ﬂ£ﬁ@ﬁ—9@ﬂ=Hf—ﬂm<r-

Therefore, if f € B(g,r), by the fact that r < b —supg(z) and r < in}f{g(x) — a, we conclude
reK e
that if x € K, )

a < infg(z) —r<g(z) —r < flz) <gle) +r<supg(z) +r<b
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which implies that f € U. Therefore, B(g,r) < U; thus U is open.

2. Let {f.}*°; be a sequence in F such that {f,}*, converges uniformly to f on K. Then

f € €(K;R). Moreover, by the fact that a < f,(z) < b for all z € K and n € N, we find that

a < f(x) <bforall z € K since f(x) = lim f,(z). This implies that f € F'; thus F' is closed
n—o0

(since it contains all the limit points).

3. Consider the case A = (0,1). Then the function f(z) = z belongs to B; however, for every
r > 0, the function g(x) = f(z) — g belongs to B(f,r) since

.
I =gl = sup |f(2) -~ g(a)| =5 <
ze(0,1)

However, g ¢ B since if 0 < z « 1, we have g(z) < 0. In other words, there exists no r > 0
such that B(f,r) < B; thus B is not open. o



