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Problem 1. Let a > 0 be given. Show that the Fourier transform of the function
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is positive.

Proof. For € € R", define g(x,t) = t* ‘e te 1€ By the Tonelli Theorem,
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The computation above also shows that f e L'(R"). Therefore, the Fubini Theorem implies that
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The positivity of f then follows from the fact that T'(a) > 0. o

Problem 2. Compute the Fourier transform of the function f : R" — R given by f(x) = |z|*, where

—n < a < 0, by the following procedure.
1. Show that f ¢ L'(R™).

o0
2. Recall that the Gamma function I : (0,0) — R defined by I'(z) = j t*"te~tdt. Show that
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3. Assume that you can apply the Fubini Theorem to obtain that
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Find that Fourier transform of f.

4. Find the Fourier transform of the function ¢g : R® — R given by g(z) = z4|x|*%, where x; is the

first component of x and —n —2 < a < —2.
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Hint: 4. For a distribution 7', for each 1 < 7 < n one should treat 5, 88 the tempered distribution

Ly
defined by

<§£, ¢y = (T, (ffj> Ve S (RY).

It can be shown that the Fourier transform of the tempered distribution STT is 1§ jf(f ) (you should try
J
0

to prove this simple fact using of Lemma 9.11 in the lecture note). Note that g(z) = — £|x|0‘+2
1

so that you can apply the results above.

Proof. 1. By the change of variables formula,
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Therefore, f ¢ L'(R").

2. By the substitution of variable s|x|?> =t (for x # 0),
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3. Assume that
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Using the expression of |z|* in 2, we find that
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and the substitution of variable ¢t = e implies that
S

A\ o e a [* _nta L2 [ nta 4]l p—a—2 L IEP?
P(=5)Zallal]() =278 | 573 leminds =278 | (4n) 5 gt st

0 0 4¢2
24a|¢e|—a—n ” ntfa_ 1 ¢ g el—a—np( T Q
= 2zT%|¢] t 2 teTtdt =221¢| F(2 ).
0
F(n—i-a)
Therefore, Z,[|x|*](€) = ——25-2*(¢| "™

r(-5)



A rigorous approach is given as follows. For a given Schwartz function ¢ € . (R"), define

g(x,s) = 3_%_16_5"’3‘2@5( )and h(€,s) =s 272~ e_Tszgzﬁ(ﬁ). Then

[ et | ([ < cerorad
- JR 2*|(a)| de = LM (f Pl g(rw) | dr ) ds

and
| eslaes)
R™ x (0,00)
([ e B ([ ol
~ [ ([ worrsrgeE aioe) g
e [ (et an) e elote)] ag
=2 () [ jeeleto)de.
Since
LOO r”+a_1|¢ rw |d7‘ qu5||00 fl rreTldr 4 EGIIIREL (|x|"‘$(w)|) LOO rotdr
|i”ila — xERn (|:)3| |¢ D
and

fRn €700 (o) dé < f LOTHOT0O)] dE < <) s ey s o(O)] < o

we find that g and h are integrable on R"™ x (0,00). By the definition of the Fourier transform

of tempered distributions,
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and the Fubini Theorem (which can be applied since g is integrable on R™ x (0,00)) implies
that
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By the integrability of h on R"™ x (0,00), we can apply the Fubini Theorem to obtain that
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Therefore, .7, [|z|*](&) = 1“2()‘)23+a€|a71"
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distribution for —n < a + 2 < 0, we conclude that if —n — 2 < a < —2, we have
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Problem 3. Let f € L'(R). Show that the function y = J f(t) dt can be written as the convolution
—00
of f and a function ¢ € Li. (R).

Proof. Let ¢ be the characteristic function of the set (0, 0), or

|1 ite>0,
@) =10 iftr<o.

Then ¢ € Li (R), and

(sO*f)(x)Zﬁgw(x—y)f(y)dyzf f(y)dy

which is the anti-derivative of f. D

Problem 4. In this problem we use symbolic computation to find the Fourier transform of the

function
sin(wz)

f() = ifx #0,

w ifxr=0,

without knowing that it is the Fourier transform of the function y = \/?X(—w,w) (x) (where X(—ww) is

the characteristic/indicator function of the set (—w,w)). Complete the following.

1. In class we have shown that f ¢ L*(R) but f € .#(R)". Let f be the Fourier transform of

f (in the sense of the Fourier transform of tempered distributions). Formally we can write
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e~ dr and assume that we can differentiate J? using
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Find the “derivative” of f
2. Suppose that you can use the Fundamental Theorem of Calculus so that
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dx = m (and treating 04, as the evaluation operation at +w) to find
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Use the fact that f -
F(E) (for € # +w).
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Hint: 1. Recall that we have shown in class that .Z, [sin(wx)](§) = (0w —0_s)-

Proof. 1. Using

0= 4 ) A
we find that

/\

(& \/ﬁ sin(wz)e ™ do = —i.%, | sin(wz)] (§) = —\/;((L —0_y).

A rigorous approach is given as follows. Let ¢ € #(R). Then by the “definition” of the

derivative of tempered distributions,
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which shows that
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thus the Fundamental Theorem of Calculus implies that
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(a) If £ <0, then

thus



(b) If £ > 0, then
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Therefore,
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which shows that f \/> 1w O
Problem 5. 1. Show that the function R : R — R given by

if x>0,
R(m):{x if z

0 otherwise,

is a tempered distribution.

2. Let T be a generalized function defined by

(T, ) = lim #lz) d.:z:—hm f f @) 1 veew(R).

e—0+ R\[—¢,e] X e—0t

Show that T' e . (R)".

3. Let H be the Heaviside function given by

0 ifx<O0,
H(x) =

1 ifz>0.

Show that H = —-T + \/T 0, here 0 is the Dirac delta function.
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Hint: 3. Let G(z) = exp (—I;) For each ¢ € Z(R), define ¥ = ¢ — ¢(0)G (which belongs to
< (R)). Use the identity
(H,¢) = (H, ) ~ $(0)H,C)

to make the conclusion.

Proof. 1. Let ¢ € #(R™). Then
(R, ¢ = ) L " () d:c] < ( L " ey d:c) sup(a)?] ()
<([ Trmde)mlo) = Tmo)

thus
(R, &)] < gpk(cﬁ) Vk>3.

Therefore, R is a tempered distribution.



2. For p € S (R), define ¢ : R — R by
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p(z) — ¢(0) .
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Then clearly v is continuous on R, and

sup |¢(z)] < sup [¢'(z)| < pi(d).

ze[—1,1] ze[—1,1]
By the fact that
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Therefore, (T, ¢) € C for all ¢ € #(R). Moreover,
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thus KT , ¢>‘ < 4pi(¢) for all k£ > 1. This implies that 7" is a tempered distribution.

3. Define H,(z) = x(n)(x). For a Schwartz function ¢ € .#(R), define ¢ = ¢ — #(0)G. Then
e S (R), and

(H,py = (H, )+ p(0)H, Gy = (H, ) + p(0)(H,G)
= lim (H,,, ) + ¢(0)(H, G)

where we have used the fact that (H,G) = \/g to conclude the last equality.
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fz#0,
Define f by f(z) = T’Z)Ef) or to be more precise, f(r) = z 7 . Then f is a

Y'(0) ifx=0,
Schwartz function. In fact, we have ¥ (z) = zf(x) for all x € R and the Lebnitz rule implies
that for j > 0,

219 (@) = v9(2) = 97 @)



which implies that
[ f9 (@)] < |2 " [0 ()] + Kl fUV ()|
so that the boundedness of |z|¥|fV)(z)| can be proved by induction.

By Fubini’s Theorem,
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Since f € (R), fes (R); thus lim f(n) = 0. Therefore, by the fact G is an even function,
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we conclude that

(H,p)=
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which shows that H = ——T + 4/ =9.
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