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Problem 1. Use the Fourier series of the function f : (—m,7) — R defined by
0 —Tt<x<O0,
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Solution. From Problem 1 in Exercise 8, we find that
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the Parseval identity implies that
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thus rearranging terms we conclude that
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Problem 2. This problem contributes to another proof of showing that the Fourier series of f

converges uniformly to f on R if f e €%*(T) for % < a < 1. Complete the following.

1. Let f: R — R be 27-periodic such that f is Riemann integrable on [—m, 7|. Show that
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Therefore, if f € €%(T), the Fourier coefficients fk satisfies
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Hint: Find the Fourier series of g(x) = f(z + h) — f(z — h) for given h > 0 and make use of
the Parseval identity.

2. Let f e €%(T), and p € N. Show that
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Hint: Let h = o7 I (%).
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3. Show that if f € €%*(T) for some % <a<1,then > |fi| < oo; thus Problem 6 of Exercise

k=—0
7 implies that the Fourier series of f converges uniformly to f on R.

Proof. 1. For h # 0, let g(x) = f(z + h) — f(x — h). Then by substitution of variables,
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so that the periodicity of f and the function y = e~** implies that
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Therefore, the Parseval identity shows that
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If in addition f € €%*(T), then the identity above implies that
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which verifies ().
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2. For each p € N, letting h = i1 10 () we find that
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—, the inequality above implies that
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Since for 2P7! < |k| < 2P, sin? 571 = 5
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3. Suppose that f € €%%(T) for some « € (0.5,1]. For each p € N, by the Cauchy inequality and

the result in part 3 we obtain that
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Therefore, by the fact that Z —
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< o0 (since a > 5), we conclude that

thus Problem 6 of Exercise 7 implies that the Fourier series of f converges uniformly to f on
R if f e €%%(T) for some a € (0.5, 1]. o

Problem 3. Let f : [-L,L] — R be square integrable; that is, f is Riemann measurable and
L

f f(z)*dx < 0. Show that if {c;}?, and {s;};2, be the Fourier coefficient of f, then
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Proof. Define g(x) = f(g) Then g : [-m, 7] — R belongs to L*(T); thus the Parseval identity
T
shows that .
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where {¢;}7, and {55}, are Fourier coeflicients of ¢ given by
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The result the follows from the fact that
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Problem 4. Let f: [0, L] — R be a square integrable function.
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1. Suppose that %0 + > cpcos % is the cosine series of f. Find Y] ¢ in terms of integrals of f
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and f2.
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2. Suppose that kzl Sk, COS % is the sine series of f. Find kZ s2 in terms of integrals of f2.
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Solution. 1. Let f be the even extension of f. By the definition of the cosine series of f,

where

By Problem 3,

thus
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2. Let f be the odd extension of f. By the definition of the cosine series of f,
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where

By Problem 3,

thus



