
Exercise Problem Sets 2
Sept. 25. 2021

Problem 1. Complete the following.

1. Verify the Wallis’s formula: if n is a non-negative integer, then
ż π

2

0

sin2n+1 x dx =

ż π
2

0

cos2n+1 x dx =
(2nn!)2

(2n+ 1)!

and
ż π

2

0

sin2n x dx =

ż π
2

0

cos2n x dx =
(2n)!

(2nn!)2
¨
π

2
.

2. Let In =
ż π

2

0
sinn x dx. Show that lim

nÑ8

I2n+1

I2n
= 1.

3. Let sn =
n!

nn+0.5e´n
. Show that tsnu8

n=1 is a decreasing sequence; that is, sn ě sn+1 for all
n P N.

Hint:

2. Show that I2n+2 ď I2n+1 ď I2n for all n P N and then apply the Sandwich lemma.

3. Consider the function f(x) =
(
1 +

1

x

)x+0.5.

Proof. 1. Integrating by parts, we find that
ż π

2

0

sinn x dx = ´ sinn´1 x cosx
ˇ

ˇ

ˇ

x=π
2

x=0
+ (n ´ 1)

ż π
2

0

sinn´2 x cos2 x dx

= (n ´ 1)

ż π
2

0

sinn´2 x(1 ´ sin2 x) dx

= (n ´ 1)

ż π
2

0

sinn´2 x dx ´ (n ´ 1)

ż π
2

0

sinn x dx ;

thus
ż π

2

0

sinn x dx =
n ´ 1

n

ż π
2

0

sinn´2 x dx .

Therefore,
ż π

2

0

sin2n+1 x dx =
2n

2n+ 1

ż π
2

0

sin2n´1 x dx =
2n

2n+ 1
¨
2n ´ 2

2n ´ 1

ż π
2

0

sin2n´3 x dx = ¨ ¨ ¨

=
2n

2n+ 1
¨
2n ´ 2

2n ´ 1
¨
2n ´ 4

2n ´ 3
¨ ¨ ¨

2

3

ż π
2

0

sinx dx =
2

3
¨
4

5
¨ ¨ ¨

2n

2n+ 1

=
2242 ¨ ¨ ¨ (2n)2

(2n+ 1)!
=

(2nn!)2

(2n+ 1)!



and
ż π

2

0

sin2n x dx =
2n ´ 1

2n

ż π
2

0

sin2n´2 x dx =
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2

ż π
2

0

sin2n´4 x dx = ¨ ¨ ¨

=
2n ´ 1

2n
¨
2n ´ 3

2n ´ 2
¨
2n ´ 5

2n ´ 4
¨ ¨ ¨

1

2

ż π
2

0

sin0 x dx =
1

2
¨
3

4
¨ ¨ ¨

2n ´ 1

2n
¨
π

2

=
(2n)!

2242 ¨ ¨ ¨ (2n)2
¨
π

2
=

(2n)!

(2nn!)2
¨
π

2
.

2. On the interval
[
0,

π

2

]
, 0 ď sinx ď 1; thus

sin2n+2 x ď sin2n+1 x ď sin2n x @x P
[
0,

π

2

]
.

Therefore, I2n+2 ď I2n+1 ď I2n so that

I2n+2

I2n
ď

I2n+1

I2n
ď 1 @n P N .

Since I2n+2

I2n
=

2n+ 1

2(n+ 1)
, the Sandwich Lemma implies that

lim
nÑ8

I2n+1

I2n
= 1 .

3. Since lim
nÑ8

(
1+

1

n

)n+0.5

= e and sn
sn+1

=

n!

nn+0.5e´n

(n+ 1)!

(n+ 1)n+1.5e´n´1

=
1

e

(
1+

1

n

)n+0.5

, it suffices to show

that the function f(x) ”
(
1 +

1

x

)x+0.5 is increasing on [1,8). Nevertheless, this is the same as
proving that the function g(x) ” (1 + x)

1
x
+ 1

2 is decreasing on (0, 1].

Differentiate g, we find that

g 1(x) = g(x)

[
ln(1 + x) +

2 + x

1 + x

]
2x ´ 2(2 + x) ln(1 + x)

4x2

=
2x+ x2 ´ 2(1 + x) ln(1 + x)

2x2(1 + x)
.

To see the sign of the denominator h(x) = 2x+x2 ´2(1+x) ln(1+x) on (0, 1], we differentiate
h and find that

h 1(x) = 2 + 2x ´ 2 ln(1 + x) ´ 2 = 2
[
x ´ ln(1 + x)

]
and one more differentiation shows that

h 11(x) = 1 ´
1

1 + x
=

x

1 + x
ą 0 @x P (0, 1] .

Therefore, h 1 in increasing on (0, 1] which implies that h 1(x) ě h 1(0) = 0 for all x P (0, 1]. This
further implies that h(x) ě h(0) = 0 for all x P (0, 1]; thus g 1(x) ě 0 for all x P

(
0, 1]. ˝



Problem 2. Let (F,+, ¨,ď) be an ordered field with Archimedean property, I Ď F be an interval,
and f : I Ñ F be a function.

1. f is said to have a limit at c or we say that the limit of f at c exists if

(a) there exists a sequence txnu8
n=1 Ď Iztcu with limit c, and

(b) lim
nÑ8

f(xn) exists for all convergent sequences txnu8
n=1 Ď Iztcu with limit c.

Show that the limit of f at c exists if and only if there exists L P F satisfying that for every
ε ą 0 there exists δ ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I .

2. f is said to be continuous at a point c P I if

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď I with limit c .

Show that f is continuous at c if and only if for every ε ą 0 there exists δ ą 0 such that
ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ and x P I .

Proof. 1. (“ñ”) Suppose that the limit of f at c exists.

Claim: If txnu8
n=1, tynu8

n=1 Ď Iztcu and lim
nÑ8

xn = lim
nÑ8

yn = c, then lim
nÑ8

f(xn) = lim
nÑ8

f(yn).

Proof of claim: Define zn by

zn =

#

xn+1
2

if n is odd ,

yn
2

if n is even .

Then lim
nÑ8

zn = c; thus by the assumption that the limit of f at c exists, we find that lim
nÑ8

f(zn)

exists. On the other hand, since lim
nÑ8

f(xn) and lim
nÑ8

f(yn) both exist, we must have
lim
nÑ8

f(xn) = lim
nÑ8

f(zn) = lim
nÑ8

f(yn) . ˝

Having established the claim, we find that there exists L P F such that lim
nÑ8

f(xn) = L whenever
txnu8

n=1 Ď Iztcu is a convergent sequence with limit c.

Suppose the contrary that there exists ε ą 0 such that for each δ ą 0 there exists x P I

satisfying 0 ă |x ´ c| ă δ and
ˇ

ˇf(x) ´ L| ě ε. In particular, for each n P N, there exists xn P I

satisfying
0 ă |xn ´ c| ă

1

n
and

ˇ

ˇf(xn) ´ L| ě ε .

Then txnu8
n=1 Ď Iztcu and Archimedean Property implies that lim

nÑ8
xn = c. Therefore, the

claim shows that lim
nÑ8

f(xn) = L which contradicts to the inequality
ˇ

ˇf(xn) ´ L
ˇ

ˇ ě ε.

(“ð”) Let txnu8
n=1 Ď Iztcu be a convergent sequence with limit c, and ε ą 0 be given. By

assumption, there exists δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I .



By the fact that lim
nÑ8

xn = c, there exists N ą 0 such that

|xn ´ c| ă δ whenever n ě N .

Therefore, if n ě N , then 0 ă |xn ´ c| ă δ and xn P I so that
ˇ

ˇf(xn) ´ L
ˇ

ˇ ă ε. This implies
that lim

nÑ8
f(xn) = L; thus

lim
nÑ8

f(xn) exists for all convergent sequences txnu8
n=1 Ď Iztcu with limit c.

2. (“ñ”) Suppose that f is continuous at a point c P I; that is,

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď I with limit c .

In particular, for all convergent sequences txnu8
n=1 Ď Iztcu with limit c we have lim

nÑ8
f(xn) =

f(c). Therefore, 1 implies that

(@ ε ą 0)(D δ ą 0)
(

ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I
)
.

We note that we must have
ˇ

ˇf(c) ´ f(c)
ˇ

ˇ ă ε; thus the statement above implies that

(@ ε ą 0)(D δ ą 0)
(

ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ and x P I
)
.

(“ð”) We note that the assumption in particular implies that

(@ ε ą 0)(D δ ą 0)
(

ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I
)
;

thus 1 implies that

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď Iztcu with limit c. (0.1)

Now suppose the contrary that there exists a convergent sequence txnu8
n=1 Ď I with limit c but

lim
nÑ8

f(xn) ‰ f(c). Then (0.1) implies that

#tn P N |xn = cu = 8 .

(a) If #tn P N |xn ‰ cu ă 8, then there exists N ą 0 such that xn = c for all n ě N . This
implies that

ˇ

ˇf(xn) ´ f(c)
ˇ

ˇ = 0 ă ε whenever n ěN, a contradiction to that lim
nÑ8

f(xn) ‰

f(c).

(b) If #tn P N |xn ‰ cu = 8, then tn P N |xn ‰ cu = tnj P N | j P N, nj ă nj+1u and
txnj

u8
j=1 Ď Iztcu is a convergent sequence with limit c. Therefore, (0.1) implies that

lim
jÑ8

f
(
xnj

)
= f(c) .

Let ε ą 0 be given. The limit above shows that there exists J ą 0 such that
ˇ

ˇf(xnj
) ´

f(c)
ˇ

ˇ ă ε whenever j ě J . Let N = nJ . Then for all n ě N , we have either xn = c or
xn = xnj

for some j ě J ; thus
ˇ

ˇf(xn) ´ f(c)
ˇ

ˇ ă ε whenever n ě N ,

a contradiction to that lim
nÑ8

f(xn) ‰ f(c). ˝


