Exercise Problem Sets 4
Oct. 08. 2021

Problem 1. Let A be a set, and f,g: A — R be two functions. Let h = max{f, g}; that is,

h(z) = max {f(z),g(x)} VeeA.

Show that
sup h(xr) = max { sup f(z),sup g(x)} :
zeA zeA zeA
Generalize the result above to the following: if fi,---, f, : A — R are real-valued functions, then

supmax {fi(z), -, fa(a)} = max { sup u(e). sup fala), - sup fy(2) |

reA TEA TEA

Can one conclude that if f,, : A — R is a sequence of functions, then

supsup { f1(x), -, fu(x), - } = Sup{supfl(flf%suph(@“)w' ,sup fo(x), - }

€A TEA TEA TEA

Proof. First, by the definition of A,
f(z) < h(z) VeeA and g(x) < h(x) VeeA.

Therefore, by the fact that h(x) < sup h(x), we find that
zeA

f(z) <suph(z) and g¢g(x) <suph(x) VeeA.
zeA zeA

The inequalities above shows that sup h(z) is an upper bound for the range of f and g; thus
€A

sup f(z) < sup h(x) and sup g(z) < sup h(x) .
rEA r€A rEA €A

Therefore,

max { sup f(x),sup g(x)} < sup h(x). (*)
€A zeA zeA

Next, we show the revered inequality.
1. Suppose that sup h(x) = co. Then h is not bounded from above; thus f or g is not bounded

zeA
from above. In fact, if f(z) < M and g(z) < N for all z € A, then h(z) = max{f(z), g(z)} <

max{M, N} for all z € A which shows that & is bounded from above, a contradiction. Therefore,
sup f(x) = o0 or sup g(z) = oo so that
€A €A

max { sggf(z), sggg(x)} =0

which shows that

max { sup f(z),sup g(x)} > sup h(z) .
reA €A zeA



2. Suppose that sup h(z) = M € R. Let € > 0 be given. Then there exists zg € A such that
z€A

M — e < h(xg) = max { f (o), g(z0) } -

Therefore, the fact f(xo) < sup f(x) and g(z) < sup g(z) shows that
zeA zeA

M — e < max { supf(m),supg(:p)} :
€A €A

The inequality above holds for all € > 0; thus

sup h(x) = M < max { sup f(x),sup g(x)} .
€A reA €A

In either case we have shown that sup h(x) = M < max { sup f(z),sup g(x)}; thus combining with
zeA zeA zeA

(x) we conclude the desired identity.

Next we show that

supmac { (2, -+ , fu(2)} = max { sup fu(x), sup fo(e), -+ sup fu(x)} (+#)

reA TEA TEA TEA

We note that for each n > 3,
max { f1(z), -+ , fu(z)} = max { max { f1(2), -, far(2)}, fn(x)} Vae A,  (xxx)
In fact, for a fixed z € A suppose that f;(z) = max {fi(z), - , fu(2)}.
1. j #n: In this case f;(z) = max {fy(z), -~ . fur ()} and fj(z) > fu(z). Therefore,
max {f1(), -+, ful@)} = f5(2) = max {f;(2), fu(2)}
— max{ max {fi(2), -+, fu 1 (0)}, ful2)}

2. j = n: If this case f,(z) > max {fi(z),---, fu_1(z)}; thus
max {f1(2), -+ , ful@)} = ful) = max { max {fi(2), -, foa (@)}, full) }

This establishes (x%x*).
Now we prove (xx). From the argument above we find that (**) holds for the case n = 2. Suppose

that (%) holds for the case n = m. If n =m + 1, by (***) we find that
max {fl(x), e ,fm+1(x)} = max { max {fl(x), e ,fm(x)}, fm+1(ac)} VexeA;
thus

Sup 1nax {fl(x)v afm-&-l(x)} = Supmax{max {f1<x)’ ufm(x)}afm-&-l(x)}

€A TEA

= max { sup max {fi(), -, fum(2)}, sup fm+1(fﬂ)}



and the assumption that (xx) holds for the case n = m further implies that

Sup max {fi(x), - fmnr(z)} = maX{maX{ilelg fi(z), - Sup fm(x)}’sz‘jﬁ me(a?)}

= max{sggfl(m), e ,sggfmﬂ(x)}.

Therefore, (*%) holds for the case n = m + 1. By induction, (xx) holds for all n > 2.
Finally, we note that

fi(x) <sup f;(y) < Sup{supfl(y),--- ,supfn(y),---} VozeAand jeN.

yeA yeA yeA

This implies that

sup {fu(@), -+, fal@), -} < sup{sup fily), - sup fuly), o} Vae A

yeA yeA
thus
supsup {f1(), -+ fu(@),+} < sup { sup fi(y), -+ sup fuly), - }
zeA yeA yeA
= sup { sup fi(x), -+ ,sup fu(2), - } :
TEA TEA
Now we prove the reverse inequality. Let S = sup sup { filz), -, falz), - }
€A

1. SeR: Let € > 0 be given. By the definition of supremum, there exists z € A such that
€

S = sup{fi(z),--- ,fn(x),'--}>5—2

Then sup {fi(z), - , fu(x), -+ } € R; thus there exists j € N such that

€
fa) > sup { @), fule), -}~ 2> 5 <
Therefore, sup f;(x) = S — ¢ which implies that
zeA
sup { sup f1(x), -+ sup fu(w), - f = S~ e
zeA zeA
Since € > 0 is given arbitrarily, we find that

sup{supfl(x),--‘ ,supfn(x),~-} > S =supsup{fi(z), -, falz), - }.

€A TEA TEA

2. S =o00: Let M > 0 be given. Then there exists x € A such that

Sup{fl(l'),"' ,fn(:c),--.}>M

which further implies that there exists j € N such that f;(z) > M. Therefore, sup f;(z) = M;
zeA

thus
sup{supfl(x),--~ ,sup fo(z), - } > M.

zeA zeA
Since M is given arbitrarily, we conclude that

sup{sug)fl(a:),-~- ,sugfn(x),---}:oo:S.



In either case we establish that sup,c, sup {fi(z), -, fu(x), -~ } = S; thus

sup sup {fl(:p)7 e falT), } = sup{mel}:fl(x)7 oo sup fo(z), - - } 5

TeA €A

Problem 2. Let (F,+,-, <) be an Archimedean ordered field. A number z € F is called an accu-
mulation point of a set A < F if for all § > 0, (x — 0, x+ ) contains at least one point of A distinct

from x. In logic notation,
z is an accumulation point of A < (V6 > 0)(An (z — 6,z +6)\{z} # &).

1. Show that if {x,}’ , is a sequence in F so that z; # z; for all ¢,j € N and A = {xk ! ke N},

then x is an accumulation of A if and only if z is a cluster point of {z,}*_;.
2. How about if the condition z; # x; for all 7, j € N is removed? Is the statement in 1 still valid?

Proof. 1. We show that
z is an accumulation point of A if and only if (V& > 0)(#(A N (z — 6,2+ 6)) = ).

The direction “<” is trivial since if #(A N (z — 8,2+ 8)) = 0, An (z — 8,2+ §) contains some point

distinct from z.

(=) Let §; = 1, by the definition of the accumulation points, there exists x; € An (z—d;, 2+ 6;) and
1 # x. Define 6, = min{|x1 — x|, %} Then 05 > 0; thus there exists xo € A N (x — 09, 2 + 02)

and xo # x. We continue this process and obtain a sequence {z,,}°_;, < A\{x} satisfying that

rneAn(z—1z+1), z,€An(xr—0nx+0,) with (5n:min{]:c—xn_1],%}.

By Archimedean property, {z,}_, converges to z since |z — z,,| < d,, < —. Let 6 > 0 be given.

SRS

There exists N > 0 such that % < ¢; thus

1 1
An(x—=dz+0)2An (‘”_N’x+ﬁ) D {xN,TN11, TN12, " -
Since z; # x; for all ¢, j € N, we must have #(Am (3:—(5,35—1—(5)) = 0. D

Problem 3. Let (F, +,-, <) be an ordered field, and {z,}*_; be a sequence in F. Show that {z,}’_;

converges if and only if every proper subsequence of {z,}’°_; converges.

Proof. By Proposition 1.60 in the lecture note, it suffices to prove the direction “<”. We show that if
every proper subsequence of {z,}_; converges, then every proper subsequence of {x,} ; converges
to identical limit. Suppose the contrary that there exist two subsequence {z,, }7_, and {z,, }72, that
converge to a and b and a # b, respectively. We construct a new subsequence {yp};2; of {z,},

as follows. Let k;y = 1 and y; = Ty, - Let j; be the smallest integer so that m; > ny,, and define



Yo = Ty, - Let k; be the smallest integer so that ng, > m;,, and define y; = Ty, - We continue this

process and obtain a sequence {y,}7; satisfying that

Yri,,, Lisodd,
%]

Ye = .
Ym,, ¢ is even
2

where ki, ko, -+ and ji, jo, - - - satisfy that k& =1,
jr=min{j e N|m; >k} and kry1 = min {k € N|n; > m;, } VreN.

Then {yor—1}7,, the collection of odd terms of {y,}7,, is a subsequence of {z,, }7; and {y2},,
the collection of even terms of {y,};2,, is a subsequence of {z,, }7,, and {ya—1};2, converges to a
while {ya0}7°, converges to b, and a # b. By a Proposition we talked about in class, {y,}7, does not

converges, a contradiction. O

Problem 4. Let (F,+, -, <) be an Archimedean ordered field, and f : F — F be a function so that

f(x) = fyl<alr—y| Va,yeF,

where a € F is a constant satisfying 0 < a < 1. Pick an arbitrary z; € F, and define zy1 = f(z)

for all kK € N. Show that {z,}r_, is a Cauchy sequence in F.

Proof. First we claim that if 0 < a < 1, then lim o™ = 0. In fact, we have 1 > 1; thus by the fact
n—o0 «
that lim 1_ 0 (which is from Archimedean property), there exists p > 0 such that
n—o N
1 1
1+-<-—.
P«
Therefore,

1 1\ 1
== (1+2) 21400 =2
aP p p

which implies that

1
0<a?f < —.
v =3

By the fact that 2" > n for all n = N (which can be shown by induction), we find from the Sandwich
Lemma that

lim o™ =0.
n—0o0

Let € > 0 be given. The identity above shows the existence of N; > 0 such that ‘Ozp"| < € whenever
n > N;. Let N =pN;. Then if n > N,

‘a”| < ‘oszl‘ < e.

Therefore, lim o™ = 0.

n—a0

Next by the fact that |f(z) — f(y)| < alz — y| and 241 = f(z) for all k € N, we have

|xn+1_wn| = |f(xn)_f(xn—1)| <Oz|xn_$n—1| VTLZ?,



thus

(ifn>3) )
’xn-I—l - xn| < O4|xn - 17n—1| < « |xn—1 —Tp2| S-S To — T -
Therefore, if n > m,
|xn - xm| = |xn —Tp-1+ Tp-1 = Tp—2+ Tpg— " — Tm41 + Tm41 — Tm

< ‘xn - xn—l‘ + |$n—1 - xn—2| + |-Tm+1 - xm’
<" 2wy — x|+ " P lwy — x|+ 4+ Q™ Hag — 2

am—l

= (" +a" P+ |z — 11| < Ty — 11 .

-«
Let € > 0 be given. Since lim o™ = 0, there exists N > 0 such that
n—0o0

Oén_l

| |re — x1] <&  whenever n > N.
-«

am

Then if n > m > N, by the fact that |z, — z,,| < |zo — 21| we obtain that |z, — x,,| < €.

l—«



