Exercise Problem Sets 5
Oct. 15. 2021

Problem 1. Let (IF,+, -, <) be an ordered field satisfying the monotone sequence property, b € F
and b > 1.

1. Show the law of exponents holds (for rational exponents); that is, show that
(a) if r,s in Q, then b "% =b" - b°.
(b) if r,s in Q, then b™* = (b")".

2. For z € F, let B(z) = {b' € F|t € Q,¢t < x}. Show that sup B(z) exists for all z € F, and
b =sup B(r) if r € Q.

3. Define b* = sup B(z) for « € F. Show that B(z) > 0 for all x € F and the law of exponents

(for exponents in F)
(a) if z,y in F, then b"TY = b* - b¥ | (b) if z,y > 0, then b*¥ = (b")¥,
are also valid.

4. Show that if 1, x5 € F and 21 < x5, then b** < b*2. This implies that if z, x5 are two numbers

in [F satisfying b** = 02, then x; = x».

5. Let y > 0 be given. Show that if u,v € F such that b* < y and b’ > y, then b*t/" < y and
bo=1/m > 4 for sufficiently large n.

6. Let y > 0 be given, and A < F be the set of all w such that 0" < y. Show that sup A exists
and x = sup A satisfies b = y. The number = (the uniqueness is guaranteed by 4) satisfying

b* =y is called the logarithm of y to the base b, and is denoted by log, y.
Hint: Make use of Problem 2 in Exercise 3.

Proof. We note that F also satisfies the Archimedean Property and the least upper bound property

because of a Proposition and a Theorem that we talked about in class.

1. Note that the exponential law holds if the exponents are integers; that is,
T =p" 0™ and M = (™)™ Vn,meZ.
For m,n € N, we “define” bw as the n-th power of b%; that is, bm = (bi)n. Then for m,n € N,
[(3)]" = (o)™ =% =

which implies that (bi)n is the m-th root of ™ if m,n € N. Moreover, (bﬁ)n = bw and
(bﬁ)m = b%; thus we establish that

3=

b= (b)) = ()= and  bmr = (bw) VYm,neN. (W)



Suppose that r = N and s = @, where p1, 2, q1,q2 € N. Then (#) implies that
b1 D2

92 1, 9192 9192

(br)s (bm)pz — (bﬁ)ﬁ — [(bpl )?}qlq? _ (bﬁ)%(h — pores

and
prs — bipzq;;‘;m (bP p2)p2<h+p1q2 _ (bﬁ)mql ) (bﬁ)mtn _ b% ) b% — )b
Therefore,
V=00 and 0 =(0")° Vr,seQ and r,s>0. Q)

For r € Q and r < 0, we define b" = (b=")~!. Then if r,s € Q and r, s < 0, we have
prts — (b (r+s) ) (b b ) (bfr>71 . (bfs)fl — b p
and
(br)s _ [(bfr)fl}s

. First we show that z € F, B(z) is non-empty and bounded from above. By the Archimedean
Property, there exists n € N such that —z < n. Therefore, there exists a rational number —n

such that —n < z; thus b~" € B(z) which implies that B(z) is non-empty.

On the other hand, the Archimedean Property implies that there exists m € N such that x < m.
By the fact that

b' <b° whenever t<sandt seQ, ()

we conclude that b™ is an upper bound for B(x). Therefore, B(z) is bounded from above. By
the least upper bound property, we conclude that sup B(z) exists for all x € F.

Next we show that b" = sup B(r) if r € Q. To see this, we note that b € B(r) if r € Q. On
theother hand, (*) implies that b" is an upper bound for B(r); thus sup B(r) = b".

. We first show that
sup(cA) = c-sup A Ve>0, (%)

where cA = {c- x|z € A}. To see (x), we observe that
reA=x<supA=c-z<c-supA (by the compatibility of - and <);
thus every element in cA is bounded from above by ¢ - sup A. Therefore,
sup(cA) < c-sup A.

On the other hand, let € > 0 be given. Then there exists x € A and = > sup A — = Therefore,
C
c-x > c-supA—¢; thus

sup(cA) = c-x >c-supA —e.

Since € > 0 is given arbitrarily, we find that sup(cA) = ¢ - sup A4; thus (x) is concluded.



Next we show that
sup{bt|te(@,t<x}:inf{bs|s€@,s>x}. (o)
Let S(z) = {b*|s€ Q,s = z}. If b € B(z), then b' is a lower bound for S(z). Therefore, B(x)

is a subset of the collection of all lower bounds for S(z). By Problem 3 of Exercise 2,
sup B(x) < sup {y |y is a lower bound for S(z)} = infS(z).

Suppose that sup B(x) < inf S(z). Since b \, 1 asn — o (Problem 4 of Exercise 1), there
exists n € N such that infS(z) > bwsup B(z). By the fact that there exists r € Q and
xéréx—i—l, we find that

n

inf S(z) > b%supB( )—sup{b“’ |reQ,r < x} =sup{b°|seQ,s<z+— }
>br>inf{bs}se@, } inf S(x
a contradiction. Observe that
sup At = (ian)_l for every subset A of (0,00),

where A™! = {t7!|t € A} and (0,0) is the collection consisting of positive elements in F.

Therefore, (¢) implies that for x € I,

b =sup{t'|teQit<—a}=sup{b|teQt>z}= [inf{bt}te(@,t >x}]1
:(bx)—l

Now we show the law of exponential

b =" Yayel. (%)

Let x,y € F be given. If t,se Qand t <z, s <y, thent+seQandt+ s < x+ y; thus
W' =" <supB(z +y) =b"Y.

For any given rational ¢t < x, taking the supremum of the left-hand side over all rational s <y

and using (x) we find that
b b =bsup {b°|se Qs <y} < b,

Taking the supremum of the left-hand side over all rational ¢ < z, using (*) again we find that
by-bx:by'sup{bt‘te@,téx} < b

thus we establish that
bt - bY < bV Ve,yeF (00)



Now, note that (o¢) implies that for all x,y € FF,
B o= by > e ey — (5oL ety s (o)L e Y = b
The inequality above is indeed an equality and we obtain that
b = b Th Y Vae,yel.

This is indeed (**) because of that b= = (b*) L.

Next we show that (b”)Y = sup B(z - y) for all z > 0 and y € F. For z > 0, define A(z) = {s €
]F}s eQ,0<s< z} Note that if z > 0, then b* = sup A(z). Since for > 0, we have b* > 1;
thus for z,y > 0,

(b")Y = sup {(b")" ! teQ,0<t<y}= sup (b°)' = sup ( sup bs)t.

teA(y) teA(y) seA(x)
By Problem 4 of Exercise 2,
sup ( sup bs)t = sup (b°) = sup bt = PUP(teeAw) xA@) B = HTY
teA(y) seA(x) (t,s)eA(y) x A(zx) (t,s)eA(y)x A(z)

. Let x1 < x5 be given. Then AP implies that there exists r,s € Q such that z; < r < s < x».
Therefore, B(z1) € B(r) € B(s) € B(xs); thus

b®' = sup B(z1) < sup B(r) < sup B(s) < sup B(zg) = b™.
Since B(r) = b" and B(s) = b*, we must have B(r) < B(s); thus 4 is concluded.

. Since b% > 1 and v > 1, by the fact that br — 1asn — o0, there exist Ny, Ny > 0 such that
Yy

bv
]b%—l‘ <b£_1 whenever n > N; and !b%—ll < — —1 whenever n > N,.
b Yy

(

b
Let N = max{Ny, No}. For n > N, we have bs < 2L and br < m or equivalently,

b
b“+%<y and b”_%>y Vn>=N.

. Let A = {w elF ’ v < y}. Since b > 1, 2 of Problem 4 in Exercise 1 implies that
" >1+n(b—1) whenever n > 2. (k)

By AP, there exists N > 2 such that 1 + N(b— 1) > y; thus A is bounded from above by N.

Moreover, there exists M > 2 such that
1
1+ MOb-1)> —;
Y

thus (+xx) implies that b < y or —N € A. Therefore, A is non-empty. By LUBP, we

conclude that sup A exists.



Let x =sup A. Then x + % ¢ A; thus bt > y for all n € N. Since bn — 1san — o0, we find
that

b* = b® lim b = lim 6" % > y.

n—00 n—o0

On the other hand, 4 implies that = — 1 € A; thus b > y for all n € oo and we have
n

b = b% lim b~ = lim b" n < y.

n—00 n—0o0

Therefore, 0* = y.

[m]

Problem 2. Let (F,+-, <) be an ordered field satisfying the monotone sequence property. In this
problem we prove the Intermediate Value Theorem:

Let f : [a,b] — FF be continuous (at every point of [a, b]); that is,

lim f(z,) = f(lim z,) for all convergent sequence {z,}*_, < [a,b].
n—00 n—oo

If f(a)f(b) <0, then there exists ¢ € [a, b] such that f(c) = 0.

Complete the following.

1. W.L.O.G, we can assume that f(a) < 0. Define the set S = {z € [a,b]| f(x) > 0}. Show that
inf S exists.

2. Let ¢ =infS. Show that f(c) > 0.
3. Conclude that f(c) < 0 as well.
Hint:
1. Show that S is non-empty and bounded from below and note that MSP < LUBP.
2. Show that there exists a sequence {c,}7°; in S such that ¢, — ¢ as n — .
3. Show that there exists a sequence {c,}’°_; in [a, ¢) such that ¢, — ¢ as n — .

Proof. 1. Since f(b) > 0, b € S. Moreover, a is a lower bound for S; thus S is non-empty and
bounded from below. Since MSP < LUBP, infS € [ exists.

2. Let ¢ = inf S. For each n € N, there exists ¢, < c+ 1 and ¢, € S. Then f(c,) > 0 for all n € N
n
and

1
c<e, <c+ — VneN.
n

Then the Sandwich Lemma implies that ¢, — ¢ as n — 2. By the continuity of f,

fle) = f(lim ¢,) = lim f(c,) > 0.

n—0 n—00



c—a

3. By 2, a # ¢. Consider the sequence {c,}>_; defined by ¢, = ¢ —

. Then {c,}*; < [a,c).
Moreover, by the fact that ¢ = infS and ¢, < ¢, ¢, ¢ S for all n € N. Therefore, f(c,) <0 for
all n € N. Since ¢, — ¢ as n — o0, by the continuity of f we find that

fle)=f( 11_{{‘10071) = li_r)glof(cn) <0. D

Problem 3. Let (F,+-, <) be an ordered field satisfying the monotone sequence property. In this

problem we prove the Extreme Value Theorem:

Let a,beF, a <band f: [a,b] — F be continuous (at every point of [a, b]); that is,

lim f(z,) = f(lim z,) for all convergent sequence {z,}*_, < [a,b].
n—ao0 n—a0

Then there exist ¢, d € [a, b] such that f(c) = sup f(x) and f(d) = inf f(x).

z€(a,b] z€(a,b]

Complete the following.

1. Show that there exist sequences {c,}*_; and {d,}>_, in [a, b] such that

lim f(c,) = sup f(x) and lim f(d,) = inf f(z).

n—w0 z€|a,b] n—o z€(a,b]

2. Extract convergent subsequences {c,, };2; and {d,, };>; with limit ¢ and d, respectively. Show
that ¢, d € [a, b].
3. Show that f(c¢) = sup f(z)and f(d) = inf f(x).

z€[a,b] z€[a,b]

Hint: For 2, note that MSP = BWP.

Proof. 1t suffices to show the case of sup f(z) since iflfb] f(z) = — sup (—f)(x) by Problem 1 of
x€[a,b] z€la, x€[a,b]
Exercise 2.

1. We first show that f([a,b]) is bounded. Suppose the contrary that f([a,b]) is not bounded.
Then for each n € N, there exists z,, € [a,b] such that |f(z,)| > n. Since {z,}*, < [a,b],
{z,}*_, is bounded. By the fact that MSP = BWP, there exists a convergent subsequence
{xn, }72, of {x,}* ;. By the continuity of f, {f(xnk)}zo:l is also convergent; thus Proposition
1.39 in the lecture note implies that { f (:cnk)}:):l is bounded, a contradiction to that ‘ f (xnk)| >

n, = k for all k € N.

Since f([a,b]) is bounded, M = sup f([a,b]) = sup f(x) exists. For each n € IF, there exists
z€[a,b]

Cn € [a, b] such that
1
M— =< f(c,) <M.
n

By the Sandwich Lemma, lim f(¢,) = M = sup f(z).
n—o0

z€(a,b]



2. Since {c,}2, < [a,b], {c,}2_, is bounded. By the fact that MISP = BWP, there exists a
convergent subsequence {cy, }72; of {c,}_, with limit c¢. Since a < ¢,, < b for all ke N, by a

Proposition that we talked about in class we conclude that a < ¢ < b.

3. Since ¢, — c as k — o0, the continuity of f implies that

f(C) f(hm an) = lim f(cnk) = Ssup f( ) =

k—co k—co z€|a,b]

Problem 4. Let {z,}*_; and {y,}*_; be sequences in R. Prove the following inequalities:

liminf z, + liminfy, < liminf(z, + y,) <liminfz, + limsup y,
n—00 n—00 n—o0 n—0a0 n—00

< limsup(z,, + y,) < limsup z,, + limsup y, ;
n—0o0 n—0o0 n—00

(hmlnf\xn\)(lirrllliorolf]yn\) < liir_l)ioglf\xnyn\ < (llﬂgf\xn\)(llglj;}p]yn\)

< limsup |z, y,| < (limsup |z,|) (limsup |y,|) -

Give examples showing that the equalities are generally not true.

Proof. 1. Let k € N be fixed. Note that for n > k, we have

1nf(xn + yn) Ty +Yn < Sup<xn + yn) :

n=k

Note that the LHS and the RHS are functions of £ and is independent of n. Therefore,

inf [ inf (2, + yn) — Yn| < inf z,, < inf | sup(x, + y,) — yn]

n=k Ln=k n=k nzk L >k

which further shows that
1nf(xn + yn) — Supy, < 1n£ T, < sup(x, + yn) — SUP Yy, -
>

n=k nz n=k n=k

Therefore,

inf (2, + yn) < mf Ty + sup y, < sup(z, + yn) VkeN,

n=k n>=k n=k

and the first inequality follows from the fact that

inf z, + inf y, < inf(x, +y,) < mf Ty + sup y, < sup(z, + y,) < supx, + supy,
>

nzk nzk nzk n=k n=k n=k n=k

for each k € N.
2. Let k € N be fixed. Note that for n > k, we have
. 1 1 1
inf [leal (Jval + 2)] <l (fyal + ) < 50 [foal (J9al + 7))
Note that the LHS and the RHS for functions of k£ and is independent of n. Therefore,

inf (|2, | (Iyn | + )} sup U:vnl(!yn\ + )}

n=k
inf = < inf |z,| < inf
n=k 1 n=k n=k

|yn| +E

’yn| + E



By the fact that

. 1 1

inf T~ !

ol sup (] + 0)
we find that

1
inf [l (Jyal + 7)] sup ||z lyn] + o]
- T < of o < nf '
sup (Iyal + ) sup (lynl + %)

thus

. 1 . 1 1
Inf [fel(lynl + 7)) < inf fa]sup (jgal + 7)< sup [l (lonl + 7)]
The second inequality follows from the fact that
. . 1 . 1 . 1
inf kol 10f (Jynl + ) < 1nf {lanl (ol + )] < fuf 7l sup (jynl + )
1 1
< sup [zl (lya] + )] < sup |z, sup (Iyal + )
for each k € N, and passing to the limit as k — oo.

. Let x,, =2+ sinn and y,, = 2 4+ cosn. Then z,,y, > 0, and

liminfz, = liminfy, =1, limsupz, =limsupy, =3.
n—o n—0a0 n—00 n—00

By Problem 3, the set {z € [0,27] |z = k (mod 27) for some k € N} is dense in [0, 27]; thus for
¢ N such that x;, = k; (mod 2m)
and {xkj };il converges to 6. This implies that for each 0 € [—1, 1], there exists a subsequence
{cos k;}32, such that

each 0 € [0,2n] there exists an increasing sequence {k;}72, <

lim cosn; =cosf and lim sinn; =sinf.
j—o j—o

Therefore, we have

lim inf(z, + yn) =4 — V2, limsup(z, + y,) = 4 + V2,
n—00

n—0oo
and 0
liminfx,y, = 9 2\/5, limsup x,y, = = + 2V2.

n—00 2 n—0 2

Therefore,
liminfx, 4+ liminfy, < hm 1nf(wn +yn) < hm mf T, + limsupy,
n—o0 n—oo n—00
< limsup(z,, + y,) < limsup z,, + limsup y,
n—0oo n—aoo n—aoo

and

liminfz,, - hm mf Yn < hm mf(a:'nyn) < liminfx, - limsupy,
n—o0 n—oo n—00

< limsup(z,y,) < limsup z,, - limsupy, .
n—0oo n—aoo n—0oo

Therefore, the equalities are generally not true. =



Problem 5. Prove that

lim inf [2n hm mf A/ |zn| < limsup A/ |z,| < limsup 0] .
Ty,

n—0a0 ’ ‘ n—00 n—o0 | n|

Give examples to show that the equalities are not true in general. Is it true that lim {/|z,| exists
n—00

implies that lim [Zni] also exists?

n—00 |.%'n‘

Proof. W.L.O.G. we can assume that lim 1nf| Tnt 1 > (0 and lim sup 1] < . Let a = liminf ]
n—w0 [Ty now  |Znl n—n |2y

|Zn11]

and b = lim sup , and € > 0 be given such that a — ¢ > 0. Then there exists N > 0 such that

n—00 |xn|

a—5<|a‘;n+‘1|<b+e Vn>=N.
Ty,
Therefore,
(@ —&)|lza| <[wnia| < (0+e)lzn] V=N

which implies that if n > N,

20| > (a — &)|Tn_i1]| > (@ — €)?|Tn_s| > > (@ — )" V|zy]
and

n| < (b+&)|zna| < (b+e)|ans| < - < (b+e)" V|zn].

The inequality above implies that

(a—¢)t \"/|xN R |zn] < (b+e) W\"/|$N|;

thus

lim inf [(a — 5)1_% R/ ]xN]] < liminf {/|z,| < limsup {/|z,| < limsup [ (b+ 6)1_% A/ |$N]] .
n—a0

n—0 n—0o0 n—00

By Problem 4 of Exercise 1, lim bn =1 for all b > 0. Therefore,

n—0o0

tim inf (@ — )% 8/ ]| = lim (a = ) $/fon] = a — = = lming 221
e n—0 n—00 ‘-Tn’
and
lim sup [(b+5)1_% \/7@ = lim (b+5)1_% V]xy| =b+ e =limsup v |n+’1| + e
n—a0 n—aoo o0 l‘n

Since the inequality above holds for all € > 0, we conclude that

lim inf [Znt hm 1nf Y/ |zn] < limsup {/|z,| < lim sup Tn :
T

n—a0 |I | n—00 n—0oo | n|

Let {z,}_; be a real sequence defined by

{ 27" if nis odd,
Ty =

47" if n is even,



or r, = (3+ (—=1)")"". Then {/|z,| = 3+ (—1)" which shows that

liminf /|x,| = E and lim sup /| z,| = L
n—00 4 00 2
To compute the limit superior and limit inferior of |:T”+|1 |, we define
L,
g = il B+(En~*hH™t 1 (3— (-D")‘”
" (3+ (=1)m)— 3— (—1)n\3+ (=1)"

and observe that lim ys, = 0 and lim yo,,1 = 0. Since y, € [0,00), we conclude that 0 is the
n—0o0 n—0oo

smallest cluster point of {y,}r_, and o is the largest “cluster point” of {y,},>,. This shows that

|$n+l’ _ O

lim inf = and lim sup z
n—0 ’:L‘n‘ n—o0 |xn’

Problem 6. Find lim sup cosn and lim inf cosn.
n—0o0 n—w

Hint: First show that for all irrational «, the set
S ={ze[0,1]|z = ka (mod 1) for some k € N}

is dense in [0, 1]; that is, for all y € [0,1] and € > 0, there exists z € S n (y — &,y + €). Then choose

o= S to conclude that
27
T = {z e[0,2n] |2 = k (mod 27) for some k € N}
is dense in [0, 27]. To prove that S is dense in [0, 1], you might want to consider the following set
Sy ={z€0,1]|z = la (mod 1) for some 1 < { <k + 1}

. . . : 1
Note that there must be two points in Sy whose distance is less than 7 What happened to (the

multiples of) the difference of these two points?

Proof. Define Sy, = {z € [0,1] |z = fa (mod 1) for some 1 < ¢ < k+1}. Let 1 < 1,6, < k+1, and
z,y € [0,1] satisfying that z = f;a (mod 1) and y = o (mod 1). Then by the fact that « ¢ Q,

r=y < lLa=la(modl) < ((1—ll)aeZ < [ —0=0.

Therefore, there are (k + 1) distinct points in Sy (this also shows that each k € N corresponds to

different point = ka (mod 1) in S). Moreover, x ¢ Q if x € Si. By the pigeonhole principle, there
1

exist z,y in Sy satisfying that 0 < |z —y| < o

Let € > 0 be given. Then there exists n € N such that — < . By the discussion above, there

1
n
exist x,y € S, such that 0 < |x —y| < . Suppose that = nya (mod 1) and y = nyar (mod 1),
and define m = |n; — ny|. The point z € [0, 1] satisfying z = ma (mod 1) has the property that

z€ (0,e) U (1 —g,1). Therefore,

(Ve>0)FzeS)(ze(0,e)u(l—g1)).



Let y € [0,1] and £ > 0 be given. The discussion above provides an z € (0, 1) such that x = ka
(mod 1) for some k € N and z € (0,6) u (1 —¢,1). Then some constant multiple of  must belong
to(y—¢e,y+e) lflre(y—e,y+e), then z = kla (mod 1) in (y — &,y + ¢). This shows that S is
dense in [0, 1].

Having established that S is dense in [0, 1], we find that 7" is dense in [0,27]. Therefore, for
each ¢ € [0,27] there exists an increasing sequence {m;}2; < N such that x,,, = m; (mod 27)
and {x,;}72, € [0,27] converges to f. In particular, for each 6 € [0, 2] there exists an increasing

sequence {m;}*; < N such that

lim cosm; = cos and lim sinm; = sin6;
j—00 Jj—o
thus we conclude that lim sup cosm = 1 and liminfcosm = —1. O

m—00 m—a0



