Problem 1. 1. Let $f: [-\pi, \pi]$ be a Riemann integrable function. Show that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = 0.$$

2. Recall that $f:[a,b]\to\mathbb{R}$ is integrable if f is Riemann measurable (that is, the collection of discontinuities of f has measure zero) and the limits $\lim_{k\to\infty}\int_{-\pi}^{\pi}(f^{\pm}\wedge k)(x)\,dx$ both exist, where $f^{\pm}=\max\{\pm f,0\}$. Show the Riemann-Lebesgue Lemma

If
$$f: [-\pi, \pi] \to \mathbb{R}$$
 is an integrable function, then
$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = 0.$$

Hint: First show that for every $\varepsilon > 0$ there exists a Riemann integrable function $g : [-\pi, \pi] \to \mathbb{R}$ such that $\int_{-\pi}^{\pi} |f(x) - g(x)| dx < \varepsilon$, then apply the conclusion in 1.

Proof. 1. Let $\varepsilon > 0$ be given. Then by Lemma 6.63 of the lecture note, there exists $g \in \mathscr{C}([-\pi, \pi]; \mathbb{R})$ such that

$$f(x) \leqslant g(x) \leqslant \sup_{x \in [-\pi,\pi]} f(x) \quad \forall \, x \in [-\pi,\pi] \qquad \text{and} \quad \int_{-\pi}^{\pi} f(x) \, dx > \int_{-\pi}^{\pi} g(x) \, dx - \frac{\varepsilon}{3} \, .$$

By the Weierstrass Theorem, there exists a polynomial p such that

$$\|g-p\|_{\infty} < \frac{\varepsilon}{6\pi} \, .$$

Since p is a polynomial, integrating by parts (or by Problem 3 of Exercise 6) we can show that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} p(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} p(x) \sin kx \, dx = 0.$$

Therefore, there exists N > 0 such that if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} p(x) \cos kx \, dx \right| < \frac{\varepsilon}{3}$$
 and $\left| \int_{-\pi}^{\pi} p(x) \sin kx \, dx \right| < \frac{\varepsilon}{3}$.

Therefore, if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right|$$

$$\leq \left| \int_{-\pi}^{\pi} \left[f(x) - g(x) \right] \cos kx \, dx \right| + \left| \int_{-\pi}^{\pi} \left[g(x) - p(x) \right] \cos kx \, dx \right| + \left| \int_{-\pi}^{\pi} p(x) \cos kx \, dx \right|$$

$$\leq \int_{-\pi}^{\pi} \left| f(x) - g(x) \right| dx + \int_{-\pi}^{\pi} \|g - p\|_{\infty} \, dx + \frac{\varepsilon}{3}$$

$$\leq \int_{-\pi}^{\pi} \left[g(x) - f(x) \right] dx + \int_{-\pi}^{\pi} \frac{\varepsilon}{6\pi} \, dx + \frac{\varepsilon}{3} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon,$$

and similarly,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right| < \varepsilon \quad \text{whenever} \quad k \geqslant N.$$

2. Let $g_k(x) = (f^+ \wedge k)(x) - (f^- \wedge k)(x)$. Then

$$\int_{-\pi}^{\pi} |f(x) - g_k(x)| dx = \int_{-\pi}^{\pi} |f^+(x) - f^-(x) - g_k(x)| dx$$

$$\leq \int_{-\pi}^{\pi} |f^+(x) - (f^+ \wedge k)(x)| dx + \int_{-\pi}^{\pi} |f^-(x) - (f^- \wedge k)(x)| dx;$$

thus by the fact that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} (f^+ \wedge k)(x) \, dx = \int_{-\pi}^{\pi} f^+(x) \, dx \quad \text{and} \quad \lim_{k \to \infty} \int_{-\pi}^{\pi} (f^- \wedge k)(x) \, dx = \int_{-\pi}^{\pi} f^-(x) \, dx \,,$$

we find that there exists K > 0 such that

$$\int_{-\pi}^{\pi} |f(x) - g_k(x)| dx < \frac{\varepsilon}{2} \quad \text{whenever} \quad k \geqslant K.$$

Let $h = g_K$. Note that h is Riemann integrable on $[-\pi, \pi]$; thus part 1 implies that there exists N > 0 such that if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right| < \frac{\varepsilon}{2}$$
 and $\left| \int_{-\pi}^{\pi} h(x) \sin kx \, dx \right| < \frac{\varepsilon}{2}$.

Therefore, if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right| = \left| \int_{-\pi}^{\pi} \left[f(x) - h(x) \right] \cos kx \, dx \right| + \left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right|$$

$$\leq \int_{-\pi}^{\pi} \left| f(x) - h(x) \right| dx + \left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and similarly,

$$\left| \int_{-\pi}^{\pi} f(x) \sin kx \, dx \right| < \varepsilon \quad \text{whenever} \quad k \geqslant N \,.$$

Problem 2. Let $\alpha \in (0,1]$ and I be an interval. A function $f:I \to \mathbb{R}$ is said to be Hölder continuous with exponent α if

$$\sup_{x,y\in I, x\neq y} \frac{\left|f(x)-f(y)\right|}{|x-y|^{\alpha}} < \infty.$$

- 1. Show that f is uniformly continuous.
- 2. Show that the function $f(x) = |x|^{\alpha}$ is Hölder continuous with exponent α .

Proof. 1. Let
$$M = \sup_{\substack{x,y \in I \\ x \neq y}} \frac{\left| f(x) - f(y) \right|}{|x - y|^{\alpha}}$$
. Then $M < \infty$, and

$$|f(x) - f(y)| \le M|x - y|^{\alpha} \quad \forall x, y \in I.$$

Therefore, f is uniformly continuous since for a given $\varepsilon > 0$ we can choose $\delta = (M^{-1}\varepsilon)^{\frac{1}{\alpha}}$ so that $\delta > 0$ and

$$|f(x) - f(y)| < \varepsilon$$
 whenever $|x - y| < \delta$ and $x, y \in I$.

 $\text{2. It suffices to show that } \sup_{x>y>0} \frac{\left||x|^\alpha - |y|^\alpha\right|}{|x-y|^\alpha} < \infty \text{ since } \sup_{x>y=0} \frac{\left||x|^\alpha - |y|^\alpha\right|}{|x-y|^\alpha} = 1,$

$$\sup_{x>0>y}\frac{\left||x|^\alpha-|y|^\alpha\right|}{|x-y|^\alpha}\leqslant \sup_{x>y>0}\frac{\left||x|^\alpha-|y|^\alpha\right|}{|x-y|^\alpha}\quad\text{and}\quad \sup_{x>y>0}\frac{\left||x|^\alpha-|y|^\alpha\right|}{|x-y|^\alpha}=\sup_{x< y<0}\frac{\left||x|^\alpha-|y|^\alpha\right|}{|x-y|^\alpha}\,.$$

On the other hand, if x > y > 0, letting $\theta = \frac{y}{x}$ we find that

$$\sup_{x>y>0} \frac{\left| |x|^{\alpha} - |y|^{\alpha} \right|}{|x - y|^{\alpha}} = \sup_{0 < \theta < 1} \frac{1 - \theta^{\alpha}}{(1 - \theta)^{\alpha}}.$$

Let $f(\theta) = \frac{1 - \theta^{\alpha}}{(1 - \theta)^{\alpha}}$. Then

$$f'(\theta) = \frac{-\alpha \theta^{\alpha - 1} \cdot (1 - \theta)^{\alpha} + (1 - \theta^{\alpha}) \cdot \alpha (1 - \theta)^{\alpha - 1}}{(1 - \theta)^{2\alpha}} = \frac{\alpha (1 - \theta^{\alpha - 1})}{(1 - \theta)^{\alpha + 1}}$$

so that $f'(\theta) < 0$ for all $0 < \theta < 1$. Therefore,

$$\sup_{x>y>0} \frac{\left| |x|^{\alpha} - |y|^{\alpha} \right|}{|x - y|^{\alpha}} = \sup_{x>y>0} \frac{\left| |x|^{\alpha} - |y|^{\alpha} \right|}{|x - y|^{\alpha}} = \lim_{\theta \to 0^{+}} \frac{1 - \theta^{\alpha}}{(1 - \theta)^{\alpha}} = 1.$$

Problem 3. Suppose that $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$; that is, f is 2π -periodic Hölder continuous function with exponent α for some $\alpha \in (0,1]$. Show that (without using the Berstein Theorem) the Fourier series of f converges pointwise to f, by completing the following.

- 1. Explain why it is enough to show that $s_n(f,0) \to f(0)$ as $n \to \infty$. Also explain why we can assume that f(0) = 0.
- 2. Show that

$$\lim_{n \to \infty} \left(s_n(f, 0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx \right) = 0.$$

Therefore, it suffices to show that $\lim_{n\to\infty} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx = 0$ if f(0) = 0.

- 3. Show that if $f \in \mathcal{C}^{0,\alpha}(\mathbb{R})$ and f(0) = 0, then the function $y = \frac{f(x)}{x}$ is integrable. Apply the Riemann-Lebesgue Lemma to conclude that $s_n(f,0) \to 0$ as $n \to \infty$.
- Proof. 1. Suppose that one can show that if g is a 2π -periodic Hölder continuous function with exponent $\alpha \in (0,1]$, then $s_n(g,0) \to g(0)$ as $n \to \infty$. If f is 2π -periodic Hölder continuous function with exponent $\alpha \in (0,1]$ and $\alpha \in \mathbb{R}$, let g(x) = f(x+a). Then g is a 2π -periodic Hölder continuous function with exponent α ; thus $s_n(g,0) \to g(0)$ as $n \to \infty$.

On the other hand, let $\{c_k\}_{k=0}^{\infty}$ and $\{s_k\}_{k=1}^{\infty}$ be the Fourier coefficients of f and $\{\bar{c}_k\}_{k=0}^{\infty}$ and $\{\bar{s}_k\}_{k=1}^{\infty}$ be the Fourier coefficients of g. Then

$$\bar{c}_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+a) \cos kx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k(x-a) \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\cos kx \cos ka + \sin kx \sin ka\right) dx$$
$$= c_k \cos ka + s_k \sin ka.$$

Note that

$$s_n(g,0) = \frac{\bar{c}_0}{2} + \sum_{k=1}^n \left[\bar{c}_k \cos(k \cdot 0) + \bar{s}_k \sin(k \cdot 0) \right] = \sum_{k=1}^n \left(c_k \cos ka + s_k \sin ka \right) = s_n(f,a);$$

thus the fact that g(0) = f(a) implies that $s_n(f, a) \to f(a)$ as $n \to \infty$. Moreover, if $f(0) \neq 0$, we consider the function h(x) = f(x) - f(0). Then h(0) = 0 and $s_n(f, x) = s_n(h, x) + f(0)$ so that if the $s_n(h, 0)$ converges to 0, then $s_n(f, 0)$ converges to f(0). In other words, we can further assume that f(0) = 0.

2. Note that $s_n(f,x) = (D_n \star f)(x)$; thus

$$s_n(f,0) = \int_{-\pi}^{\pi} f(x) \frac{\sin(n + \frac{1}{2})x}{2\pi \sin \frac{x}{2}} dx.$$

Therefore,

$$s_n(f,0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left[\frac{\sin(n + \frac{1}{2})x}{2\sin\frac{x}{2}} - \frac{\sin nx}{x} \right] dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{\sin nx \cos\frac{x}{2} + \sin\frac{x}{2}\cos nx}{2\sin\frac{x}{2}} - \frac{\sin nx}{x} \right) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx + \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{\cos\frac{x}{2}}{2\sin\frac{x}{2}} - \frac{1}{x} \right) \sin nx dx.$$

Note that

$$\lim_{x \to 0} \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x \cos \frac{x}{2} - 2 \sin \frac{x}{2}}{2x \sin \frac{x}{2}} = \lim_{x \to 0} \frac{x \left(1 - \frac{x^2}{8}\right) - 2\left(\frac{x}{2} - \frac{x^3}{48}\right)}{2x \cdot \frac{x}{2}} = 0;$$

thus the function $y = f(x) \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right)$ is continuous on $[-\pi, \pi]$. By the Riemann-Lebesgue Lemma,

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right) \sin nx \, dx = 0.$$

Therefore,

$$\lim_{n \to \infty} \left(s_n(f, 0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx \right) = 0.$$

3. Since $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$ for some $\alpha \in (0,1]$,

$$M \equiv \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty.$$

In particular, if $x \neq 0$,

$$\frac{\left|f(x)\right|}{|x|^{\alpha}} = \frac{\left|f(x) - f(0)\right|}{|x - 0|^{\alpha}} \leqslant \sup_{x \neq y} \frac{\left|f(x) - f(y)\right|}{|x - y|^{\alpha}} = M < \infty;$$

thus

$$\left| \frac{f(x)}{x} \right| \le M|x|^{\alpha - 1} \qquad \forall x \ne 0.$$

Therefore, the comparison test implies that the function $y = \frac{f(x)}{x}$ is integrable on $[-\pi, \pi]$ since

$$\int_0^{\pi} x^{\alpha - 1} dx = \lim_{\varepsilon \to 0^+} \frac{1}{\alpha} x^{\alpha} \Big|_{x = \varepsilon}^{\pi} = \frac{\pi^{\alpha}}{\alpha}$$

and the change of variable $x \mapsto -x$ shows that

$$\int_{-\pi}^{0} |x|^{\alpha - 1} dx = \int_{0}^{\pi} x^{\alpha - 1} dx = \frac{\pi^{\alpha}}{\alpha}.$$

The Riemann-Lebesgue Lemma then implies that $\lim_{n\to\infty}\int_{-\pi}^{\pi}\frac{f(x)}{x}\sin nx\,dx=0.$

Problem 4. 1. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic such that f is Riemann integrable on $[-\pi, \pi]$. Show that

$$\widehat{f}_k = -\frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{k}\right) e^{-ikx} dx$$

and hence

$$\widehat{f}_k = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) - f\left(x + \frac{\pi}{k}\right) \right] e^{-ikx} dx.$$

- 2. Show that if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$; that is, f is 2π -periodic Hölder continuous function with exponent α for some $\alpha \in (0,1]$, then the Fourier coefficients \hat{f}_k satisfies $|\hat{f}_k| \leqslant \frac{\pi^{\alpha} ||f||_{\mathscr{C}^{0,\alpha}(\mathbb{T})}}{2k^{\alpha}}$.
- *Proof.* 1. By substitution of variables,

$$\widehat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y)e^{-iky} \, dy \stackrel{"y=x+\frac{\pi}{k}"}{=} \frac{1}{2\pi} \int_{-\pi-\frac{\pi}{k}}^{\pi-\frac{\pi}{k}} f(x+\frac{\pi}{k})e^{-ikx}e^{-i\pi} \, dx$$

so that the periodicity of f and the function $y = e^{-ikx}$ implies that

$$\hat{f}_k = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + \frac{\pi}{k}) e^{-ikx} e^{-i\pi} dx = -\frac{1}{2\pi} \int_{-\pi}^{\pi} f(x + \frac{\pi}{k}) e^{-ikx} dx.$$

2. Suppose that $f \in \mathcal{C}^{0,\alpha}(\mathbb{T})$ for some $\alpha \in (0,1]$. Then

$$|f(x) - f(y)| \le ||f||_{\mathscr{C}^{0,\alpha}(\mathbb{T})} |x - y|^{\alpha} \quad \forall x, y \in \mathbb{R}.$$

Therefore,

$$\left| f(x + \frac{\pi}{k} - f(x)) \right| \le \|f\|_{\mathscr{C}^{0,\alpha}(\mathbb{T})} \frac{\pi^{\alpha}}{k^{\alpha}}$$

so that

$$\left|\widehat{f}_{k}\right| \leqslant \frac{1}{4\pi} \int_{-\pi}^{\pi} \left| f(x) - f\left(x + \frac{\pi}{k}\right) \right| dx \leqslant \frac{\|f\|_{\mathscr{C}^{0,\alpha}(\mathbb{T})} \pi^{\alpha}}{4\pi k^{\alpha}} \int_{-\pi}^{\pi} dx = \frac{\pi^{\alpha} \|f\|_{\mathscr{C}^{0,\alpha}(\mathbb{T})}}{2k^{\alpha}}.$$

- **Problem 5.** 1. Let $\{a_k\}_{k=1}^{\infty}$ be a sequence, and $\{b_n\}_{n=1}^{\infty}$ be the Cesàro mean of $\{a_k\}_{k=1}^{\infty}$; that is, $b_n = \frac{1}{n} \sum_{k=1}^{n} a_k$. Show that if $\{a_k\}_{k=1}^{\infty}$ converges to a, then $\{b_n\}_{n=1}^{\infty}$ converges to a.
 - 2. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of bounded real-valued functions defined on A, and $\{g_n\}_{n=1}^{\infty}$ be the Cesàro mean of $\{f_k\}_{k=1}^{\infty}$; that is, $g_n = \frac{1}{n} \sum_{k=1}^{n} f_k$. Show that if $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on $B \subseteq A$ and f is bounded on B, then $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f on B.

Proof. 1. Let $\varepsilon > 0$ be given. Since $\lim_{k \to \infty} a_k = a$, there exists $N_1 > 0$ such that

$$|a_k - a| < \frac{\varepsilon}{2}$$
 whenever $k \geqslant N_1$.

Since $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{N_1}|a_k-a|=0$, there exists $N_2>0$ such that

$$\frac{1}{n} \sum_{k=1}^{N_1} |a_k - a| < \frac{\varepsilon}{2} \quad \text{whenever} \quad n \geqslant N_2.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$|b_n - a| = \left| \frac{1}{n} \sum_{k=1}^n a_k - a \right| \le \frac{1}{n} \sum_{k=1}^n |a_k - a| \le \frac{1}{n} \sum_{k=1}^{N_1} |a_k - a| + \frac{1}{n} \sum_{k=N_1}^n |a_k - a|$$

$$< \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=N_1}^n \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{n - N_1 + 1}{n} < \varepsilon.$$

2. Suppose that $|f_k(x)| \leq M_k$ and $|f(x)| \leq M$ for all $x \in B$. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on B, there exists $N_1 > 0$ such that

$$|f_k(x) - f(x)| < \frac{\varepsilon}{2}$$
 $\forall k \ge N_1 \text{ and } x \in B.$

If $x \in B$, by the fact that

$$\sum_{k=1}^{N_1} |f_k(x) - f(x)| \le \sum_{k=1}^{N_1} (M_k + M) < \infty,$$

we find that $\lim_{n\to\infty} \frac{1}{n} \sum_{k=1}^{N_1} ||f_k - f||_{\infty} = 0$; thus there exists $N_2 > 0$ such that

$$\frac{1}{n} \sum_{k=1}^{N_1} |f_k(x) - f(x)| < \frac{\varepsilon}{2} \quad \text{whenever} \quad n \geqslant N_2 \text{ and } x \in B.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$ and $x \in B$,

$$|g_n(x) - f(x)| = \left| \frac{1}{n} \sum_{k=1}^n f_k(x) - f(x) \right| \le \frac{1}{n} \sum_{k=1}^{N_1} |f_k(x) - f(x)| + \frac{1}{n} \sum_{k=N_1}^n |f_k(x) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=N_1}^n \frac{\varepsilon}{2} < \varepsilon;$$

thus $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f on B.

Problem 6. Let $f \in \mathscr{C}(\mathbb{T})$, and $\{c_k\}_{k=0}^{\infty}$, $\{s_k\}_{k=1}^{\infty}$ be the Fourier coefficients. Show that if

$$\sum_{k=0}^{\infty} |c_k| < \infty \quad \text{and} \quad \sum_{k=1}^{\infty} |s_k| < \infty,$$

then the Fourier series of f converges uniformly to f on \mathbb{R} .

Proof. Let $M_k = |c_k| + |s_k|$ and $|c_0| + \sum_{k=1}^{\infty} (|c_k| + |s_k|) = M$. Then $|s_n(f, x)| \leq M$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Moreover,

$$|c_k \cos kx + s_k \sin kx| \le M_k \quad \forall x \in \mathbb{R} \quad \text{and} \quad \sum_{k=1}^{\infty} M_k = \sum_{k=1}^{\infty} (|c_k| + |s_k|) \le M < \infty.$$

Therefore, the Weierstrass M-test implies that the Fourier series converges uniformly on \mathbb{R} . Suppose that the Fourier series converges uniformly to g. Then $|g(x)| \leq M$ for all $x \in \mathbb{R}$; thus Problem 5 implies that the Cesàro mean of $\{s_k(f,\cdot)\}_{k=1}^{\infty}$ converges uniformly to g on \mathbb{R} . Since $f \in \mathscr{C}(\mathbb{T})$, the Cesàro mean of the Fourier series of f converges uniformly to f on \mathbb{R} ; thus f = g.

Problem 7. Let f be a 2π -periodic Lipchitz function. Show that for $n \ge 2$,

$$||f - F_{n-1} \star f||_{\infty} \le \frac{1 + 2\log n}{2n} \pi ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}.$$
 (0.1)

Hint: For (0.1), apply the estimate

$$F_n(x) \le \min\left\{\frac{n+1}{2\pi}, \frac{\pi}{2(n+1)x^2}\right\}$$

in the following inequality:

$$|f(x) - F_{n+1} \star f(x)| \le \left[\int_{-\delta}^{\delta} + \int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right] |f(x+y) - f(x)| F_{n+1}(y) dy$$

with $\delta = \frac{\pi}{n+1}$.

Proof. Recall that the Fejér kernel F_n is given by

$$F_n(x) = \begin{cases} \frac{1}{2\pi(n+1)} \frac{\sin^2 \frac{(n+1)x}{2}}{\sin^2 \frac{x}{2}} & \text{if } x \notin \{2k\pi \mid k \in \mathbb{Z}\}, \\ \frac{n+1}{2\pi} & \text{if } x \in \{2k\pi \mid k \in \mathbb{Z}\}. \end{cases}$$

Therefore, by the fact that $\sin |x| \ge \frac{2}{\pi} |x|$ for $|x| < \frac{\pi}{2}$, we find that

$$F_n(x) \le \min\left\{\frac{n+1}{2\pi}, \frac{\pi}{2(n+1)x^2}\right\}.$$

By the fact that $\int_{-\pi}^{\pi} F_{n-1}(x) dx = 0$ for all $n \ge 2$, we find that if $n \ge 2$ and $0 < \delta < \pi$,

$$|f(x) - F_{n-1} \star f(x)| = \left| \int_{-\pi}^{\pi} f(x) F_{n-1}(x - y) \, dy - \int_{-\pi}^{\pi} f(y) F_{n-1}(x - y) \, dy \right|$$

$$= \left| \int_{-\pi}^{\pi} \left[f(x) - f(y) \right] F_{n-1}(x - y) \, dy \right|$$

$$= \left| \int_{-\pi}^{\pi} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right|$$

$$= \left| \left(\int_{-\delta}^{\delta} + \int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right|.$$

Let $\delta = \frac{\pi}{n}$. Then

$$\left| \int_{-\delta}^{\delta} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right| \leq \int_{-\delta}^{\delta} \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} |y| \cdot \frac{n}{2\pi} \, dy = \frac{n \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{\pi} \int_{0}^{\delta} y \, dy$$
$$= \frac{n \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{2\pi} \frac{\pi^{2}}{n^{2}} = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{2n} \, .$$

Moreover,

$$\left| \int_{\delta \leqslant |y| \leqslant \pi} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right| \leqslant \int_{\delta \leqslant |y| \leqslant \pi} \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} |y| \cdot \frac{\pi}{2ny^2} \, dy = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{n} \int_{\delta}^{\pi} \frac{1}{y} \, dy$$
$$= \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{n} \log \frac{\pi}{\delta} = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} \log n}{n} \, .$$

Therefore,

$$|f(x) - F_{n-1} \star f(x)| \leqslant \frac{\pi ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}}{2n} + \frac{\pi ||f||_{\mathscr{C}^{0,1}(\mathbb{T})} \log n}{n} = \frac{1 + \log n}{2n} \pi ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}.$$