Exercise Problem Sets 6
Oct. 22. 2021

Problem 1. Let | - || : F* — R, where F = R or C, be defined by
<Z|:pi|p>; if 1<p< w0,
||:l"HpE i=1 T = (xla"‘ 7xn)'
max {|z1,- -, |z,|}  ifp=o0,

Complete the following.

1. Prove the Holder inequality |<a:, y>| < ||,llyl, for all z, y € F*, where p,q € [1, 0] satisfy

1.{.1:1.
p g

2. Show that | - |, is indeed a norm on F™ for all 1 < p < .

3. Show that |z|, = lim ||, for all z e F".
p—00

4. Show that for each 1 < p,qg < coand p # ¢, || - [, and || - |, are equivalent norms.

Hint: 1. Prove first the Young inequality (if you do not know this inequality)

1 1
ab < 1a” + 1bq Va,b>=0and p,qe€ (1,0) satisfying — + — =1,
p q p q

Proof. 1. First we prove the Young inequality. Suppose that 1 < p < c0. Consider the function
y = f(z) = xP~1. The inverse function of f is y = f~1(z) = 271, For a,b > 0, we do not

necessarily have a?~! = b; thus by the convexity of f we have

ff(a;) dr + Lbfl(@ iz >

The inequality above implies that

a b
1 1 1 -1 1 1
abéjxpld:c—ijr’ildx:—a”—ir - pratl = Zgp BT et = Zgp 4 Dpe

0 0 p 145 p p p q
since g = P
p—1
Now suppose that 1 < p < . Let & = (21, - ,2,) and y = (y1,--- ,yn) be given, and
q= Ll be the Holder conjugate of p satisfying 1 + 1o 1. By Young’s inequality, we find
p—= p q
e e ful _ Lo ledye, Lo dul v LeP 1wl
Ti| |Yi il \P il \¢ T i
(el Ay - Bkt
lzlp [ylly — P\l lyle” plels  alyl
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Szl |yl $
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If p = o0, then ¢ = 1 and clearly we have

‘ Z TiYi

The case that p = 1 can be proved in a similar fashion.

n

< el < 25 (jmiss oIl = Il 5 ol = o
=1 )

1<igsn

2. Having established Holder’s inequality, we find that

n

|z + ylj = Z |z +yil” < Z i 4 wilP | + 2 i 4 wil" il

=1 =1 =1

s [i(|xi+yz‘\p_1)'ﬁl]p;1(i|xi|p>;
+[Zn: (i + wl”™) } <Z|y )

n p=1
= (D) " (laly + 19l,) = lo+ iz (Il + Ia1,)
=1

Therefore, |z + y|, < ||, + | y],-

3. W.L.O.G. we can assume that & # 0. Suppose that ||, = |zx| for some 1 < k < n. Then

n 1
p
Il = (D loil?)” = lan] = @
=1

Moreover, |z;| < |zg| for all 1 < j < n; thus
1 n

o = (o) = [ 3 (29)'] < (33 7)

i=1 i=1

S

1

thus

1
|2 <[zl < [2]wnr .

By the fact that lim nr = = 1, the Sandwich Lemma implies that llm ||, = |]o0-

p—0

4. Tt suffices to show that every p-norm is equivalent to the oco-norm since if so, then for all
1 < p,q < w0 there exist C, Cy, C5, Cy such that

Cilla|, < |a]s < Cola], and Cy|a|, < |a|s < Culz], VaePF".
Therefore,
Cl C2
?Hpr <z, < c, — |||, Ve,

Now we show that each p-norm is equivalent to the co-norm. Note that

) < |2, V1<p<ow.



On the other hand,

n 1 n 1 L
2y = (X led?)” < (Xlal)” < il
=1 =1

Therefore,
nolal, < el < [al, VYzeF andl<p<o.

Problem 2. Complete the following.

1. For f e €([a,b];R), define

f| ]pdx ifl1<p<oo,
| £l =

max’f ’ ifp=o00.

z€[a,b]

Show that | - ||, is a norm on €([a, b]; R).
2. Show that | f|, = lim |f], for all f € € ([a,b];R).
p—©
3. Are | - ||, and | - |, equivalent norms on €([a,b]; R) for any 1 < p,q < 0?

Proof. 1. For a continuous function h : [a,b] — R,

b b—a
fh()d:v—hmZh a—i—z )

a n—oo n

b— .
a) and g(a +1 a), respectively, we have

) = 0t [ (S ar) ],

Therefore, with ¢; and d; denoting f (a + ib —

\|f+gup—hm(2\f+g(a+zb °)

and similarly,

n 1 n 1

£l = (b= ) lim [n*%<2|@|p>5} gl = (b= @) lim [n*%(Z\dﬂp)E} .

i=1 =1

By Minkowski’s inequality in Problem 1,

n 1 n 1 n 1
n_%<2 |CZ‘ + di|p>p < n_%<2 |Ci|p)p +77,_%<Z ’ddp)p )
=1 =1 =1

thus the desired conclusion follows from passing to the limit as n — co.

2. By the Extreme Value Theorem, there exists ¢ € [a, b] such that
|f(0)] = max [f(z)] = | [
z€[a,b]

W.L.O.G. we can assume that f(c) >0



Let n € N be given. Then by the continuity of f, there exists d,, > 0 such that
1

|f(x) = flo)] <=  whenever z€l,=(c—dnc+6,) N [ab].
n

Then for n >» 1,

‘f(x)|>‘f(c)‘—% whenever zel,.

Therefore, for n » 1,

b 1 1
» » 1 »
o= ([ 1r@ra)” = ([ r@ra)” = (- )( | @)
1 1
= (11 = = ) 1l
n
thus for all n » 1,
1 1 1
(1l = )1l < 1fl < 1ol — )}
Therefore, passing to the limit as p — oo, we find that for n » 1,
1 o .
[flleo = — < Tim inf [ ]}, < Timsup | f], <[ fe -
n p—0 p—0
Therefore, passing to the limit as n — oo, we find that

[ flloo = Tim inf | £}, = limsup || £, = [ [
p—®0 p—00

thus lim [/ f|, = || f]l-
p—0

3. The 1-norma and the co-norm are not equivalent. For each n € N, consider the function
fn :10,1] > R defined by

1
n’

—n2r+n if0<z<
fn(x) =
0 otherwise.

Then || f, s = % but | fu e = 7. Therefore,

Il _
171,

which does not belong to any given bounded interval [Cy, C5] when n is large. In fact, any

p-norm and ¢g-norm cannot be equivalent since for every n > 0 one can also find a
function f : [0,1] — R such that |f|, =1 and |[f|, >nifp <q. o

Problem 3. Let M,,,,,(F) be collection of n x m matrices with entries in F, where F = R or C. For

A€ M,y (F), define

A
4], = sup [Ae], = sup 1222
=1 z£0 ||y

1. Show that || - |, is a norm on M, ., (F).



2. Show that |A[, = /the maximum eigenvalue of ATA, where A' is the conjugate transpose of
A.
3. Show that |A|, = max{ Slawl, X5 lagk], -, D] |ank|} if Ae Myxm(F).
k=1 k=1 k=1
4. Show that |A|; = max{ Dlaktl, 20 lakal, -y D) |akm]} if Ae Mm(F).
k=1 k=1 k=1
5. Show that |A[2 < [|A]1]|A]« for all A e M, um(F).

Proof. The proofs of 1,2 are identical to the proof for the case of F = R.

3. It suffices to show the case F = C and A is not zero matrix. Let z € C™. If ||z|,, = 1, then for

each 1 <1 < n,
m

m
a1 + @iy + -+ - Qi T | < Z |aij| < max Z Jaiil ;
o ISzénjzl

thus the absolute value of each component of Az, under the constraint ||, = 1, has an upper

m
bound max Z |a;;|. Therefore,
=1

1<isn

|Allo = sup [|Az[o = sup max |ajnxi + a2 + -+ AnTm| < max Z |aij] .
|zl =1 |2]p=1 ISt 1<i<n ¢

m m
On the other hand, assume max Z lai;| = Z:l lay;| for some 1 < k < n. Let 5; € C satisty
— =

Biar; = lag;| and [B;] =1,

and define
T = (617627 T 7Bn)T

Then |x|, = 1 (since A is not zero matrix so that max{|bi|,- - ,|bs|} = 1), and ||Az|, =

m
>, lag;l; thus
=1

m m

[Allee = sup [Az|y > Z |akj| = max Z |zl -

lzloo=1 j=1

The combination of the two inequalities above implies the desured identity:.

4. Let * = (z1,- -+ ,2,) € F™ and |z|; = 1. Then for A = [a;;] € Myxm(F), we have

n m n m m n
gl = Y| S| < 213 lagllas = 33 i = UMY
=1 j=1 i=1j=1 j=1i=1 = =1
m n n m n
< Dl (max Y lasl) = (max 3 lal) D Jesl = (max D o) el
7j=1 =1 =1 7=1 =1

= 2 Jaij] -



Therefore, |Al; = sup |Az|; < max Z |aij].
=1 Isismi=1

On the other hand, suppose that max Z ai;| = Z |a;|; that is, the maximum of the sum of

Sjsmy i=1

absolute value of column entries of A occurs at the k-th column. Let & = (zq,--- ,x,,) € F™

be defined by
(0 ifj#EE,
TV =k,
Then

n
aal =3 Sa o = 2 \am = mae 33
1=

=1 j=1

thus |Al; = sup [|Az|; > max Z |aijl.
Jal =1 <i<m iz

Let A > 0 be the largest eigenvalue of ATA with corresponding eigenvector v. Then ATAv = \v
so that 2 implies that

|ARIvl = Alvly = [ATAv] < [A"]1] Avy < |AT Al vl ;

thus by the fact (from 3 and 4) that |AT|; = |A], and ||v|; # 0, we conclude the desired
inequality. O

Problem 4. Let M, (F) be the collection of all n x m matrices with entries in F, where F = R
or C. Define a function | - [,; : Musxm(F) = R by

[Allp.g = sup [ Az],,

|zl p=1

here we recall that | - |, is the p-norm on F™ given in Problem 1. If p = ¢, we simply use ||A], to

denote [|A|,,. Complete the following.

—_

|Az|,

(e
Show that |A[,, = inf {M € F||Az|, < M|z, Yz F"}.

= sup for all p,q > 1.

|Az], <

for all € F™.
|- |pq defines a norm on M,y (F).

Let {Ax}, € Myuym(F). Show that khm | Akllp.q = 0 if and only if each entry of Ay converges
—0
(k)

4] :|1<i<n,1<j<m’

to 0. In other words, by writing A, = [a show that klim |Akllpg = 0 if and
—00

only if khrn a( =0foralll <i<m,1<j<n. Inparticular, Ay — A in the sense that
—00

| Ax — AHpq — 0 as k — o if and only if the (i, 7)-th entry of A converges to (i, j)-th entry of

Aforalll<i<nand1<j<m.



Proof. 1. If  # 0, then y = —— satisfies that |y|, = 1; thus if  # 0,

HAmH
= ”Aqu sup HAqu HAHpq'

|z, =1

Therefore, sup |Az]q < HAHp,q-
220 | Z[p

On the other hand, if ||, = 1, then x # 0; thus if |z, =
el _ L4zl

[ P e

Therefore, |Al,, = sup ||Az|, < sup |Az|,
=1 z20 |Zlp

|Az|, =

2. 2 follows from Problem 3 in Exercise 3.

|A=|

[

3. By 1, < || Ay, for all z # 0 or equivalently,

Ve#0.
Since the inequality above also holds for & = 0, we conclude that

| Azl <

Ve R™.

4. The proof of 4 is similar to the proof of that | - [, is a norm on M,,,,(F). See Example 2.19

in the lecture note.

5. Let B = [b;j] € Myum(F), and |by| = |, Jnax |b;;]; that is, the maximum of the absolute
<isn,l<gysm
value of entries of B occurs at the (k, ¢)-entry. Let e, be the unit vector whose ¢-th component
is 1. Since Bey is the /-th column of B, for 1 <i<nand 1 <j <m,
[bij| < kel < [Bedlly < |Blpglecly = [Blpg;
thus
|bi;] < Vi<i<n 1<j<m. (%)

On the other hand, there exists € R™ such that |z|, =1 and |Bz|, >
1 <qg< oo,

—*4. Therefore, if

n

g <1t = (3] b

=1

n m 1 L 3 non %
(32 )’ <n (S8 ) (S )
mj:1 i=1j=1 =1 1

=1 =1j=

[

D) <SS S E S

while if ¢ = o

< ||Bz|o = max
1<isn

[Blpg _
2

m
2. i
~

m n m
< lrgflélz; bi;| < ZZ |bi] -
]:

i=1j=1



In either cases, we conclude that

I1Blipg < f(Iburl, [br2]s -+, [baml) (©)
for some function f of nm variables satisfying that f(y) — 0 as y — 0.
(=) Using (x), we find that for each 1 <i <nand 1 <j <m,
0 < [af| < [Aklpq-

Since klim | Ak|lp.g = 0, by the Sandwich Lemma we conclude that
—00

lim af)| =0 Vi<i<nl<j<m.
k—0o0

(<) Suppose that klim ‘agf)‘ =0 forall 1 <i<n,1<j<m. Then (¢) implies that
—00

0 < [Aplpg < f([a?];[af5)],- s [ali)) (o)

for some function f of nm variables satisfying that f(y) — 0 as y — 0. Therefore,

the Sandwich Lemma implies that k!im | Akllpg = 0. D
—00

Problem 5. Let n,m € N and M,,«,,(F) be the collection of all n x m matrices with entries in F,
where F = R or C. Define | - ||F : My xm(F) — R by

Al = (2D las) "
i=1j=1

1. Show that |A|% = tr(ATA), where AT is the conjugate transpose of A, and tr(M) is the trace

of square matrix M.

2. Show that | - |z is a norm on M, (F) (for all n,m € N). This norm is called the Frobenius

norm of matrices.
3. Show that |AB|r < |A||r||B||r whenever A € M,,.n(F) and B € M, ,(F).
4. Show that |Az|s < |A|r|x|2 for all e F™.
Hint: 3. Let A = [a1§a2§ }am} and B = [b1§b2§ ;bm}T; that is, ay is the k-th column of A

m

and by is the ¢-th row of B. Then AB = ). axb;. First show that HakbEHF = |ak/]2| bk |2 and use
k=1
the triangle inequality to conclude the desired equality.

Proof. 1. Note that if C' = AB and A = [a;j], B = [b;;] and C' = [¢;;], then

Cij = 2 aikbkj . (0-1)
k



Therefore, if B = ATA, where A = [a;;] € Myxm(F) and B = [b;;] € Myxm(F), then the
(i, k)-entry of A' is @y; so that

k=1
thus
m m n
ATA - Z bu Z Z Qi Qs = Z Z |akz|2 HAH%‘ .
=1 i=1k=1 i=1k=1
. Clearly | - |r satisfies properties (a)-(c) in the definition of norms, so it suffices to show the

triangle inequality. Let A = [a;;] and B = [b;;]. Define two vectors u, v € F*"™ by

u:(a11;a127"' y A1m, A21, " 5, A2m,, A31, " A3,y " * 5 Anl, - 7anm)

and

v:(b1176127"' 7b1m7b217"' 7b2mab31a"' 7b3ma"' 7bn17"' 7bnm)'

Using the triangle inequality for the norm | - |gnm, we obtain that

|4+ Blr= ()
=17

= (B2 kl) + (SR el)” = 1ale + 1531

i=1j=1

i+ b5*) " = [+ vleon < [lann + [0]eon
1

s T3

so that the triangle inequality for | - || is established.

. Let a@; and b; denote the i-th column of A and j-th row of B, respectively. Then (@) implies
that

AB:albl—{—ang—{—--'—l—ambm. (02)
Note that for column vector a@ = (ay,- - ,a,)" € F" and row vector b= (b, -+ ,b,) € F?,
n p n p
labl3 = Y13 Jay = (Y la?) (X 1) = al31b13
i=1j5=1 i=1 j=1

thus (@) and the triangle inequality imply that

|AB|p < Z\akkaF Z|ak\|2kuH2-

The Cauchy-Schwarz inequality further shows that

Mm@<(2wmwmw) (3 1aul3) (32 10413) = 14121512 :
k=1

k=1

thus [|AB|r < |A|r| Bl #-



4. Proof 1: By the positive semi-definiteness of AfA,
|A|2 = the maximum eigenvalue of ATA < tr(ATA) = |A|%.
Therefore, | Al < ||Al F; thus for each x € F™,
|Az]2 < [Al2]]2 < [Al#|z].-
Proof 2: 4 follows from 3 with p =1 and B = . =

Problem 6. Let (V,+,-,{-,-)) be an inner product space over R, and define ||v|| = (v, v)/? for all
ve V. Show that

L 2|z)? + 2|yl = |z + y|* + |z — y|* (parallelogram law).
2. [l=* = |yl?| < |z + yllz -yl < 2|+ [y]*
3. 4z, y) = |z + y|*> — | — y|* (polarization identity).
Can the p-norm || - |, on R™ be induced from any inner product (on R™) for p # 27
Proof. Note that if x, y € V, by Proposition 2.25 in the lecture note we have
|z +yl* =@+ y.z+y =2 + vz + (2,9 + |y,
lz—y|* =@ -yz—y = |z~ (y.2) — (x, 9+ |y[*

Since V is a vector space over R, (e) of the definition of inner products implies that {(x, y) = (y, z)

for all «, y € V; thus
lz+y|* = lz|* + 2z, ) + [y[*  and |z -y|*=|z]* - 2z y) + |y (0.3)
1. Let &,y €V be given. Then (@) implies that
lz+y|* + |z — yI* = 2(|2|* + [y]*) -
2. Let @,y € V be given. Then (@) implies that
|z + yl* |z —y|* = (|=|* + 2z 9 + [y]*) (|=]* - 2(z. y) + |y]?)
2 2 2
= (l=I* +91?)" — 4Kz, | < (|21 + |y]*)";
thus |z + yl|z — y| < [z]* + [y[*.

On the other hand, the Cauchy-Schwarz inequality implies that

|+ ylPle - yl* = (l2|* + 2z, 9 + |9*) (|2]* — 2z, 9 + |y[?)
= (|l + |y1*)" = 4, »|” = (> + |y)*)" — 4|2/ y|?
= [=|* + 2= |yl* + |yl* — 4]/ y]*
= |al* — 22|yl + yl* = (I=l> - |y]*)* = 0;

thus [z + yllz -yl = [|=]* — [y]?].



3. Let @,y € V be given. Then (@) implies that
|z +yl* + |z — y* = 2y, @) + Az, y) = K=, ).
Suppose that | - |, is induced by an inner production {-,-) on R"”. Then 1 implies that
2z, +2lyly = lz+ylp+lz—yl; VY yeR"
Let £ =e; and y = ey. Then |z|, = |y, =1 and |z + y|, = |z — y|, = 27 so that
2 2
4 =2p» +2»

which holds only for p = 2. Therefore, if p # 2, then | - ||, is not induced by an inner product on R™.

D
Problem 7. Let (V,{,-)) be an inner product space over C. Show the polarization identity
@y = (lz+ ol ~le— 9P +iletiyl —ile—igl) Vayev.
Proof. Let x,y €V be given. Then
|z +yl* = |z — yl* +i|lz+iy|* — i = — iy|*

=(xt+yzt+ty —(x—yzr—y +iet+iy,x+iy) —i{x—iy,x—iy)
=2((m, y) + (y, @) + 2i((z, iy) + (iy, z)) .

By Proposition 2.25 in the lecture note, we conclude that

i((z,iy) + Gy, @) = (2, y) — (Y, @)
thus
|z +yl* = |z — yl* —ilz+iy)* + i|z - iy[* = 4z, y). §
Problem 8. Let (M, d) be a metric space. Define p: M x M — R by

d(z,y)

P(%Z/):Hd—w‘

Show that (M, p) is also a metric space.

Proof. By the fact that d is a metric, we find that p(x,y) = 0 and p(z,y) = p(y, 2) for all x,y € M.
Moreover,

p(x,y) =0 ifand only if d(z,y)=0 ifandonlyif z=y.



Therefore, if suffices to shows the triangle inequality. Let x,y, 2 € M be given. Then

(1+d(z,2)) (plz,y) + p(y, 2)) = (1 +d(z,2)) (1 j_(;(g) ) 1 fz(;) z))

_ d(z,y)(1+d(y, 2)) (1 + d(z,2)) + d(y, 2) (1 + d(z,y)) (1 + d(z, 2))
(1 + d(z, y)) (1 + d(y, z))
d(z,y) + d(y, z) + 2d(xz,y)d(y, 2) + d(z,y)d(x, z) + d(y, 2)d(x, z) + 2d(x,y)d(y, 2)d(x, 2)
1+d(z,y) +d(y, z) + d(z, y)d(y, z)
- d(z,z) +d(z,y)d(x, 2) + d(y, 2)d(x, 2) + d(x, y)d(y, 2)d(z, 2)
- L+ d(z,y) +d(y, z) + d(z,y)d(y, 2)
1+d(z,y)+d(y,z) + d(z,y)d(y, 2) _ d(z,2)
1+d(z,y)+d(y,z) + d(z,y)d(y, 2) T

=d(z,2)

dlz,z)
thus p(z,y) + p(y, z) = Thds) p(, 2).

Problem 9. Let d : R? x R? — R be defined by

|21 — 11 it xo = ys,

d(z,y) = ' where = (z1,22) and y = (y1, y2).
|zy — 1| + |22 —yo| +1 if 29 # yo,

Show that d is a metric on R2.

Proof. Let = (x1,72), y = (y1,y2) and z = (21, 23) in R

1. Clearly d(z,y) = 0.
2. d(x,y) =0 (u=w)Alri—up|l=0s (=) A (1 =y) = T=y.

3. (a) The case x5 = yo: In this case d(x, y) = |1 — y1| and d(y, ) = |y1 — x1]; thus if 5 = o
then d(z, y) = d(y, x).

(b) The case x2 # yo: In this case
d(z,y) = lv1 =yl + w2 — 1ol +1 and d(y,z) = [y1 — 21| + 3o — 22 + 1;
thus if 25 # yo then d(x, y) = d(y, ).
In either cases, we have d(z, y) = d(y, ).
4. (a) The case x5 = yo: In this case
d(z,y) = |v1 — | < |lvn — 21| +|or — | < d(=, 2) + d(2,y).

(b) The case x5 # y2: In this case z is different from at least one of the second component
Zo, Y. W.L.O.G. we assume that zo # x5. Then
dz,y) = |v1 — |+ |22 =y + 1 < o1 — 21| + |21 — | + |22 — 22| + |22 — 92| + 1
=d(z, z) + |21 — | + 22 — | < d(z,2) +d(2,9).

In either cases, d satisfies the triangle inequality.



