Exercise Problem Sets 7
Nov. 05. 2021

Problem 1. Let {a,})°; and {z,}> , be two sequences of real numbers, and |z, — z,41| < a, for

all n € N. Show that {z,}*_, converges if Z a, converges.
n=1

Proof. First we note that if n > m,

|:Un - xm| - |xn —Tp1+Tp-1— Tpao+- -+ Tm+1 — xm‘

<|wp — Tooa| +|Tno1 — Tono| + -+ | Tma1 — T

St angt ot an= ) .

Q0
Let € > 0 be given. Since Y] aj converges, the Cauchy criterion implies that there exists N > 0 such
k=1
that
n-+p
‘Zak‘ ‘an—l—anﬂ—i— +an+p] <e whenever n>Nandp=>0.
k=n

Therefore, if n > m > N, by the fact a; > 0 for all £ € N, we have

Ty — Ty | < Zak<5

This implies that {z,}r_, is a Cauchy sequence in R. By the completeness of R, {z,}>_, converges.

[m]

Q0
Problem 2. Let {ax}2; < R ba a sequence. A series Y. by is said to be a rearrangement of the series

k=1
0

>, ay if there exists a rearrangement 7 of N; that is, 7 : N — N is bijective, such that by = arx).
k=1

0 o0
1. Show that if >, a; converges absolutely, then any rearrangement of the series >, a; converges

k=1 k=1
0

and has the value }; ay.
k=1

o0
2. Show that if )] ay is conditionally convergent, then for each r € R, there exists a rearrangement

k=1
e} 0 .
D, Gk of the series ) aj such that )} a.g) = r.
k=1 = =
e}
Proof. 1. Suppose that )] aj is an absolutely convergent series with limit a, and 7 : N — N is a
k=1

rearrangement of N. Let € > 0 be given. Then there exists N > 0 such that

n 0
€ €
‘ Z ay — a‘ < = and Z lax| < =  whenever n > N.
2 2
k=1 k=n+1



Choose K > 0 such that m(n) > N if n > K. In fact, K = max{r (1), -, 7 }(N)} + 1
suffices the purpose. Then K > N and if n > K, 7r({1 2, ,n}) o {1,2,---, N}. Therefore,
ifn> K,

n n N N -
’Zaw(k)—a‘ < ’Zaﬁ(m—Zak’HZak—a‘ < Y |ak\+§ -
=1 k=1 k=1 k=1 k=N+1

0]
which implies that ] a-x) = a.
k=1

. Suppose that Z a, is conditionally convergent. Let {ag,}72, denote the subsequence of {ax};2,
k
so that ay, O for all j € N and ap < 0 if k € N\{ky,kz,---}. In other words, {a,,}72, is

the maximal subsequence of {ay};2; with non-negative terms. Let {a,}72, be the maximal

subsequence of {ay};” ; with negative terms. Then

e¢] e ¢]
Zapj:oo and Zan = —
Jj=1 Jj=1

0
Let r € R be given, and use the notation )  to denote summing nothing. Define ky = 0. Choose

j=1
k-1 k1
k1 € N be the unique natural number so that >} a,, <7 but > a, > r. Since Z U, = —0,
Jj=1 7j=1 7=1
k1 k1

there exists a unique ks € N such that Z ap, + Z an; > 1 but Z ap; + Z an, < 1. We

continue this process, and obtain a sequence {k;}7, such that for each (e N,

kog—1—1 kg2 kae—1 kag—2

(a) Z apj+2a”j<r' ()ZGPJ+ZG”J>T

J=1 j=1 j=1

kog—1 koe—1 kog—1 kop

() X ap, + > an, >r. (d) 25 ap, + 2 an, <.
j=1 j=1 j=1 j=1

We then obtain a permutation of {a,}*_,

aplv‘” 7apk17an17”' 7ank27apkl+17’” 7apk37ank2+l7'” Jank47'”
. S \G S \A J . J

7 7 ' 7
k1 “=0” terms kg “< 0” terms k3 “= 0” terms kg “< 0” terms

Denote the permutation above by {ax(n)}r_,; that is, 7(1) = py, - - -, (k1) = pry, T(k1+1) = ny,

00

7(k1 + k2) = ni,, and so on. Next we show that > aru) = 7.
k=1
o0
Let € > 0 be given, and define S,, = Z ax(k). Since Y, a, converges, hm a, = 0; thus there
n=1

exists N > 0 such that |a,| < € for all n = N. By the construction of {k;}2,,
1Sp — Sp—1] = |arm| <€ whenever n >k +ky+---+ky.

This implies that S, € (r — e, 4+ €) whenever n > k; + ky + - - - + ky. Therefore,

‘Zaw(k)—r‘<£ whenever n > ky +ko+ -+ kn
k=1

o0
which shows that Y} a.) = 1. o
k=1



Alternative proof of 1. We first establish the following
a0 o0
Claim: If a, > 0 for all n € N and 7 : N — N is a permutation, then Y arp) = >, an.
n=1

n=1 =
To see the claim, let {a,}?_; be non-negative sequence and 7 : N — N be a permutation. By the

fact that a, = 0 for all n > N, we find that for all N € N,

N 0
SNEZa,r(n)é Zan.
n=1 n=1

Since {Sy}%_; is an increasing sequence, lim Sy either exists or diverges to co. In either cases,
N—w

0 0
Z Qr(n) = lim Sy < Z Qy, - (<>)

On the other hand, we also note that ). a, is a rearrangement of »] ar¢). In fact, if b, = ar@,
- o n=1 n=1
then a, = br-1(,) so that >} a, = >} bz-1¢,). Therefore, (¢) implies that
n=1 n=1
o6} o0 o8] o0
Z ap = 2 le'_l(TL) < Z by = 2 Qr(n)
n=1 n=1 n=1 n=1

0¢] o0
Therefore, Y, a, = Y] ax(n) so that the claim is established.
n=1 n=1

o0 Q0 o0
Now suppose that »] a, is absolutely convergent. The fact that ] |am)| = >, |a,| (from the
n=1 n=1 n=1

0

claim above) then shows that ). ar(, is absolutely convergent. For a given sequence {c,},_,, define
n=1

¢ = max{c,,0} and ¢, = max{—c,,0}. Then ¢, = ¢} — ¢, for each n € N. Now, since

n_

0<a <l|a,) and 0< a:f(n) < |n(n)| VneN
0 Q0 0
the absolute convergence of Y, a, and Y] ar(n) together with the comparison test show that Y, a
n=1 n=1 n=1
0
and > a:f(n) all converge. Therefore,
n=1
0 N N N 0 o0
_ +_ _ +_ -\ _ +_ -
Zan—]\l[LwZ(an a,) Alflir(l;o(za” Zan> Zan Zan,
n=1 n=1 n=1 n=1 n=1 n=1
0 N N N 0 0
i + R Rt + -\ = + -
Dy = Mim > (ar) —ag,) = lim < PICHBEDY aw(n)) = D0 = D Gy -
n=1 n=1 n=1 n=1 n=1 n=1
0 ¢] a0 e @]
By the claim above, we have Y af = Y] a:—rr(n); thus the two identities above shows that ) a, =
" n=1 n=1 n=1
21 Qr(n)- a

Problem 3. Let {a,}*_; and {b,}}2; be sequences of real numbers such that a,,b, > 0 for all
n = N. Define

Cn = by — bp 2l ypeN. (%)




1. Show that if there exists a constant » > 0 such that r < ¢, for all n > N, then Z aj converges.

k=1
Hint: Rewrite (x) as b, = ¢, + Mbnﬂ and then obtain
an
aN+1 aN+1 aN+2 an aN+2
by =cn + byi1=cn + (CN+1 + bN+2> =cn + —Hleyg + bn+2
an an aN+1 N an
a a a
—ey WL N+2 (CN+2 4 an+s bN+3> _ .
an an aN42
aN+1 an 2 AN+ AN+n+1
=cn+ —eyyr + CNy2+ o+ “CNtn + DNt -
N an
Use the fact that 0 < r < ¢, for all n > N to conclude that
2 ay < NEN VYneN.
k=N r
N-1
Note that then the sequence of partial sum of Z ay then is bounded from above (by > ag+
k=1 k=1
aNbN)
)

ee]
b diverges and ¢, <0 for all n > N, then > a; diverges.
k k=1

Hint: The fact that ¢, < 0 for all n > N implies that b,a,, < b,11a,41 for all n = N. Use this

fact to conclude that

2. Show that if Z

aJZbN < ay, VYn>N
and then apply the direct comparisonntest to conclude that ki ay diverges.
=1
Proof. The hints are exactly the proof. O
Problem 4. Let il ay be a series with positive terms, and T}Erolo Z:l = 1. We know from class that

the ratio test fails when this happens, but there are some refined results concerning this particular

case.

1. (Raabe’s test):

o0

(a) If there exists a constant p > 1 such that ““*' < 1 — " for all n > N, then > ag
an n —
converges. =

Q0
(b) If there exists a constant 0 < p < 1 such that “** = 1 — “ for all n > N, then 3 ax

an n

diverges.

0
Hint: Consider the sequence {b,}’°_; defined by b, = (n — 1)a, — na,+1. Then > b is a
k=1

telescoping series. For case (a), show that {nan+1}n: v 18 a positive decreasing sequence and
a0

then conclude that )] b, converges. Note that b, > (u — 1)a, for all n = N. For case (b),
k=1

Nan 1

n—

foralln > N+1

show that {nan+1}n_ v 18 a positive increasing sequence; thus a, >

o0
which implies that >’ a; diverges.
k=1



0
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k=1

Remark: ;3 & 1] (a) ehd4e%k {a,}

FI 2
e}
_i ’ '&E"% {a‘TL}TO?: r T‘ /——_\Lu()é“ = 7r§};{ ’ Z )’?‘E( °

2. (Gauss’s test): Suppose that there exist a positive constant ¢ > 0, a constant u, and a

bounded sequence {R,}_; such that

n RTL
AR forall n> N .
a, n nlte
Q0 o0
(a) If 4 > 1, then > aj converges. (b) If u < 1, then )] aj diverges.
k=1 k=1

Hint: Show that if 4 > 1 or ;4 < 1, one can apply Raabe’s test to conclude Gauss’s test. For
the case p =1, let b, = (n — 1)In(n — 1) for n > 2. Using the second result of Problem B to
a0

show the divergence of >’ a; (by showing that ¢, defined by (%) is non-positive for all large
k=1

enough n).
[e'e}
Proof. 1. For each n € N, define b,, = (n — 1)a, — na,+1. Then >} b, is a telescoping series. In fact,
n=1
N N
an:Z [(n = 1)an — nay]
n=1 n=1
= —a9 + (CL2 — 2(13) -+ (2@3 — 3&4) + -+ [(N - 1)@]\/ — NaN+1]
= —Nany1;
0¢]
thus > b, converges if and only if the sequence {na,1}2; converges.
n=1

(a) Suppose that there exists a constant g > 1 such that L for all n > N. Then

an

nan+1 < (n — p)a, for all n = N which further implies that
nany1 — (n—1a, < (1 —p)a, <0 Vn>=N. ()

Therefore, {na,+1}_y is a decreasing sequence. Since nanﬂ > (), the Monotone Sequence

Property of R implies that hm nay, 1 exists. Therefore, Z b, exists. Note that (¢) implies

n=1

0
that b, > (4 — 1)a, for all n = N; thus the comparison test shows that > a, converges.
n=1
(b) Suppose that there exists a constant 1 < 1 such that Intl > 1 — P forall n > N. Then
an n

nan+1 > (n — p)a, for all n = N which further implies that
nany1 — (n—a, > (1 — p)a, >0 Vn>=N.

Therefore, {na, 1}y is an increasing sequence; thus na,y1 = N aN+1 for all n > N.

Nan 1

This implies that a,.; > for all n > N. By the fact that Z — diverges, the

n=1"T

e¢]
comparison test implies that Y, a, diverges.
n=1



2. Suppose that there exist a positive constant ¢ > 0, a constant y, and a bounded sequence
{R,}*_, such that

Ap+1
Qn,

Suppose that |R,| < M for all n e N.

—{—R foralln> N.

n
=1- n1+6

H
n

(a) If 4 > 1, then there exists g such that g > i > 1. By the facts that lim M _ 0 and

n—w N

Ant1 2 Rn ﬂ 1 —
=1-= =l-=+—-(p—pn-——),
. n n1+6 n n (,LL H ne )
we find that there exists N’ > N such that
G, [
LR n=N".
ap n
Q0
Therefore, Raabe’s test shows that )] a, converges.
n=1

(b) If 0 < p < 1, then there exists g such that p < g < 1. By the facts that lim %6 =0 and

n—w N
Ap41 H Rn ﬂ 1 — Rn
=1—-—-+4 =l-=——(p—p+—),
ay, n  nlte ('LL a € )
we find that there exists N/ > N such that
nil M n>N".
Qn n

a0
Therefore, Raabe’s test shows that Y a, diverges.

n=1
If £ =1,1et b, =(n—1)In(n — 1) for n = 2. Note that the function f(z) =

= (
decreasing for z > 3 and

“ 1 “ 1 “1
de = | —e"du= | —du=o;
L xlnx ! fln?) euu’e B v[nfiu’ B ,

0
. : . I .. .
thus the improper integral test shows that the series )| W diverges. Moreover, if n > N,

1

rlnx

is

n=3 “n
An1 1 R,
b — bnt1 : =(n—-1)In(n—-1)— nlnn(l - + n1+e)
R,1
=mn—-1)Inn-1)—(n—-1)lnn— nn
lino1 Rpl
n ne
: : Iyn—1 _1 . R,lnn . )
Since lim (1—~)"" =e¢™" and lim = 0, we find that there exists N’ > N such
n—w n nooo  ne
that
An+1

by — by <0 VYn>N'.

n



0
Therefore, 2 of Problem E shows that ] aj diverges. o
k=1

Alternative proof of 1. (a) Suppose that there exists a constant g > 1 such that —GZH <1- % for
alln > N. Then
O o= Vn>=N
Ap+1 n—u
Therefore,
n(% —1>>n< n —1): i Vn>=N.
An+1 n—p n—p
Choose 1 < p < u. Note that
1) 1+1/n)P —17  d
limn[M—l]zlim(+/n> = 2P =p;
n—00 np n—o0 1/7’L dxlz=1
thus o
liminfn( an_ _ 1> > >p= 1jmsupn[w _ 1} )
n—o0 Apt1 N0 np

Therefore, (using the property of liminf and limsup) there exists K > N such that

n( an —1)>n[w—1} VoK

An+1 n

thus

(n+ 1)Pan41 < nPay, Vn=>K.
The inequality above implies that the sequence {n”a,} . is decreasing; thus

nfa, < KPagx Vn>K.

0 0

Since Y. — converges, we conclude from the comparison test that >} a, converges.
np 1
n=1 n=

b) Suppose that there exists a constant 0 < 1 < 1 such that dntl >1— = forall n > N. Then
PP 2
an n

A, n
<

N

Therefore,

n( an —1><n< i —1): Vn>N.
(n+1 n—p n—p

Note that

1
hmsupn( n —1) <u<1:hminfn(n+ —1).

n—00 an+1 n—0 n

Therefore, (using the property of liminf and limsup) there exists K > N such that

n<an —1)<n<n+1—1) Vn=K;

An+1 n

thus
Qn+1 > n

=

ap, n+1

Vn=> K.



The inequality above implies that (n+1)a,41 = na, for all n > K; thus the sequence {na,}>°_,
is increasing. Therefore,

na, = Kag Vn>K.

. 51 . . & .
Since >, — diverges, we conclude from the comparison test that >’ a, diverges. a
n=1"1 n=1

Problem 5. Complete the following.

0 1 \F%
1. Show that Z <1 - —) converges.

vk
log(k log k
2. Show that Z o8 (;;)g)kﬁ 98T converges.
a0
3. Use Gauss’s test to show that both the general harmonic series Z where a # 0, and

ak + b’

Q0
1
the series Y. — diverge.
k=1 k

k!

L (a+1)(a+2)- - (a+ k)
5. Test the followmg “hypergeometric” series for convergence or divergence:

4. Show that Z

converges if a > 1 and diverges if o < 1.

ala+1)(a+2)--(a+k-1) o ala+l)  ala+1)(a+2)

(&) .

L BB+)(B+2)- W+k—n’_6+ BB+1)  BB+1(B+2)
a'BJr ala+1)-B(B+1)  ala+ )(a 2)-B(B+1)(B+2)

||M8

b) 1
S P R ey 2B A+ (7 +2)
Q0 0
Problem 6. Let ) a; be a conditionally convergent series. Show that 3| [1 + sgn(ak)]ak and
k=1 k=1

8

[1 — sgn(ak)]ak both diverge. Here the sign function sgn is defined by

k=1

1 ifa>0,
sgn(a) = 0 ifa=0,
-1 ifa<0.

Proof. Claim: Let {x,}* ; and {y,}>_; be sequences of real numbers. If {x,}> ; converges and
{yn}>_, diverges, then {x, + y,}>_; diverges.

To see the claim, suppose the contrary that {x, + y,}o, converges. Then Theorem 1.40 in the
lecture note implies that {x,, +y, —x,}_, converges, which contradicts the assumption that {y,}>,
diverges. Similarly, {z, — yn};‘f’_l also diverges.

Let S, = Z ap and T, = Z lag|. Then {S,}, converges but {T,,}>_, diverges. Therefore, the
k=1
claim above shows that {S,, + T 1>, diverges. By the fact that |a| = sgn(a)a for all a € R, we have

n n
:Zak+|ak\ :Z 1+sgnak ag
k=1 k=1
so we conclude the desired result. o

5,

k=1

sin(kx)

Problem 7. Consider the function f(x)



1. Find the domain of f.

2. Show that for each ¢ > 0 and 0 < § < m, there exists N > 0 and N depends only on ¢ and 9
but is independent of x, such that

(k)
‘Zsm x‘ ¥n=N,p=0andzeld2r— 4.

Proof. Let S,(x) = Z n(kx).

1. (a) If z = 2nm for some n € Z (or = 0 (mod 27)), then S,(x) = 0 for all n € N; thus for
each z = 0 (mod 27), {S, ()}, is bounded by 1.
(b) If  # 2nm for all n € Z (or x # 0 (mod 27)), then
2sin — S ZQsmfsm kz) :Zcos x—cos(k:+ )
k=1 k=1
T 1

= COSE — COS (n+ 5)50

which implies that

T _ 1
S ()| < ’COS 2 CO,S (;l+ Q)x’ < _1 Vz # 0 (mod 27).
281115 ‘smg‘

In either cases, for each z € R there exists M = M(z) € R such that |S,(x)| < M. Therefore,
the Dirichlet test (With ar = sin(kz) and py = %) implies that f is defined everywhere; thus
the domain of f is R.

2. We mimic the proof of the Dirichlet test. Let ¢ > 0 and ¢ € (0,27) be given. Then cscg > 0;

thus the Archimedean property of R implies that there exists N > gcsc g Ifn>=N,p>=0
and x € [0, 2 — 4] (thus z # 0 (mod 27)), then

‘;gf”sm;kx)‘ _ ‘%? [Spri(z) — Sk(x)}%‘

1 1 1 1
= |50 4 S (L = ) o Sgl) (g )
ol

+ Sn+p+1(x)m

;[1 (l_i)++( 1 _ 1 )_|_ 1 ]
\’singln n n+1 n+p—1 n+p n+p

2 sin é

n’ sin 5’ ‘ sin £ |
Since x € [§, 21 — 4], sing attains its minimum at x = ¢ or 2w — J; thus

J
0<sin§<sing Vaeld2r—0].

Therefore,



et sin(kx)
‘Z . ‘<5 whenever n > N,p >0 and x € [0,27 — 6].
k=n



