Exercise Problem Sets 7
Apr. 17. 2021

Problem 1. 1. Let f: [, 7] be a Riemann integrable function. Show that

hmf f(x)coskx dr = hm f(x)sinkzdr =0.

k—o0 k—o0 —r

2. Recall that f : [a,b] — R is integrable if f is Riemann measurable (that is, the collection of
discontinuities of f has measure zero) and the limits klim (f* A k)(x) dx both exist, where
—00 —T

f* = max{£f,0}. Show the Riemann-Lebesgue Lemma

If f:[—m, n] — R is an integrable function, then

s

lim f( ) cos kx dx = hm f(x)sinkzdr =0.

k—o0 k—o0

—Tr

Hint: First show that for every ¢ > 0 there exists a Riemann integrable function g : [—m, 7] —

R such that f | f(z) — g(z)|dx < €, then apply the conclusion in 1.

Proof. 1. Let € > 0 be given. Then by Lemma 6.63 of the lecture note, there exists g € € ([—m, 7]; R)

such that
f(z) <g(x) < sup f(z) Vae|-mn] and f(z)dx > f g(x)dx — g
z€[—m,7] -7 -7
By the Weierstrass Theorem, there exists a polynomial p such that
lg—ple < =
g — Pllwo 6m
Since p is a polynomial, integrating by parts (or by Problem 3 of Exercise 6) we can show that
lim p(z)coskxdr = lim | p(z)sinkzdr =0.
k—o0 - k—00 —r
Therefore, there exists N > 0 such that if £ > N
‘J p(z) COSk‘:L‘dI) < % and ‘f p(x)sinkxdm‘ < %
Therefore, if £k > N,
) J f(z)cos kx dx’
‘ J (z)] cos ka d:c‘ + ‘ J — p(z)] cos ka dx‘ + ‘ J p(z) cos kx dx
T £
<[ - |dx+f lo — plode +
s s c
< — _ —_ =
f_r [g(as) f(m)] dm—i—f 67Td:v—|— 3 < = 3 +3 —I— 5

and similarly,
‘J f(z)cos kx dx‘ <¢e whenever k> N.
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—Tr

thus by the fact that

T s us g

lim (ft Ak)(z)de = ff(x)dz and lim (f~ ~nk)(x)de = f(x)dx,

k—o0 o r k—00 r o

we find that there exists K > 0 such that

J |f(z) — g(z)| dz < % whenever k> K.

—T

Let h = gx. Note that h is Riemann integrable on [—m, 7]; thus part 1 implies that there exists
N > 0 such that if £ > N,

’J h(x) cos kxd:c) < % and ‘J h(x)sin kx dx’ < g.

Therefore, if k > N

|f f(x Cosk:xda:—)f }cosk‘xdm‘%—‘f cosk:xdx‘
gf | ‘dm—I—)J cosk‘xdx’<%+§=5

and similarly,

’J f(x) sinkxdm‘ <& whenever k> N. D

Problem 2. Let a € (0, 1] and [ be an interval. A function f : I — R is said to be Holder continuous

with exponent « if
m —_—
zyel,x#y ’:E - y‘a

1. Show that f is uniformly continuous.

2. Show that the function f(x) = |z|* is Hélder continuous with exponent c.

Proof. 1. Let M = sup W

. Then M < oo, and

‘f(x)_f(y)‘<M!£L’—y!a Vao,yel.

1

Therefore, f is uniformly continuous since for a given € > 0 we can choose § = (M~'e)a so
that 6 > 0 and

|f(x) = f(y)] <e whenever |z—y|<dandz,yel.



o (0% o 6]
2. It suffices to show that sup M < o0 since sup M =1,
z>y>0 |x - y|a r>y=0 |x - y|a
T o 8% [ « o 6% o «
N L e I 7 S [ a7
20>y [T =Y a0 |z —yl® wy>0 [T —y[* a<y<o Jr—yl®

On the other hand, if x > y > 0, letting 0§ = Y e find that
X

r>y>0 ‘l’ - y‘a 0<6<1 (1 - H)Q
1—60¢
Let f(0) = o9 Then
£1(0) = —af* - (1-0)"+(1—-0%-a(l-0)>" a(l—0"")
B (1—6)2 - (1 — g)ott
so that f/(f) <0 for all 0 < § < 1. Therefore,
[lz* = lyl*| lzf* =yl 1-6"
———=sup ———— = lim ————=1. o
=0 T =yl amymo Jr—ylt oot (1 6)°

Problem 3. Suppose that f € €%*(T); that is, f is 2r-periodic Hélder continuous function with
exponent « for some a € (0,1]. Show that (without using the Berstein Theorem) the Fourier series

of f converges pointwise to f, by completing the following.

1. Explain why it is enough to show that s,(f,0) — f(0) as n — co. Also explain why we can
assume that f(0) = 0.

2. Show that
sin nx

lim (sn(f,())—l ' (z)

n—00 T

. dx)zO.

sinnx

Therefore, it suffices to show that lim J f(x) dx =0 if f(0) =0.
n—oo —r

3. Show that if f € €%*(R) and f(0) = 0, then the function y = fix) is integrable. Apply the

Riemann-Lebesgue Lemma to conclude that s,(f,0) — 0 as n — oo.

Proof. 1. Suppose that one can show that if g is a 27-periodic Holder continuous function with
exponent « € (0,1], then s,(g,0) — ¢(0) as n — . If f is 2w-periodic Holder continuous
function with exponent o € (0,1] and a € R, let g(x) = f(x + a). Then g is a 2w-periodic

Holder continuous function with exponent «a; thus s,(g,0) — ¢(0) as n — .

On the other hand, let {c,}72, and {sx};, be the Fourier coefficients of f and {¢}{., and

{5k}, be the Fourier coefficients of g. Then

1 (" 1 ("

Cr = — f(z+a)coskrdr = — f(x)cosk(x —a)dz
), TJ)_,
1

=— f(x)( cos kx cos ka + sin kz sin ka) dx
™ —Tr

= ¢ coska + spsinka .



Note that

EO g ¢ cos(k - 0) + 8 sin(k - 0 g ckcoska—i—sksinkza) = $,(f,a);
thus the fact that g(0) = f(a) implies that s,(f,a) — f(a) as n — oo. Moreover, if f(0) # 0,
we consider the function h(z) = f(x) — f(0). Then h(0) = 0 and s,(f,z) = s,(h,z) + £(0)
so that if the s,(h,0) converges to 0, then s,(f,0) converges to f(0). In other words, we can
further assume that f(0) = 0.

. Note that s,(f,x) = (D, * f)(x); thus

m sin(n + )z
2(f,0) = —2 dx.
S e
Therefore,
1 sin ne sm n+ i)z _ sinnz
W(f,0) = = | a
salf.0= 2| @ = | s -
f It smnx cos 5 —.i—sxm 5 COSnL  sin nx) e
2sin 2 x
H@eosnadet 2 [ flo) (5ot - Y sinned
% cosna dz + — e ~)sinnadz.
Note that
x x 3 x 5172 x 173
-0 \28ing z—0 22 8in § =0 2 - 5
thus the function y = f(x) (;;),S Z 1) is continuous on [—m, 7]. By the Riemann-Lebesgue
11 3 T
Lemma,
] g ] 4 CoS 3 1\ .
lim f(z)cosnzdr = lim f(x)( —= — —> sinnxdr =0.
n—w J__ n—w J__ 2sing
Therefore,
1 (" i
lim (sn(f, 0) — — f(x)smnx dx) =0
n—oo T —x X
. Since f € €%*(T) for some « € (0, 1],
M = sup @) —rwl _
ary T —y[®
In particular, if z # 0
— £(0 _
@l _ Vi@ =50 01wl
] |z = 0] wry T =Yl

thus



f(z)

Therefore, the comparison test implies that the function y = — is integrable on [—m, 7| since

™ T

r=¢ (6%

& 1
J 2 Vdr = lim —2°

0 e—0t «v

and the change of varialbe z — —x shows that

0 T «
J lz|* " dx = J o dr =
- 0 o

The Riemann-Lebesgue Lemma then implies that lim ) sinnz dr = 0. D
n—w J_- T

Problem 4. 1. Let f: R — R be 2r-periodic such that f is Riemann integrable on [—m, 7]. Show
that

n 1 " ™ —ikz
fk:_%f_wf(x—i-k)e dx
and hence i

~ 1

k= e I [f(z) = f(z+ %)}e‘“‘“ dz .

2. Show that if f € €%*(T); that is, f is 27-periodic Holder continuous function with exponent

a for some « € (0, 1], then the Fourier coefficients f, satisfies |ﬁ€| < W.
Proof. 1. By substitution of variables,
~ 1 ™ ik “y:x+%” 1 Jﬂ_z T ik .
= — e N d — _ x_i__ez:pemdx
fi=o 3 (v) y 5 _W_zf( )

so that the periodicity of f and the function y = e~** implies that

™

o i " z —ikx —im _ _i z —ikx
fk—2ﬂﬁ7rf(a:+k)e e " dr = o _Wf(x%—k)e de .

2. Suppose that f € €%*(T) for some a € (0,1]. Then

1f(x) = f(v)| < [ fleoemlz—y|*  Va,yeR.

Therefore,
T T
[f(z+ 5 = F@)] <[ floam
k k
o et L oy (= 5l
~ < L B z d < (Eﬂo,a(T)ﬂ' f d _ e (go,cx('ﬂ*) '
A< g | i@ - r+ Plae < T [ ar = T8 :
Problem 5. 1. Let {ax}j2, be a sequence, and {b,}; be the Cesaro mean of {a;}{_,; that is,
b, = 1 > ag. Show that if {a};2, converges to a, then {b,}r_; converges to a.
T k=1

2. Let {fr};2, be a sequence of bounded real-valued functions defined on A, and {g,},_, be the

1 n
Cesaro mean of {fi}72,; that is, g, = — > fr. Show that if {f;}}>; converges uniformly to f
k=1

on B < A and f is bounded on B, then {g,}>, converges uniformly to f on B.



Proof. 1. Let € > 0 be given. Since hm a, = a, there exists Ny > 0 such that
k—o0

5
lax, — a] < 5 whenever k> Nj.

1
Since lim — Z lax — a| = 0, there exists Ny > 0 such that

n—oo N
1 €
i Z lax — a| < 5 whenever n > N,.
n

Let N = max{Ny, No}. Then if n > N,

by, —a|—’— ak—a‘\%2|ak—a| Z]ak—aH— Z|ak—a|

kNl

€ 5n—N1—|—1
3= 35 —<5.
2 n

2. Suppose that |fx(z)| < My, and |f(z)| < M for all z € B. Since {f;}7, converges uniformly
to f on B, there exists N; > 0 such that

‘fk(x)—f(flf)‘<g Vk> N, and z e B.

If x € B, by the fact that
N1 Nl
D fel@) = f@)] < Y (My + M) < oo,
k=1 k=1

Ny
we find that lim — D0l fe = fllo = 0; thus there exists No > 0 such that

%Z‘fk(x)—f(x)‘<% whenever n > Ny and x € B.

Let N = max{Ny, No}. Then if n > N and = € B,

90() — £()| = )% 3 Aw) — £ < = DA — F@) + - D [hule) — 1)

k=N1

thus {g,}>_; converges uniformly to f on B. o

Problem 6. Let f € %(T), and {ck}i%,, {sk}rey be the Fourier coefficients. Show that if

0 0
Z|Ck| < and Z]sk]<oo,
k=0 k=1

then the Fourier series of f converges uniformly to f on R.



Q0
Proof. Let My, = |cg| + |sk| and [co| + > (x| + |sk]) = M. Then |s,(f,x)| < M for all n € N and

x € R. Moreover,

0

0
|y coskx + spsinkz| < My VzeR and Z Z lck| + [sk]) < M < 0.
k=1

Therefore, the Weierstrass M-test implies that the Fourier series converges uniformly on R. Suppose
that the Fourier series converges uniformly to g. Then |g(z)| < M for all z € R; thus Problem B
implies that the Cesaro mean of {sj(f, )}, converges uniformly to g on R. Since f € %(T), the

Cesaro mean of the Fourier series of f converges uniformly to f on R; thus f = g. =

Problem 7. Let f be a 2m-periodic Lipchitz function. Show that for n > 2,

1+ 2logn

If = Fay fle < =
n

(T) - (0.1)

Hint: For (@), apply the estimate

1
F,(z) <min{n+ T }

27 ' 2(n + 1)a?

in the following inequality:

10 Feaes@l < [+ [+ [T+ 0 - s@lRawa

T
n+1
Proof. Recall that the Fejér kernel F,, is given by

with § =

1 sin? (n+21):;:
if 2km |k e Zt,
Fn<$) _ 27r(n + 1) 1Sin2§ I ¢ { 7T‘ € }
L if o {2k |keZ)

2
Therefore, by the fact that sin|z| > =|z| for |z| < g, we find that
T

1
F,(z) <min{n+ T }

2r 7 2(n+1)a?

Bythefactthatf Fo1(x)dx =0 for all n > 2, we find that if n > 2 and 0 < ¢ <,

10)— B @) =| [ 1@ =gy~ [ 0)E— vy
[ U@ - s - ay

—T

[ 1@ - s = ] Fa)

T

_ fiJrf_éJr x—y)]Fn—l(y)dy‘ .

T 1



Let 6 = =. Then
n

6 ’ n 0,1 g
[ 1@ = s =l Fsas < [ Il e dy =" [y gy

0

_ an”%O’l(’]I‘) 77'_2 . M

2m n? 2n

Moreover,

T
, —d Z
1f lzo(m |yl ong? - .

L<y|<7r [/ (@) = fle = y)] Fas(v) dy‘ < L

_ mlflgoaemy 7 _ 7wl lgosm logn

0 n

<lyl<m

Therefore,

7|l fllzo1(m) . 7| flzo1(r) logn _ 1+ logn

[f(2) = Forx f(2)] < on n 2n

7| fllgocry -

:Mfldy

[m]



