Problem 1. Let $\{a_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be two sequences of real numbers, and $|x_n - x_{n+1}| < a_n$ for all $n \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ converges if $\sum_{n=1}^{\infty} a_n$ converges.

Proof. First we note that if n > m,

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_m|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|$$

$$\leq a_{n-1} + a_{n-2} + \dots + a_m = \sum_{k=m}^{n-1} a_k.$$

Let $\varepsilon > 0$ be given. Since $\sum_{k=1}^{\infty} a_k$ converges, the Cauchy criterion implies that there exists N > 0 such that

$$\left| \sum_{k=n}^{n+p} a_k \right| = \left| a_n + a_{n+1} + \dots + a_{n+p} \right| < \varepsilon \quad \text{whenever} \quad n \geqslant N \text{ and } p \geqslant 0.$$

Therefore, if $n > m \ge N$, by the fact $a_k > 0$ for all $k \in \mathbb{N}$, we have

$$|x_n - x_m| \leqslant \sum_{k=m}^{n-1} a_k < \varepsilon.$$

This implies that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . By the completeness of \mathbb{R} , $\{x_n\}_{n=1}^{\infty}$ converges.

Problem 2. Let $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ be a sequence. A series $\sum_{k=1}^{\infty} b_k$ is said to be a rearrangement of the series $\sum_{k=1}^{\infty} a_k$ if there exists a rearrangement π of \mathbb{N} ; that is, $\pi : \mathbb{N} \to \mathbb{N}$ is bijective, such that $b_k = a_{\pi(k)}$.

- 1. Show that if $\sum_{k=1}^{\infty} a_k$ converges absolutely, then any rearrangement of the series $\sum_{k=1}^{\infty} a_k$ converges and has the value $\sum_{k=1}^{\infty} a_k$.
- 2. Show that if $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then for each $r \in \mathbb{R}$, there exists a rearrangement $\sum_{k=1}^{\infty} a_{\pi(k)}$ of the series $\sum_{k=1}^{\infty} a_k$ such that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.

Proof. 1. Suppose that $\sum_{k=1}^{\infty} a_k$ is an absolutely convergent series with limit a, and $\pi: \mathbb{N} \to \mathbb{N}$ is a rearrangement of \mathbb{N} . Let $\varepsilon > 0$ be given. Then there exists N > 0 such that

$$\left|\sum_{k=1}^{n} a_k - a\right| < \frac{\varepsilon}{2}$$
 and $\sum_{k=n+1}^{\infty} |a_k| < \frac{\varepsilon}{2}$ whenever $n \ge N$.

Choose K > 0 such that $\pi(n) > N$ if $n \ge K$. In fact, $K = \max\{\pi^{-1}(1), \dots, \pi^{-1}(N)\} + 1$ suffices the purpose. Then $K \ge N$ and if $n \ge K$, $\pi(\{1, 2, \dots, n\}) \supseteq \{1, 2, \dots, N\}$. Therefore, if $n \ge K$,

$$\left|\sum_{k=1}^{n} a_{\pi(k)} - a\right| \leqslant \left|\sum_{k=1}^{n} a_{\pi(k)} - \sum_{k=1}^{N} a_{k}\right| + \left|\sum_{k=1}^{N} a_{k} - a\right| \leqslant \sum_{k=N+1}^{\infty} |a_{k}| + \frac{\varepsilon}{2} < \varepsilon$$

which implies that $\sum_{k=1}^{\infty} a_{\pi(k)} = a$.

2. Suppose that $\sum_{k=1}^{\infty} a_k$ is conditionally convergent. Let $\{a_{k_j}\}_{j=1}^{\infty}$ denote the subsequence of $\{a_k\}_{k=1}^{\infty}$ so that $a_{k_j} \geq 0$ for all $j \in \mathbb{N}$ and $a_k < 0$ if $k \in \mathbb{N} \setminus \{k_1, k_2, \cdots\}$. In other words, $\{a_{p_j}\}_{j=1}^{\infty}$ is the maximal subsequence of $\{a_k\}_{k=1}^{\infty}$ with non-negative terms. Let $\{a_{n_j}\}_{j=1}^{\infty}$ be the maximal subsequence of $\{a_k\}_{k=1}^{\infty}$ with negative terms. Then

$$\sum_{j=1}^{\infty} a_{p_j} = \infty \quad \text{and} \quad \sum_{j=1}^{\infty} a_{n_j} = -\infty.$$

Let $r \in \mathbb{R}$ be given, and use the notation $\sum_{j=1}^{0}$ to denote summing nothing. Define $k_0 = 0$. Choose $k_1 \in \mathbb{N}$ be the unique natural number so that $\sum_{j=1}^{k_1-1} a_{p_j} < r$ but $\sum_{j=1}^{k_1} a_{p_j} > r$. Since $\sum_{j=1}^{\infty} a_{n_j} = -\infty$, there exists a unique $k_2 \in \mathbb{N}$ such that $\sum_{j=1}^{k_1} a_{p_j} + \sum_{j=1}^{k_2-1} a_{n_j} > r$ but $\sum_{j=1}^{k_1} a_{p_j} + \sum_{j=1}^{k_2} a_{n_j} < r$. We continue this process, and obtain a sequence $\{k_\ell\}_{\ell=0}^{\infty}$ such that for each $\ell \in \mathbb{N}$,

(a)
$$\sum_{j=1}^{k_{2\ell-1}-1} a_{p_j} + \sum_{j=1}^{k_{2\ell-2}} a_{n_j} < r.$$
 (b)
$$\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell-2}} a_{n_j} > r.$$

(c)
$$\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell}-1} a_{n_j} > r$$
. (d) $\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell}} a_{n_j} < r$.

We then obtain a permutation of $\{a_n\}_{n=1}^{\infty}$:

$$\underbrace{a_{p_1}, \cdots, a_{p_{k_1}}}_{k_1 \ "\geqslant \ 0" \text{ terms}}, \underbrace{a_{n_1}, \cdots, a_{n_{k_2}}}_{k_2 \ "< \ 0" \text{ terms}}, \underbrace{a_{p_{k_1+1}}, \cdots, a_{p_{k_3}}}_{k_3 \ "\geqslant \ 0" \text{ terms}}, \underbrace{a_{n_{k_2}+1}, \cdots, a_{n_{k_4}}}_{k_4 \ "< \ 0" \text{ terms}}, \cdots.$$

Denote the permutation above by $\{a_{\pi(n)}\}_{n=1}^{\infty}$; that is, $\pi(1) = p_1, \dots, \pi(k_1) = p_{k_1}, \pi(k_1+1) = n_1, \dots, \pi(k_1+k_2) = n_{k_2}$, and so on. Next we show that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.

Let $\varepsilon > 0$ be given, and define $S_n = \sum_{k=1}^n a_{\pi(k)}$. Since $\sum_{n=1}^\infty a_n$ converges, $\lim_{n \to \infty} a_n = 0$; thus there exists N > 0 such that $|a_n| < \varepsilon$ for all $n \ge N$. By the construction of $\{k_\ell\}_{\ell=1}^\infty$,

$$|S_n - S_{n-1}| = |a_{\pi(n)}| < \varepsilon$$
 whenever $n \ge k_1 + k_2 + \dots + k_N$.

This implies that $S_n \in (r - \varepsilon, r + \varepsilon)$ whenever $n \ge k_1 + k_2 + \cdots + k_N$. Therefore,

$$\left|\sum_{k=1}^{n} a_{\pi(k)} - r\right| < \varepsilon$$
 whenever $n \ge k_1 + k_2 + \dots + k_N$

which shows that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.

Alternative proof of 1. We first establish the following

Claim: If $a_n \ge 0$ for all $n \in \mathbb{N}$ and $\pi : \mathbb{N} \to \mathbb{N}$ is a permutation, then $\sum_{n=1}^{\infty} a_{\pi(n)} = \sum_{n=1}^{\infty} a_n$.

To see the claim, let $\{a_n\}_{n=1}^{\infty}$ be non-negative sequence and $\pi: \mathbb{N} \to \mathbb{N}$ be a permutation. By the fact that $a_n \ge 0$ for all $n \ge \mathbb{N}$, we find that for all $N \in \mathbb{N}$,

$$S_N \equiv \sum_{n=1}^N a_{\pi(n)} \leqslant \sum_{n=1}^\infty a_n.$$

Since $\{S_N\}_{N=1}^{\infty}$ is an increasing sequence, $\lim_{N\to\infty} S_N$ either exists or diverges to ∞ . In either cases,

$$\sum_{n=1}^{\infty} a_{\pi(n)} = \lim_{N \to \infty} S_N \leqslant \sum_{n=1}^{\infty} a_n. \tag{\diamond}$$

On the other hand, we also note that $\sum_{n=1}^{\infty} a_n$ is a rearrangement of $\sum_{n=1}^{\infty} a_{\pi(n)}$. In fact, if $b_n = a_{\pi(n)}$, then $a_n = b_{\pi^{-1}(n)}$ so that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_{\pi^{-1}(n)}$. Therefore, (\diamond) implies that

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_{\pi^{-1}(n)} \leqslant \sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_{\pi(n)}.$$

Therefore, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\pi(n)}$ so that the claim is established.

Now suppose that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. The fact that $\sum_{n=1}^{\infty} |a_{\pi(n)}| = \sum_{n=1}^{\infty} |a_n|$ (from the claim above) then shows that $\sum_{n=1}^{\infty} a_{\pi(n)}$ is absolutely convergent. For a given sequence $\{c_n\}_{n=1}^{\infty}$, define $c_n^+ = \max\{c_n, 0\}$ and $c_n^- = \max\{-c_n, 0\}$. Then $c_n = c_n^+ - c_n^-$ for each $n \in \mathbb{N}$. Now, since

$$0 \leqslant a_n^{\pm} \leqslant |a_n|$$
 and $0 \leqslant a_{\pi(n)}^{\pm} \leqslant |a_{\pi(n)}|$ $\forall n \in \mathbb{N}$

the absolute convergence of $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} a_{\pi(n)}$ together with the comparison test show that $\sum_{n=1}^{\infty} a_n^{\pm}$ and $\sum_{n=1}^{\infty} a_{\pi(n)}^{\pm}$ all converge. Therefore,

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} (a_n^+ - a_n^-) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_n^+ - \sum_{n=1}^{N} a_n^- \right) = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^-,$$

$$\sum_{n=1}^{\infty} a_{\pi(n)} = \lim_{N \to \infty} \sum_{n=1}^{N} (a_{\pi(n)}^+ - a_{\pi(n)}^-) = \lim_{N \to \infty} \left(\sum_{n=1}^{N} a_{\pi(n)}^+ - \sum_{n=1}^{N} a_{\pi(n)}^- \right) = \sum_{n=1}^{\infty} a_{\pi(n)}^+ - \sum_{n=1}^{\infty} a_{\pi(n)}^+.$$

By the claim above, we have $\sum_{n=1}^{\infty} a_n^{\pm} = \sum_{n=1}^{\infty} a_{\pi(n)}^{\pm}$; thus the two identities above shows that $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\pi(n)}$.

Problem 3. Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of real numbers such that $a_n, b_n > 0$ for all $n \ge N$. Define

$$c_n = b_n - b_{n+1} \frac{a_{n+1}}{a_n} \qquad \forall n \in \mathbb{N}.$$
 (*)

1. Show that if there exists a constant r > 0 such that $r < c_n$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ converges.

Hint: Rewrite (\star) as $b_n = c_n + \frac{a_{n+1}}{a_n} b_{n+1}$ and then obtain

$$b_{N} = c_{N} + \frac{a_{N+1}}{a_{N}}b_{N+1} = c_{N} + \frac{a_{N+1}}{a_{N}}\left(c_{N+1} + \frac{a_{N+2}}{a_{N+1}}b_{N+2}\right) = c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}b_{N+2}$$

$$= c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}\left(c_{N+2} + \frac{a_{N+3}}{a_{N+2}}b_{N+3}\right) = \cdots$$

$$= c_{N} + \frac{a_{N+1}}{a_{N}}c_{N+1} + \frac{a_{N+2}}{a_{N}}c_{N+2} + \cdots + \frac{a_{N+n}}{a_{N}}c_{N+n} + \frac{a_{N+n+1}}{a_{N}}b_{N+n+1}.$$

Use the fact that $0 < r < c_n$ for all $n \ge N$ to conclude that

$$\sum_{k=N}^{N+n} a_k \leqslant \frac{a_N b_N}{r} \qquad \forall \, n \in \mathbb{N} \,.$$

Note that then the sequence of partial sum of $\sum_{k=1}^{\infty} a_k$ then is bounded from above (by $\sum_{k=1}^{N-1} a_k + \frac{a_N b_N}{r}$).

2. Show that if $\sum_{k=1}^{\infty} \frac{1}{b_k}$ diverges and $c_n \leq 0$ for all $n \geq N$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: The fact that $c_n \leq 0$ for all $n \geq N$ implies that $b_n a_n \leq b_{n+1} a_{n+1}$ for all $n \geq N$. Use this fact to conclude that

$$\frac{a_N b_N}{b_n} \leqslant a_n \qquad \forall \, n \geqslant N$$

and then apply the direct comparison test to conclude that $\sum_{k=1}^{\infty} a_k$ diverges.

Proof. The hints are exactly the proof.

Problem 4. Let $\sum_{k=1}^{\infty} a_k$ be a series with positive terms, and $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$. We know from class that the ratio test fails when this happens, but there are some refined results concerning this particular case.

1. (Raabe's test):

- (a) If there exists a constant $\mu > 1$ such that $\frac{a_{n+1}}{a_n} < 1 \frac{\mu}{n}$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ converges.
- (b) If there exists a constant $0 < \mu < 1$ such that $\frac{a_{n+1}}{a_n} > 1 \frac{\mu}{n}$ for all $n \ge N$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: Consider the sequence $\{b_n\}_{n=1}^{\infty}$ defined by $b_n = (n-1)a_n - na_{n+1}$. Then $\sum_{k=1}^{\infty} b_k$ is a telescoping series. For case (a), show that $\{na_{n+1}\}_{n=N}^{\infty}$ is a positive decreasing sequence and then conclude that $\sum_{k=1}^{\infty} b_k$ converges. Note that $b_n \ge (\mu - 1)a_n$ for all $n \ge N$. For case (b), show that $\{na_{n+1}\}_{n=N}^{\infty}$ is a positive increasing sequence; thus $a_n \ge \frac{Na_{N+1}}{n-1}$ for all $n \ge N+1$ which implies that $\sum_{k=1}^{\infty} a_k$ diverges.

Remark: 注意到 (a) 說的是如果 $\{a_n\}_{n=1}^{\infty}$ 在某項之後「遞減得夠快」,那麼 $\sum_{k=1}^{\infty} a_k$ 收斂。反之,如果 $\{a_n\}_{n=1}^{\infty}$ 「並非遞減得那麼快」,那麼 $\sum_{k=1}^{\infty} a_k$ 發散。

2. (Gauss's test): Suppose that there exist a positive constant $\epsilon > 0$, a constant μ , and a bounded sequence $\{R_n\}_{n=1}^{\infty}$ such that

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\mu}{n} + \frac{R_n}{n^{1+\epsilon}} \quad \text{for all } n \geqslant N.$$

(a) If
$$\mu > 1$$
, then $\sum_{k=1}^{\infty} a_k$ converges. (b) If $\mu \leq 1$, then $\sum_{k=1}^{\infty} a_k$ diverges.

Hint: Show that if $\mu > 1$ or $\mu < 1$, one can apply Raabe's test to conclude Gauss's test. For the case $\mu = 1$, let $b_n = (n-1)\ln(n-1)$ for $n \ge 2$. Using the second result of Problem 3 to show the divergence of $\sum_{k=1}^{\infty} a_k$ (by showing that c_n defined by (\star) is non-positive for all large enough n).

Proof. 1. For each $n \in \mathbb{N}$, define $b_n = (n-1)a_n - na_{n+1}$. Then $\sum_{n=1}^{\infty} b_n$ is a telescoping series. In fact,

$$\sum_{n=1}^{N} b_n = \sum_{n=1}^{N} \left[(n-1)a_n - na_{n+1} \right]$$

$$= -a_2 + (a_2 - 2a_3) + (2a_3 - 3a_4) + \dots + \left[(N-1)a_N - Na_{N+1} \right]$$

$$= -Na_{N+1};$$

thus $\sum_{n=1}^{\infty} b_n$ converges if and only if the sequence $\{na_{n+1}\}_{n=1}^{\infty}$ converges.

(a) Suppose that there exists a constant $\mu > 1$ such that $\frac{a_{n+1}}{a_n} < 1 - \frac{\mu}{n}$ for all $n \ge N$. Then $na_{n+1} < (n-\mu)a_n$ for all $n \ge N$ which further implies that

$$na_{n+1} - (n-1)a_n < (1-\mu)a_n < 0 \qquad \forall n \ge N.$$
 (\$\diamond\$)

Therefore, $\{na_{n+1}\}_{n=N}^{\infty}$ is a decreasing sequence. Since $na_{n+1} > 0$, the Monotone Sequence Property of \mathbb{R} implies that $\lim_{n \to \infty} na_{n+1}$ exists. Therefore, $\sum_{n=1}^{\infty} b_n$ exists. Note that (\diamond) implies that $b_n > (\mu - 1)a_n$ for all $n \ge N$; thus the comparison test shows that $\sum_{n=1}^{\infty} a_n$ converges.

(b) Suppose that there exists a constant $\mu < 1$ such that $\frac{a_{n+1}}{a_n} > 1 - \frac{\mu}{n}$ for all $n \ge N$. Then $na_{n+1} > (n-\mu)a_n$ for all $n \ge N$ which further implies that

$$na_{n+1} - (n-1)a_n > (1-\mu)a_n > 0 \quad \forall n \ge N.$$

Therefore, $\{na_{n+1}\}_{n=N}^{\infty}$ is an increasing sequence; thus $na_{n+1} \ge Na_{N+1}$ for all $n \ge N$. This implies that $a_{n+1} \ge \frac{Na_{N+1}}{n}$ for all $n \ge N$. By the fact that $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, the comparison test implies that $\sum_{n=1}^{\infty} a_n$ diverges. 2. Suppose that there exist a positive constant $\epsilon > 0$, a constant μ , and a **bounded** sequence $\{R_n\}_{n=1}^{\infty}$ such that

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\mu}{n} + \frac{R_n}{n^{1+\epsilon}} \quad \text{for all } n \geqslant N.$$

Suppose that $|R_n| \leq M$ for all $n \in \mathbb{N}$.

(a) If $\mu > 1$, then there exists $\bar{\mu}$ such that $\mu > \bar{\mu} > 1$. By the facts that $\lim_{n \to \infty} \frac{M}{n^{\epsilon}} = 0$ and

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\mu}{n} + \frac{R_n}{n^{1+\epsilon}} = 1 - \frac{\bar{\mu}}{n} + \frac{1}{n} \left(\mu - \bar{\mu} - \frac{R_n}{n^{\epsilon}} \right),$$

we find that there exists $N' \ge N$ such that

$$\frac{a_{n+1}}{a_n} < 1 - \frac{\bar{\mu}}{n} \qquad n \geqslant N'.$$

Therefore, Raabe's test shows that $\sum_{n=1}^{\infty} a_n$ converges.

(b) If $0 < \mu < 1$, then there exists $\bar{\mu}$ such that $\mu < \bar{\mu} < 1$. By the facts that $\lim_{n \to \infty} \frac{M}{n^{\epsilon}} = 0$ and

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\mu}{n} + \frac{R_n}{n^{1+\epsilon}} = 1 - \frac{\bar{\mu}}{n} - \frac{1}{n} (\bar{\mu} - \mu + \frac{R_n}{n^{\epsilon}}),$$

we find that there exists $N' \geqslant N$ such that

$$\frac{a_{n+1}}{a_n} > 1 - \frac{\bar{\mu}}{n} \qquad n \geqslant N'.$$

Therefore, Raabe's test shows that $\sum_{n=1}^{\infty} a_n$ diverges.

If $\mu = 1$, let $b_n = (n-1)\ln(n-1)$ for $n \ge 2$. Note that the function $f(x) = \frac{1}{x\ln x}$ is decreasing for $x \ge 3$ and

$$\int_{3}^{\infty} \frac{1}{x \ln x} dx = \int_{\ln 3}^{\infty} \frac{1}{e^{u} u} e^{u} du = \int_{\ln 3}^{\infty} \frac{1}{u} du = \infty;$$

thus the improper integral test shows that the series $\sum_{n=3}^{\infty} \frac{1}{b_n}$ diverges. Moreover, if $n \ge N$,

$$b_n - b_{n+1} \frac{a_{n+1}}{a_n} = (n-1)\ln(n-1) - n\ln n \left(1 - \frac{1}{n} + \frac{R_n}{n^{1+\epsilon}}\right)$$
$$= (n-1)\ln(n-1) - (n-1)\ln n - \frac{R_n \ln n}{n^{\epsilon}}$$
$$= \ln\left(1 - \frac{1}{n}\right)^{n-1} - \frac{R_n \ln n}{n^{\epsilon}}.$$

Since $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{n-1} = e^{-1}$ and $\lim_{n\to\infty} \frac{R_n \ln n}{n^{\epsilon}} = 0$, we find that there exists $N' \ge N$ such that

$$b_n - b_{n+1} \frac{a_{n+1}}{a_n} < 0 \qquad \forall \, n \geqslant N'.$$

Therefore, 2 of Problem 3 shows that $\sum_{k=1}^{\infty} a_k$ diverges.

Alternative proof of 1. (a) Suppose that there exists a constant $\mu > 1$ such that $\frac{a_{n+1}}{a_n} < 1 - \frac{\mu}{n}$ for all $n \ge N$. Then

$$\frac{a_n}{a_{n+1}} > \frac{n}{n-\mu} \qquad \forall \, n \geqslant N \,.$$

Therefore,

$$n\Big(\frac{a_n}{a_{n+1}}-1\Big) > n\Big(\frac{n}{n-\mu}-1\Big) = \frac{n\mu}{n-\mu} \qquad \forall \, n \geqslant N \, .$$

Choose 1 . Note that

$$\lim_{n \to \infty} n \left[\frac{(n+1)^p}{n^p} - 1 \right] = \lim_{n \to \infty} \frac{(1+1/n)^p - 1^p}{1/n} = \frac{d}{dx} \Big|_{x=1} x^p = p;$$

thus

$$\liminf_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) \geqslant \mu > p = \limsup_{n \to \infty} n \left[\frac{(n+1)^p}{n^p} - 1 \right].$$

Therefore, (using the property of liminf and limsup) there exists $K \ge N$ such that

$$n\left(\frac{a_n}{a_{n+1}} - 1\right) > n\left[\frac{(n+1)^p}{n^p} - 1\right] \qquad \forall \, n \geqslant K;$$

thus

$$(n+1)^p a_{n+1} \leqslant n^p a_n \qquad \forall \, n \geqslant K.$$

The inequality above implies that the sequence $\{n^p a_n\}_{n=K}^{\infty}$ is decreasing; thus

$$n^p a_n \leqslant K^p a_K \qquad \forall n \geqslant K.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges, we conclude from the comparison test that $\sum_{n=1}^{\infty} a_n$ converges.

(b) Suppose that there exists a constant $0 < \mu < 1$ such that $\frac{a_{n+1}}{a_n} > 1 - \frac{\mu}{n}$ for all $n \ge N$. Then

$$\frac{a_n}{a_{n+1}} < \frac{n}{n-\mu} \qquad \forall \, n \geqslant N \,.$$

Therefore,

$$n\left(\frac{a_n}{a_{n+1}}-1\right) < n\left(\frac{n}{n-\mu}-1\right) = \frac{n\mu}{n-\mu} \qquad \forall \, n \geqslant N \, .$$

Note that

$$\limsup_{n \to \infty} n \left(\frac{a_n}{a_{n+1}} - 1 \right) \leqslant \mu < 1 = \liminf_{n \to \infty} n \left(\frac{n+1}{n} - 1 \right).$$

Therefore, (using the property of liminf and limsup) there exists $K \ge N$ such that

$$n\left(\frac{a_n}{a_{n+1}}-1\right) < n\left(\frac{n+1}{n}-1\right) \qquad \forall \, n \geqslant K;$$

thus

$$\frac{a_{n+1}}{a_n} \geqslant \frac{n}{n+1} \qquad \forall \, n \geqslant K \,.$$

The inequality above implies that $(n+1)a_{n+1} \ge na_n$ for all $n \ge K$; thus the sequence $\{na_n\}_{n=K}^{\infty}$ is increasing. Therefore,

$$na_n \geqslant Ka_K \qquad \forall n \geqslant K.$$

Since $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges, we conclude from the comparison test that $\sum_{n=1}^{\infty} a_n$ diverges.

Problem 5. Complete the following.

- 1. Show that $\sum_{k=1}^{\infty} \left(1 \frac{1}{\sqrt{k}}\right)^k$ converges.
- 2. Show that $\sum_{k=2}^{\infty} \frac{\log(k+1) \log k}{(\log k)^2}$ converges.
- 3. Use Gauss's test to show that both the general harmonic series $\sum_{k=1}^{\infty} \frac{1}{ak+b}$, where $a \neq 0$, and the series $\sum_{k=1}^{\infty} \frac{1}{\sqrt{k}}$ diverge.
- 4. Show that $\sum_{k=1}^{\infty} \frac{k!}{(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$ converges if $\alpha>1$ and diverges if $\alpha\leqslant 1$.
- 5. Test the following "hypergeometric" series for convergence or divergence:

(a)
$$\sum_{k=1}^{\infty} \frac{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k-1)}{\beta(\beta+1)(\beta+2)\cdots(\beta+k-1)} = \frac{\alpha}{\beta} + \frac{\alpha(\alpha+1)}{\beta(\beta+1)} + \frac{\alpha(\alpha+1)(\alpha+2)}{\beta(\beta+1)(\beta+2)} + \cdots$$

(b)
$$1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} + \frac{\alpha(\alpha+1) \cdot \beta(\beta+1)}{1 \cdot 2\gamma \cdot (\gamma+1)} + \frac{\alpha(\alpha+1)(\alpha+2) \cdot \beta(\beta+1)(\beta+2)}{1 \cdot 2 \cdot 3 \cdot \gamma(\gamma+1)(\gamma+2)} + \cdots$$

Problem 6. Let $\sum_{k=1}^{\infty} a_k$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty} \left[1 + \operatorname{sgn}(a_k)\right] a_k$ and $\sum_{k=1}^{\infty} \left[1 - \operatorname{sgn}(a_k)\right] a_k$ both diverge. Here the sign function sgn is defined by

$$sgn(a) = \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

Proof. Claim: Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences of real numbers. If $\{x_n\}_{n=1}^{\infty}$ converges and $\{y_n\}_{n=1}^{\infty}$ diverges, then $\{x_n \pm y_n\}_{n=1}^{\infty}$ diverges.

To see the claim, suppose the contrary that $\{x_n + y_n\}_{n=1}^{\infty}$ converges. Then Theorem 1.40 in the lecture note implies that $\{x_n + y_n - x_n\}_{n=1}^{\infty}$ converges, which contradicts the assumption that $\{y_n\}_{n=1}^{\infty}$ diverges. Similarly, $\{x_n - y_n\}_{n=1}^{\infty}$ also diverges.

diverges. Similarly, $\{x_n - y_n\}_{n=1}^{\infty}$ also diverges. Let $S_n = \sum_{k=1}^n a_k$ and $T_n = \sum_{k=1}^n |a_k|$. Then $\{S_n\}_{n=1}^{\infty}$ converges but $\{T_n\}_{n=1}^{\infty}$ diverges. Therefore, the claim above shows that $\{S_n \pm T_n\}_{n=1}^{\infty}$ diverges. By the fact that $|a| = \operatorname{sgn}(a)a$ for all $a \in \mathbb{R}$, we have

$$S_n \pm T_n = \sum_{k=1}^n (a_k \pm |a_k|) = \sum_{k=1}^n [1 \pm \operatorname{sgn}(a_k)] a_k$$

so we conclude the desired result.

Problem 7. Consider the function $f(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$.

- 1. Find the domain of f.
- 2. Show that for each $\varepsilon > 0$ and $0 < \delta < \pi$, there exists N > 0 and N depends only on ε and δ but is independent of x, such that

$$\Big|\sum_{k=n}^{n+p}\frac{\sin(kx)}{k}\Big|<\varepsilon\qquad\forall\,n\geqslant N,p\geqslant0\text{ and }x\in[\delta,2\pi-\delta]\,.$$

Proof. Let $S_n(x) = \sum_{k=1}^n \sin(kx)$.

- 1. (a) If $x = 2n\pi$ for some $n \in \mathbb{Z}$ (or $x = 0 \pmod{2\pi}$), then $S_n(x) = 0$ for all $n \in \mathbb{N}$; thus for each $x = 0 \pmod{2\pi}$, $\{S_n(x)\}_{n=1}^{\infty}$ is bounded by 1.
 - (b) If $x \neq 2n\pi$ for all $n \in \mathbb{Z}$ (or $x \neq 0 \pmod{2\pi}$), then

$$2\sin\frac{x}{2}S_n(x) = \sum_{k=1}^n 2\sin\frac{x}{2}\sin(kx) = \sum_{k=1}^n \cos\left(k - \frac{1}{2}\right)x - \cos\left(k + \frac{1}{2}\right)x$$
$$= \cos\frac{x}{2} - \cos\left(n + \frac{1}{2}\right)x$$

which implies that

$$\left| S_n(x) \right| \leqslant \left| \frac{\cos \frac{x}{2} - \cos \left(n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right| \leqslant \frac{1}{\left| \sin \frac{x}{2} \right|} \qquad \forall x \neq 0 \pmod{2\pi}.$$

In either cases, for each $x \in \mathbb{R}$ there exists $M = M(x) \in \mathbb{R}$ such that $|S_n(x)| \leq M$. Therefore, the Dirichlet test (with $a_k = \sin(kx)$ and $p_k = \frac{1}{k}$) implies that f is defined everywhere; thus the domain of f is \mathbb{R} .

2. We mimic the proof of the Dirichlet test. Let $\varepsilon > 0$ and $\delta \in (0, 2\pi)$ be given. Then $\csc \frac{\delta}{2} > 0$; thus the Archimedean property of $\mathbb R$ implies that there exists $N > \frac{2}{\varepsilon} \csc \frac{\delta}{2}$. If $n \ge N$, $p \ge 0$ and $x \in [\delta, 2\pi - \delta]$ (thus $x \ne 0 \pmod{2\pi}$), then

$$\left| \sum_{k=n}^{n+p} \frac{\sin(kx)}{k} \right| = \left| \sum_{k=n}^{n+p} \left[S_{k+1}(x) - S_k(x) \right] \frac{1}{k} \right|$$

$$= \left| -S_n(x) \frac{1}{n} + S_{n+1}(x) \left(\frac{1}{n} - \frac{1}{n+1} \right) + \dots + S_{n+p}(x) \left(\frac{1}{n+p-1} - \frac{1}{n+p} \right) + S_{n+p+1}(x) \frac{1}{n+p} \right|$$

$$\leq \frac{1}{\left| \sin \frac{x}{2} \right|} \left[\frac{1}{n} + \left(\frac{1}{n} - \frac{1}{n+1} \right) + \dots + \left(\frac{1}{n+p-1} - \frac{1}{n+p} \right) + \frac{1}{n+p} \right]$$

$$= \frac{2}{n \left| \sin \frac{x}{2} \right|} < \frac{\sin \frac{\delta}{2}}{\left| \sin \frac{x}{2} \right|} \varepsilon.$$

Since $x \in [\delta, 2\pi - \delta]$, $\sin \frac{x}{2}$ attains its minimum at $x = \delta$ or $2\pi - \delta$; thus

$$0 < \sin \frac{\delta}{2} \le \sin \frac{x}{2} \qquad \forall x \in [\delta, 2\pi - \delta].$$

Therefore,

$$\Big|\sum_{k=n}^{n+p}\frac{\sin(kx)}{k}\Big|<\varepsilon\quad\text{ whenever}\quad n\geqslant N, p\geqslant 0\text{ and }x\in [\delta,2\pi-\delta]\,.$$