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Problem 1. Define B to be the set of all even functions in the space € ([—1, 1];R); that is, f € B
if and only if f is continuous on [—1,1] and f(x) = f(—=z) for all z € [-1,1]. Prove that B is

closed but not dense in € ([—1, 1]; R). Hence show that even polynomials are dense in B, but not in

€ ([-1,1];R).

Proof. Let {fi}7, be a sequence in B and {fi}72, converges uniformly to f on [—1,1]. Then f is

continuous. Moreover, for each = € [—1, 1],
flz) = lim fi(z) = lim fi(=z) = f(=2);
k—o0 k—o0
thus f is even. Therefore, f € B which shows that B is closed. However, B is not dense in B since

there exists no f € B satisfying that

1
AV =g

since

f(=1) + 1|} = max{|f(1) — 1

: N +1)) =1,

max |f(z) — x| = max{|f(1) — 1

Let A denote the collection of even polynomials, and f be an even continuous function. Then

the Weierstrass Theorem implies that there exists a sequence of polynomial {p,}>_; such that

lim max | f(v/z) — pa(z)| = 0.

n—a z€(0,1]

For each n € N, define ¢, : [~1,1] — R by ¢,(z) = p,(2?). Then {¢,}*, < A and

lim max [f(z) — ¢u(z)| = lim max |f(z) — pa(2?)| = lim max |f(v/z) — pu(z)| =0

n—o ze[—1,1] n—0 zel0,1] n—0a0 z€(0,1]

which shows that {g,}’°; converges uniformly to f on [—1,1]; thus A is dense in B. On the other
hand, since A € B, we must have A € B ¢ %([—1,1];R) which implies that A is not dense in
Cg([—l,l];R). O

Problem 2. Let f:[0,1] — R be a continuous function.
1. Suppose that :
f f(z)z"dx =0 VneNu{0}.
Show that f =0 on [0, 1]. O
2. Suppose that for some m € N,
flf(a:)x"dx:O Vne{0,1,--- ,m}.
0

Show that f(z) = 0 has at least (m + 1) distinct real roots around which f(x) change signs.



Proof. 1.By the Weierstrass Theorem, for each k£ € N there exists a polynomial p; such that || f —
1
pille < 7 Since f f(x)a" dz = 0 for all n e N U {0}, we find that
0

L f(x)pe(x)dr =0  VkeN.

Note that f(f — px) converges to the zero function uniformly on [0, 1] since

1
L =pr)loo < | fllool f = Prfoo < EHfHoo —0 as k — 0;

thus by the fact that 1 1
fo flx)?de = JO f(@)[f(@) — pe(2)] dz,

1
we find that J f(z)*>dz = 0. Therefore, by the continuity of f, we conclude that f = 0 on

0
[0,1].
2. Let

D = {k eN ‘ if fe %([0,1];R) and f changes signs only around 0 < oy < -+ < ag < 1,

k
then y = f(x) H(x — «;) does not change sign} :
j=1
Suppose that f € €([0,1];R) changes sign only around 0 < a3 < 1. Then y = f(z)(x — ay)
does not change sign so that 1 € D. Assume that k € D. If f changes signs only around

0<a; <ag <-- <age <1, then the function y = f(z)(x — ayy1) changes signs only around
k

k+1
0<a; < <o <lythusy = f(z)(x —ous1) [[(x — ;) = f(z) [ [ (r — ;) does not change
j=1 j=1

sign which shows that £ + 1 € D. By induction, we conclude that D = N.

Now suppose the contrary that f(z) = 0 has at most m distinct real roots Ok <o <<

ap < 1, where 0 < k < m, around which f(z) changes signs. Then y = f(x) [[(x — o) does
k J=1
not change sign. W.L.O.G., we assume that f(z) [[(z —a;) = 0 for all € [0, 1]. Then by the

7=1
fact that

flf(a:)x"dx:O Vne{0,1,---,m}.
0

and k < m, we find that
k

[ o] Te - =o;

j=1

k
thus the sign-definite property and the continuity of the function y = f(x) [[(z — a;) im-
k K j=1
plies that f(z) [[(z — «;) = 0 for all x € [0,1]. Therefore, f(z) [[(z — ;) = 0 for all
j=1 j=1
x € [0, 1\{aq, g, - ,ag} or equivalently, f(z) = 0 for all x € [0,1\{aq, a9, - ,ax}. The

continuity of f further implies that f = 0 on [0, 1], a contradiction to that f has at most m

distinct real roots around which f changes signs. =



Problem 3. Let f:[0,1] — R be continuous. Show that

lim 1 f(z)sin(nz)dx =0.

n—0o0 0

1
Proof. We first show that lim | z*sin(nz)dx =0 for all k e N U {0}. Let

n—ao0 0

D:{keNu{O}

1
lim f 2" sin(nx) dr = O} .

n—o Jo

Then 0 e D and 1 € D since

—cos(nx)[*=1  cos0 —cosn

—0 as n— w

n =0 n

1
f sin(nx) dr =
0

and

xsin(nz) dx =

+ — | cos(nz)dr =— +—5—0 as n— 0.
0 n

=0 n Jo n n

fl : —x cos(nx)

z=1 1]1 cosn sinn

Suppose that {0,1,---  k} < D. Then

" sin(nx) dr = —

Lok41 !
+ il J z* cos(nx) dx
0 n 0

=0 n

cosn kE+1 [:L“k sin(nz)

=1 k 1
- — f 2! sin(nx) da

k4 1) si k+ 1)k
:_cosn+( + ZSlﬂn ( +2) J ¥ Vsin(nz)de — 0 as n — .
n n n 0

By induction, D = N u {0}.
Having established that D = N u {0}, we immediately conclude that
1

lim | p(z)sin(nz)dez =0 for all polynomial p.

n—o0 0
Let € > 0 be given. By the Weierstrass Theorem, there exists a polynomial p such that | f —pl, < %
1
By the fact that lim | p(x)sin(nz)dz = 0, there exists N > 0 such that
n—0o0 0

€
‘J ) sin(nz dx‘ < 3 whenever n > N.

Therefore, if n > N,

’ f f(z) sin(nz) dx ‘ f sm nx dx‘ + ‘ f x) sin(nz) dx

<J I~ pllodr+ 5 <2
0

1
which establishes that lim [ f(z)sin(nz)dx = 0. o

n—o0 0



Problem 4. Put py = 0 and define

? — pi(x
pkﬂ(q:):pk(x)—kw VkeNu {0}
Show that {py}72, converges uniformly to |z| on [—1,1].
Hint: Use the identity
x|+ pr(T
ol = P (@) = [Jo] = pel)] [1 - LD

to prove that 0 < pr(x) < pre1(x) < |z| if |z| < 1, and that

k 2
ol = (o) < fol (1= 121) < =

if 2| < 1.

2
Proof. Let D = {k € N|0 < pi(2) < prs1(z) < |z| Vo € [-1,1]}. By the fact that py(z) = % and

|z|> — p1(z)?

0 < pi(z) < |z| for all z € [—1,1], we find that py(z) = pi(z) + 5

leD.
Assume that k € D. Then the identity

> pi(z). Therefore,

2 — pi(x)

5 VkeNu{0}.

pry1(z) = pi(z) +
implies that pgy1(z) = pr(z) = 0 on [—1,1]. Moreover, using the identity

o] — P (2) = [lal — pi(a)] [1 - E2D]. (+)
we find that if z € [-1, 1],

x4 =]
2

| = ol = pe(@)] (1 = Ial) = 0;

thus pgy1(x) < |x| on [—1,1]. Therefore, k + 1 € D so that D = N by induction.

2| = praa(z) = [|2] — pr(z)] [1

Using (*) again, we find that

0 < |z] — pr(z) = U$| —pk—l(xﬂ [1 - W} S [|1’| —Pk—l(l‘ﬂ (1 - |562|) VkeN;

thus

0 < lal = pu(a) < [lol = pr2(@)] (1= 1) < [la] = pua(@)] (1 - )

2
<o el = pol@)] (1 - 2 = a1 - BE,

By the fact that |z](1 — M)k <

5 for all x € [—1, 1], we conclude that

kE+1

li —|z||=0
Jim max [pu() = o

which shows that {p};2; converges uniformly to y = |z| on [—1,1]. D



Problem 5. Suppose that p, is a sequence of polynomials converging uniformly to f on [0, 1] and f
is not a polynomial. Prove that the degrees of p,, are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points xg, -+ ,zn

via Lagrange’s interpolation formula

=Y m(z p(zk)
CEDRICE
where m(z) = (x —zo)(z —21) - (x —an) /(v — i) = [] (2 —xj).

0<j<N
Jj#k

Proof. Suppose the contrary that there exists a sequence of polynomial {p,}7,; which converges
uniformly to f on [0, 1] and deg(p,) < N for all n € N. W.L.O.G. we assume that

1P — fllow <1 YneN.

Then |p,(z)| < [ flw + 1 for all z € [0,1] and n € N.

Since deg(p,) < N, using the Lagrange interpolation formula with 2, = k/N, we have

Pn\T) = T\ T = Aind’ .
k=0 () =0 ’
Let [N /2] denote the largest integer smaller than N /2. Note that
()| = £ B 11 N—k _ [N/2)
7"' x T e f ettt e e e 4 —— s e e e e =
RITNON N N N NN
so that N
s | _ (1fl DY
N .
Moreover, m(z) = X, ¢;a? with |e;| < Cf} 5. Therefore,
j=0
1)N¥N
|ajn| < /o + 1) C[]JVV/Q](N+1) VO<j< NandneN.

N /2!

In other words, the coefficients of each p, is bounded by a fixed constant. This allows us to pick a
subsequence {py, }72, of {p,}; such that

klim @jn, = a;j exists for all 0 < j < N.

—00

N .

This implies that {p,, },~; converges uniformly to the polynomial p(z) = >] a;27 since {p,, };~, con-
j=0

verges pointwise to p and {p,}>_, converges uniformly on [0, 1] so that {p,, };~; converges uniformly

on [0,1]. On the other hand, since {p,}»_, converges uniformly to f on [0, 1], we conclude that f = p,

a contradiction. o



Problem 6. Consider the set of all functions on [0, 1] of the form
h(z) = Z a;e"
j=1

where a;, b; € R. Is this set dense in € ([0, 1]; R)?
Proof. Let A= {Zn a;eb® ’ aj,b; € ]R}. Then

j=1

dy,

NgE
M=

bjx — x
aje’* and g(z) = , we have

j=1 k

n n m N
bix dpx \ __ bi+dp)r Byx
(Zajef>( cw’“)-ZZajcke(f ¥) —ZAge’f

j=1 j=1k=1 =1

for some Ay, By € R, and clearly, f + g€ A and cf € Aif ce R.

1. A is an algebra since if f(x) = cxe

1

<
Il

NgE

k

I
—

2. A separates points of [0, 1] since the function f(z) = e* € A which is strictly monotone so that
f(z1) # f(xg) for all zy # .

3. A vanishes at no point of [0, 1] since the function f(x) = e” € A which is non-zero at every
point of [0, 1].

By the Stone Theorem, A is dense in €([0, 1]; R). o



