Exercise Problem Sets 2
Sept. 25. 2021

Problem 1. Complete the following.

1. Verify the Wallis’s formula: if n is a non-negative integer, then
: 2n+1 : 2n+1 (2"n!
f sin®** xdx:f cos”" My dr = ~—L—
0 0

and

2 2 on)!
J sin?” x dx = J cos?™ x dx = (2n) il )
0 0 (27n!)?2 2

™

2. Let I, = jz sin” x dr. Show that lim LETER) = 1.
0

n—aoo 2n

n!

——o5—n- Show that {s,};"; is a decreasing sequence; that is, s, > s,y for all
n e

3. Let s, =
n € N.

Hint:
2. Show that Is, o < I5,11 < I, for all n € N and then apply the Sandwich lemma.
z+0.5

3. Consider the function f(z) = (1+ %)

Proof. 1. Integrating by parts, we find that

: 1 v=3 s 2 2
sin" x dv = —sin"" " xcosx +(n—1)| sin"“zcos®xdrx
0 z=0 0

us

=(n-1) J2 sin"? z(1 — sin*z) dz
0

=(n— 1)J2 sin" 2z dr — (n — 1)f2 sin” z dz;
0 0

thus _
2 —1 (2
f sin® x dx = n J sin" 2z dx
0 n 0
Therefore,
3 2 3 2 om—2 (2
JQ sin?" g dr = " JQ sin® 'y dr = nooon JQ sin?" P rdr = -
0 2n+1 Jo 2n+1 2n—1 ),
o 2n—2 2n—4 QJS , 2 4 on
— . . e e — Slnxdm:_ .....
2n+1 2n—1 2n—3 3 Jo 3 5 2n +1

_ 224% ... (2n)? _ (2mn!)?

(2n +1)! (2n+1)!




and

[VE]

2 _1 s us
J sin® ¢ dx = — JQ sin®" 2w dr = JQ sin®"tader =
0 2n  J 2n 2n—2 J,
on—1 2n—3 2n—5 1 (2 1 3 2n—1 «
— . . Sin I'dm___—_
2n 2n—2 2n—-4 2 2

2. On the interval [0, g], 0 < sinz < 1; thus

-n2n+2 2n+1

. . s
si r < sin r < sin*z Vre [O, 5} .

Therefore, I5,10 < I5,11 < I, so that

12n+2 < ]2n+1

< <1 v N.
]271 [271 ne

I2n+2 _ 2n+1
I, 2(n—|— 1)

Since , the Sandwich Lemma implies that

Iy,
lim =2 =1,
n—00 2n
n!
1\ 405 5 0 1 1\nt05
3. Since lim (1 + —) = ¢ and = n+0% ; == (1 + —) , it suffices to show
n—0o0 n Sna1 (n+1)! e n

(n + 1)n+1.56—n—1

)m+0.5

1
that the function f(z) = (1+ = is increasing on [1,0). Nevertheless, this is the same as
T

1

proving that the function g(z) = (1 + )= 12 is decreasing on (0, 1].
Differentiate g, we find that

24
1+x}2x—2(2+x)1n(1+x)

() = (o) -
2z 42?-2(1+2)In(1 +x)
B 222(1 + )

[In(1+ )+

To see the sign of the denominator h(z) = 2z + 2% —2(1+z) In(1+x) on (0, 1], we differentiate
h and find that
h(z) =242z —2In(1+2) —2=2[z —In(l +z)]

and one more differentiation shows that

1 T

h'(z)=1-— =
1+ 14«2

>0 Ve (0,1].

Therefore, h’ in increasing on (0, 1] which implies that A’(z) = h’(0) = 0 for all « € (0,1]. This
further implies that h(z) = h(0) = 0 for all z € (0, 1]; thus ¢g’(z) = 0 for all z € (0,1]. a



Problem 2. Let (F,+,-, <) be an ordered field with Archimedean property, I < F be an interval,
and f: I — [ be a function.

1. f is said to have a limit at ¢ or we say that the limit of f at ¢ exists if

(a) there exists a sequence {z,}>_; < I\{c} with limit ¢, and
(b) nlgrolo f(z,) exists for all convergent sequences {z,}r_; < I\{c} with limit c.

Show that the limit of f at ¢ exists if and only if there exists L € F satisfying that for every

€ > 0 there exists 6 > 0 such that

|flx)—L|<e whenever 0 < |z —c¢|<dandzel.

2. f is said to be continuous at a point ¢ € [ if

lim f(x,) = f(c) for all convergent sequences {z,},_, < I with limit c.
n—00

Show that f is continuous at ¢ if and only if for every € > 0 there exists § > 0 such that

|f(z) = flo)] <e whenever |r—c¢[<dandxzel.

Proof. 1. (“=") Suppose that the limit of f at ¢ exists.
Claim: If {z,,}° |, {yn}2, € I\{c} and lim z,, = lim y, = ¢, then lim f(z,) = lim f(y,).
n—00 n—o0 n—a0 n—a
Proof of claim: Define z, by

{ Tni1 if mis odd,
— 2
Zn =

yz  ifnis even.

Then lim z, = ¢; thus by the assumption that the limit of f at ¢ exists, we find that lim f(z,)

n—ao0 n—ao0

exists. On the other hand, since lim f(z,) and lim f(y,) both exist, we must have
n—ao n—o0
lim f(za) = lim f(z0) = lim f(yn). :
n—o0 n—ao0 n—ao0
Having established the claim, we find that there exists L € IF such that lim f(z,) = L whenever

n—oo
{z, ), < I\{c} is a convergent sequence with limit c.

Suppose the contrary that there exists ¢ > 0 such that for each 6 > 0 there exists z € [
satisfying 0 < |z — ¢| < § and |f(z) — L| = e. In particular, for each n € N, there exists z,, € I
satisfying

0<\wn—c\<% and |flzn) —L| > €.

Then {z,}r, < I\{c} and Archimedean Property implies that lim z,, = c¢. Therefore, the

n—o0

claim shows that lim f(z,) = L which contradicts to the inequality |f(z,) — L| > e.
n—a0

(“<=") Let {x,}2, < I\{c} be a convergent sequence with limit ¢, and € > 0 be given. By

assumption, there exists 0 > 0 such that

|f(x) —L| <& whenever 0<|z—c/<dandzel.



By the fact that lim z,, = ¢, there exists N > 0 such that

n—o0

|z, —c| < whenever n>=N.

Therefore, if n > N, then 0 < |z, — ¢[ < 6 and z, € I so that |f(z,) — L| < e. This implies
that lim f(z,) = L; thus
n—ao

lim f(x,) exists for all convergent sequences {z,},_; < I\{c} with limit c.
n—o0

. (“=7) Suppose that f is continuous at a point ¢ € I; that is,
lim f(z,) = f(c) for all convergent sequences {z,},_, < [ with limit c.
n—o0
In particular, for all convergent sequences {z,}o; < I\{c} with limit ¢ we have lim f(x,) =

n—0o0
f(c). Therefore, 1 implies that

(Ve>0)(36 > O)(‘f(x) — f(¢c)) <& whenever O<|z—c/<dandze I) :
We note that we must have |f(c) — f(c)| < &; thus the statement above implies that

(V6>0)(35>0)(‘f(m)—f(0)‘<5 whenever |:L‘—c|<5andme]>.

(“«<=”) We note that the assumption in particular implies that
(Ve>0)(36> 0)(‘f<£€) — f(¢)) <& whenever 0<|z—c/<dandze I) ;
thus 1 implies that

lim f(x,) = f(c) for all convergent sequences {z,},_, < I\{c} with limit c. (0.1)

n—00
Now suppose the contrary that there exists a convergent sequence {z,}’°_; < I with limit ¢ but
lim f(z,) # f(c). Then (@) implies that
n—a0
#{neN|z,=c}=w0.
(a) If #{n e N|z, # ¢} < o0, then there exists N > 0 such that x,, = ¢ for all n > N. This
implies that | f(z,) — f(c)| = 0 < & whenever n =N, a contradiction to that lim f(z,) #
n—a0
f(e).
(b) If #{n € N|z,, # ¢} = oo, then {n € N|z,, # ¢} = {n; € N|j € N,n; < n;;1} and
{7,172, € I\{c} is a convergent sequence with limit c. Therefore, (@) implies that

lim f(z,,) = f(c).

J—®0
Let € > 0 be given. The limit above shows that there exists J > 0 such that |f(z,,) —
f(c)| < ¢ whenever j > J. Let N = njy. Then for all n > N, we have either x,, = ¢ or
Ty = Ty, for some j = J; thus
|f(zn) — f(c)] <& whenever n >N,

a contradiction to that lim f(z,) # f(c). o
n—00



