
Exercise Problem Sets 8
Nov. 12. 2021

In the exercise section of this chapter, we first introduce the concepts of accumulation points,
isolated points and derived set of a set as follows.

Definition 0.1. Let (M,d) be a normed vector space, and A be a subset of M .

1. A point x P M is called an accumulation point of A if there exists a sequence txnu8
n=1 in

Aztxu such that txnu8
n=1 converges to x.

2. A point x P A is called an isolated point (孤立點) (of A) if there exists no sequence in Aztxu

that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted by A1.

Problem 1. Let (M,d) be a metric space, and A be a subset of M .

1. Show that the collection of all isolated points of A is AzA1.

2. Show that A1 = sAz(AzA1). In other words, the derived set consists of all limit points that are
not isolated points. Also show that sAzA1 = AzA1.

Proof. 1. By the definition of isolated points of sets,

x P AzA1 ô x P A and x is not an accumulation point of A
ô x P A and D ε ą 0 Q B(x, ε) X Aztxu = H

ô x P A and D ε ą 0 Q B(x, ε) X A Ď txu

ô D ε ą 0 Q B(x, ε) X A = txu ;

thus x is an isolated point of A if and only if x P AzA1.

2. First we show that sA = A Y A1. To see this, let x P sAzA. By the fact that A = Aztxu, there
exists txnu8

n=1 Ď Aztxu such that lim
nÑ8

xn = x. Therefore, x P A1 which implies that

sAzA Ď A1 Ď sA ,

where we use the fact that sA Ě A1 to conclude the last inclusion. The inclusion relation above
then shows that

sA = A Y sA = A Y ( sAzA) Ď A Y A1 Ď A Y sA = sA ;

thus we establish that sA = A Y A1. This identity further shows that

sA X AA = (A Y A1) X AA = A1 X AA Ď A .



Now, using the identity AzB = A X BA we find that

sAz(AzA1) = sA X
(
A X (A1)A

)A
= sA X (AA Y A1) = ( sA X AA) Y ( sA X A1)

= ( sA X AA) Y A1 = A1 .

Moreover, using sA = A Y A1 we also have

sAzA1 = (A Y A1) X (A1)A = A X (A1)A = AzA1 . ˝

Problem 2. Let A and B be subsets of a metric space (M,d). Show that

1. cl(cl(A)) = cl(A).

2. cl(A Y B) = cl(A) Y cl(B).

3. cl(A X B) Ď cl(A) X cl(B). Find examples of that cl(A X B) Ĺ cl(A) X cl(B).

Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A)) = cl(A).

2. Since A Ď A Y B and B Ď A Y B, we have cl(A) Ď cl(A Y B) and cl(B) Ď cl(A Y B); thus
cl(A) Y cl(B) Ď cl(A Y B). On the other hand, if x P cl(A Y B), there exists a sequence
txnu8

n=1 in AYB such that lim
nÑ8

xn = x. Since AYB contains infinitely many terms of txnu8
n=1,

at least one of A and B contains infinitely many terms of txnu8
n=1. W.L.O.G., suppose that

#
␣

n P N
ˇ

ˇxn P A
(

= 8. Let
␣

n P N
ˇ

ˇxn P A
(

=
␣

nk P N
ˇ

ˇnk ă nk+1

(

.

Then txnk
u8
k=1 P A. Since xn Ñ x as n Ñ 8, we must have xnk

Ñ x as k Ñ 8; thus x P cl(A).
Therefore, cl(A Y B) Ď cl(A) Y cl(B).

3. Let x P cl(A X B). Then
(@ ε ą 0)(B(x, ε) X (A X B) ‰ H) .

Therefore, by the fact that B(x, ε)XA Ď B(x, ε)X(AXB) and B(x, ε)XB Ď B(x, ε)X(AXB),
we have

(@ ε ą 0)(B(x, ε) X A ‰ H) and (@ ε ą 0)(B(x, ε) X B ‰ H) .

This implies that x P sA X sB. Note that if A = Q and B = QA, then cl(A X B) = H,
while sA = sB = R which provides an example of cl(A X B) Ĺ sA X sB. ˝

Problem 3. Let A and B be subsets of a metric space (M,d). Show that

1. int(int(A)) = int(A).

2. int(A X B) = int(A) X int(B).

3. int(A Y B) Ě int(A) Y int(B). Find examples of that int(A Y B) Ľ int(A) Y int(B).



Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since AXB Ď A and AXB Ď B, we have int(AXB) Ď int(A) and int(AXB) Ď int(B); thus
int(A X B) Ď int(A) X int(B). On the other hand, let x P int(A) X int(B). Then x P int(A)
and x P int(B); thus there exist r1, r0 ą 0 such that

B(x, r1) Ď A and B(x, r) Ď B .

Let r = mintr1, r2u. Then r ą 0, and B(x, r) Ď B(x, r1) and B(x, r) Ď B(x, r2). Therefore,
B(x, r) Ď A and B(x, r) Ď B which further implies that B(x, r) Ď AXB; thus x P int(AXB).

3. Let x P Å Y B̊. Then x P Å or x P B̊; thus there exists r ą 0 such that B(x, r) Ď A or
B(x, r) Ď B. Therefore, there exists r ą 0 such that B(x, r) Ď A Y B which shows that
int(AYB) Ě int(A)Y int(B). Note that if A = Q and B = QA, then int(AYB) = R while
int(A) = int(B) = H; thus we obtain an example of int(A Y B) Ľ int(A) Y int(B). ˝

Problem 4. Let (M,d) be a metric space, and A be a subset of M . Show that

BA =
(
A X cl(MzA)

)
Y
(
cl(A)zA

)
.

Proof. By the definition of the boundary, BA = sA X ĎAA; thus(
A X cl(MzA)

)
Y
(
cl(A)zA

)
=

(
A X ĎAA

)
Y
(
sA X AA

)
=

[
A Y

(
sA X AA

)]
X
[
ĎAA Y

(
sA X AA

)]
= sA X

[(
ĎAA Y sA

)
X
(
ĎAA Y AA

)]
= sA X

[(
ĎAA Y sA

)
X ĎAA

]
= BA X

(
ĎAA Y sA

)
= BA ,

where the last equality follows from that BA Ď sA and BA Ď ĎAA. ˝

Problem 5. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets
satisfy A Ď S Ď cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T , then A is dense in T .

2. Show that if A is dense in S and B Ď S is open, then B Ď cl(A X B).

Proof. 1. If A is dense in S and if S is dense in T , then A Ď S Ď sA and S Ď T Ď sS. Since S Ď sA,
we must have sS Ď sA; thus

A Ď S Ď T Ď sS Ď sA

which shows that A is dense in T .

2. Let x P B. Since B is open, there exists ε0 ą 0 such that B(x, ε0) Ď B Ď S. On the other
hand, x P S since B is a subset of S; thus the denseness of A in S implies that

(@ ε ą 0)(B(x, ε) X A ‰ H) .



Therefore, for a given ε ą 0, if ε ě ε0, then

B(x, ε) X (A X B) Ě B(x, ε0) X (A X B) = B(x, ε0) X A ‰ H)

while if ε ă ε0, then
B(x, ε) X (A X B) = B(x, ε) X A ‰ H .

This implies that
(@ ε ą 0)(B(x, ε) X (A X B) ‰ H) ;

thus x P cl(A X B). ˝

Problem 6. Let A and B be subsets of a metric space (M,d). Show that

1. B (BA) Ď B (A). Find examples of that B (BA) Ĺ BA. Also show that B (BA) = BA if A is closed.

2. B (A Y B) Ď BA Y BB Ď B (A Y B) Y A Y B. Find examples of that equalities do not hold.

3. If cl(A) X cl(B) = H, then B (A Y B) = BA Y BB.

4. B (A X B) Ď BA Y BB. Find examples of the equalities do not hold.

5. B (B (BA)) = B (BA).

Proof. 1. We note that if F is closed, then

BF = sF X ĎF A = F X ĎF A Ď F . (˛)

Since BF is closed, we must have B (BA) Ď BA. Note that if A = Q X [0, 1], then BA = [0, 1];
thus B (BA) = t0, 1u Ĺ BA. Finally we show that B (BA) = BA if A is closed. Using (˛), it
suffices to show that BA Ď B (BA). Using 2 of Problem 2,

B (BA) = BA X cl((BA)A) = BA X cl(AA Y ĎAA
A
) = BA X

(
ĎAA Y cl(ĎAA

A
)

=
(
BA X ĎAA

)
Y
(
BA X cl(ĎAA

A
)
)

Ě
(
BA X ĎAA

)
= BA .

2. Using 2 and 3 of Problem 2,

B (A Y B) = ĞA Y B X cl
(
(A Y B)A

)
=

(
sA Y sB

)
X cl(AA X BA) Ď

(
sA Y sB

)
X
(
ĎAA X ĎBA

)
=

(
sA X ĎAA X ĎBA

)
Y
(
sB X ĎAA X ĎBA

)
Ď

(
sA X ĎAA

)
Y
(
sB X ĎBA

)
= BA Y BB .

On the other hand, since BA = sAzÅ and Å Ď A, we have

sA Ď A Y BA Ď Å Y ( sAzÅ) = sA

which implies that A Y BA = sA. Therefore,

BA Ď sA Ď ĞA Y B = A Y B Y B (A Y B)



and similarly BB Ď A Y B Y B (A Y B). Therefore,

BA Y BB Ď B (A Y B) Y A Y B .

Note that if A = [´1, 0] Y
(
Q X [0, 1]

)
and B = [´1, 0] Y (QA X [0, 1]), then A Y B = [´1, 1],

BA = BB = t´1u Y [0, 1] which implies that

B (A Y B) = t´1, 1u Ĺ BA Y BB Ĺ A Y B = B (A Y B) Y A Y B .

3. By 2, it suffices to shows that BAYBB Ď B (AYB) if sAX sB = H. Let x P BAYBB. W.L.O.G.,
assume that x P BA. Then x P sA; thus x R sB which further implies that there exists ε0 ą 0

such that B(x, ε0) X B = H or equivalently, B(x, ε0) Ď BA. Therefore, for given r ą 0, if
r ă ε0, then

B(x, r) X (A Y B) Ě B(x, r) X A ‰ H

and
B(x, r) X

(
(A Y B)A

)
= B(x, r) X (AA X BA) = B(x, r) X AA ‰ H

while if r ě ε0, then

B(x, r) X (A Y B) Ď B(x, ε0) X (A Y B) Ě B(x, ε0) X A ‰ H

and
B(x, r) X

(
(A Y B)A

)
Ě B(x, ε0) X (AA X BA) = B(x, ε0) X AA ‰ H .

As a consequence, for each r ą 0,

B(x, r) X (A Y B) ‰ H and B(x, r) X (A Y B)A ;

thus x P ĞA Y B and x P cl
(
(A Y B)A

)
which implies that x P B (A Y B).

4. Using 2 and 3 of Problem 2,

B (A X B) = ĞA X B X cl
(
(A X B)A

)
= ĞA X B X cl(AA Y BA) Ď

(
sA X sB

)
X
(
ĎAA Y ĎBA

)
=

[(
sA X sB

)
X ĎAA

]
Y
[(

sA X sB
)

X ĎBA
]

Ď
(
sA X ĎAA

)
Y
(
sB X ĎBA

)
= BA Y BB .

Note that if A = Q and B = QA, then BA = BB = R but

B (A X B) = H Ĺ R = BA X BB .

5. Since BA is closed, 1 implies that B (B (BA)) = B (BA). ˝

Problem 7. Let (M,d) be a metric space, and A be a subset of M . Show that A Ě A 1 if and only
if A is closed.

Proof. “ð” Note that 2 of Problem 1 implies that sA Ě A 1; thus if A is closed, A = sA Ě A 1.



“ñ” In 2 of Problem 1, we show that sA = A Y A 1. Therefore, if A Ě A 1, we have sA = A Y A 1 = A

which shows that A is closed. ˝

Problem 8. Show that the derived set of a set (in a metric space) is closed.

Proof. Let y R A1. Then there exists ε ą 0 such that

B(y, ε) X (Aztyu) = (B(y, ε)ztyu) X A = H .

Then A Ď
(
B(y, ε)ztyu

)A. Since(
B(y, ε)ztyu

)A
=

(
B(y, ε) X tyuA

)A
= B(y, ε)A Y tyu ,

by the fact that B(y, ε)A is closed,
(
B(y, ε)ztyu

)A is closed. Therefore,

sA Ď
(
B(y, ε)ztyu

)A or equivalently, sA X B(y, ε)ztyu = H .

Since sA = A Y A1, the equality above implies that

A1 X B(y, ε)ztyu = H ;

thus the fact that y R A1 implies that B(y, ε) X A1 = H. ˝

Problem 9. Let A Ď Rn. Define the sequence of sets A(m) as follows: A(0) = A and A(m+1) =

the derived set of A(m) for m P N. Complete the following.

1. Prove that each A(m) for m P N is a closed set; thus A(1) Ě A(2) Ě ¨ ¨ ¨ .

2. Show that if there exists some m P N such that A(m) is a countable set, then A is countable.

3. For any given m P N, is there a set A such that A(m) ‰ H but A(m+1) = H?

4. Let A be uncountable. Then each A(m) is an uncountable set. Is it possible that
8
Ş

m=1

A(m) = H?

5. Let A =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Find A(1), A(2) and A(3).

Proof. 1. See Problem 8 for that A1 is closed for all A Ď M . Moreover, Problem 7 shows that A Ě A1

if A is closed (in fact, A is closed if and only if A Ě A1). Therefore, knowing that A(m) is closed
for all m P N, we obtain that A(m) Ě A(m+1) for all m P N.

2. Note that AzA1 consists of all isolated points of A. For m P N, define B(m´1) = A(m´1)zA(m).
Then B(m´1) consists of isolated points of A(m´1); thus B(m´1) is countable for all m P N
(why?). Since for any subset A of M , we have

A Ď (AzA1) Y A1

and equality holds if A is closed, 1 implies that

A Ď (AzA(1)) Y A(1) = B(0) Y A(1) = B(0) Y
[(
A(1)zA(2)

)
Y A(2)

]
= B(0) Y B(1) Y A(2)

= ¨ ¨ ¨ = B(0) Y B(1) Y ¨ ¨ ¨ Y B(m´1) Y A(m) .

If A(m) is countable, we find that A is a subset of a finite union of countable sets; thus A is
countable.



4. By 2, if A(m) is countable for some m P N, then A is countable; thus if A is uncountable, A(m)

must be uncountable for all m P N.

5. For each k P N, let Bk =
!

1

m
+

1

k

ˇ

ˇ

ˇ
m ´ 1 ą k(k ´ 1),m, k P N

)

. Then A =
8
Ť

k=1

Bk. Moreover,

for each k P N,
supBk =

1

k(k ´ 1) + 2
+

1

k
and infBk =

1

k
;

thus supBk+1 ă infBk for each k P N. Therefore, Bk+1 is on the left of Bk for each k P N. We
also note that every element in A is an isolated point of A.

Suppose that txnu8
n=1 is a convergent sequence in A.

(a) Suppose that there exists k P N such that
␣

n P N
ˇ

ˇxn P Bk

(

= 8. Then lim
nÑ8

xn P ĎBk.

(b) Suppose that for all k P N we have
␣

n P N
ˇ

ˇxn P Bk

(

ă 8. Then there exists a subsequence
txnj

u8
j=1 of txnu8

n=1 satisfying that xnj+1
ă xnj

for all j P N. Such a subsequence must
converge to 0 since for each k P N only finitely many terms of xnj

belongs to the set
B1 YB2 Y ¨ ¨ ¨ YBk while the supremum of the rest of the subsequence is not greater than
infBk.

Therefore, by the fact that ĎBk = Bk Y
␣1

k

(

, we find that

sA = A Y

!1

k

ˇ

ˇ

ˇ
k P N

)

Y t0u .

Then the fact that every point in A is an isolated point of A implies that

A 1 = sAz collection of isolated point of A =
!1

k

ˇ

ˇ

ˇ
k P N

)

Y t0u .

Noting that every point of A 1 except t0u is an isolated point of A 1, we have A(2) = t0u so that
A(3) = H.

3. Following 5, we have a clear picture how to construct such a set. Let

Am =
!

1

i1
+

1

i2
+ ¨ ¨ ¨ +

1

im

ˇ

ˇ

ˇ
ij P N and ij+1 ´ 1 ą ij(ij ´ 1) for all 1 ď j ď m

)

.

Then A 1
m = Am´1 Y t0u, A(2)

m = Am´2 Y t0u, ¨ ¨ ¨ , A(k)
m = Am´k Y t0u if m ą k, A(m)

m = t0u and
A

(m+1)
m = H. ˝

Problem 10. Recall that a cluster point x of a sequence txnu8
n=1 satisfies that

@ ε ą 0,#
␣

n P N
ˇ

ˇxn P B(x, ε)
(

= 8 .

Show that the collection of cluster points of a sequence (in a metric space) is closed.



Proof. Let (M,d) be a metric space, txku8
k=1 be a sequence in M , and A be the collection of cluster

points of txku8
k=1. We would like to show that A Ě sA.

Let y P AA. Then y is not a cluster point of txku8
k=1; thus

D ε ą 0 Q #
␣

n P N
ˇ

ˇxn P B(y, ε)
(

ă 8 .

For z P B(y, ε), let r = ε ´ d(y, z) ą 0. Then B(z, r) Ď B(y, ε) (see Figure 1 or check rigorously
using the triangle inequality). As a consequence, #

␣

n P N
ˇ

ˇxn P B(z, r)
(

ă 8 which implies that
z R A.

ε

yz

ε ´ d(y, z)

Figure 1: B(z, ε ´ d(y, z)) Ď B(y, ε) if z P B(y, ε)

Therefore, if z P B(y, ε) then z P AA; thus B(y, ε) X A = H. We then conclude that if y P AA then
y R sA. ˝

Problem 11. Let (V , }¨}) ba a normed vector space. A set C in V is called convex if for all x, y P C,
the line segment joining x and y, denoted by xy, lies in C. Let C be a non-empty convex set in V .

1. Show that sC is convex.

2. Show that if x P C̊ and y P sC, then (1´λ)x+λy P C̊ for all λ P (0, 1). This result is sometimes
called the line segment principle.

3. Show that C̊ is convex (you may need the conclusion in 2 to prove this).

4. Show that cl(C̊) = cl(C).

5. Show that int( sC) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that x P int( sC) can be written as (1 ´ λ)y + λz for some y P C̊ and z P B(x, ε) Ď sC.

Proof. 1. Let x,y P sC and 0 ď λ ď 1 be given. Then there exist sequences txku8
k=1 and tyku8

k=1

in C such that xk Ñ x and yk Ñ y as k Ñ 8. Since C is convex, (1 ´ λ)xk + λyk P C

for each k P N; thus by the fact that C Ď sC, (1 ´ λ)xk + λyk P sC for each k P N. Since
(1 ´ λ)xk + λyk Ñ (1 ´ λ)x + λy as k Ñ 8 and sC is closed, we must have (1 ´ λ)x + λy P sC;
thus sC is convex if C is convex.



2. Suppose the contrary that there exists λ P (0, 1) such that (1 ´ λ)x + λy R C̊. Then for each
k P N, there exists zk R C such that

›

›(1 ´ λ)x + λy ´ zk

›

› ă
1

k
@ k P N .

Since y P sC, there exists a sequence tyku8
k=1 P C satisfying

}yk ´ y} ă
1

λk
@ k P N .

Therefore, if k P N ,
›

›(1 ´ λ)x + λyk ´ zk

›

› ď
›

›(1 ´ λ)x + λy ´ zk

›

›+ }λ(y ´ yk)} ă
2

k
;

thus
›

›x ´
zk ´ λyk

1 ´ λ

›

› ă
2

k(1 ´ λ)
@ k P N .

Since x P C̊, there exists N ą 0 such that B
(
x, 2

(1 ´ λ)N

)
Ď C; thus zk ´ λyk

1 ´ λ
P C whenever

k ě N . By the convexity of C,

zk = (1 ´ λ)
zk ´ λyk

1 ´ λ
+ λyk P C ,

a contradiction.

3. Let x,y P C̊. By the line segment principle, (1 ´ λ)x + λy P C̊ for all λ P (0, 1) (since C̊ Ď sC

so that y P sC). This further implies that (1 ´ λ)x + λy P C̊ for all λ P [0, 1] since x,y P C̊;
thus C̊ is convex.

4. It suffices to show that cl(C̊) Ě cl(C). Let x P cl(C). Pick any y P C̊. By the line segment
principle,

xk ”
(
1 ´

1

k

)
x +

1

k
y P C̊ @ k ě 2 .

Since xk Ñ x as k Ñ 8, we find that x P cl(C̊).

5. It suffices to show that int( sC) Ď int(C). Let x P int( sC). Then there exists ε ą 0 such that
B(x, ε) Ď sC. Let y P int(C). If y = x, then x P int(C). If y ‰ x, define z = x + α(x ´ y),
where

α =
ε

2}x ´ y}
.

Then }x ´ z} =
ε

2
; thus z P B(x, ε) which further implies that z P sC. The line segment

principle implies that (1 ´ λ)y + λz P C̊ for all λ P (0, 1). Taking λ =
1

1 + α
, we find that

(1 ´ λ)y + λz =
α

1 + α
y +

1

1 + α

(
x + α(x ´ y)

)
= x

which shows that x P int(C). ˝



Problem 12. Let (V , } ¨ }) be a normed vector space. Show that for all x P V and r ą 0,

int
(
B[x, r]

)
= B(x, r) .

Proof. Let y P V such that }x ´ y} = r. Then x + λ(y ´ x) P B[x, r]A for all |λ| ą 1. In particular,
yn ” x +

(
1 +

1

n

)
(y ´ x) P B[x, r]A for all n P N. Moreover,

}yn ´ y} =
1

n
}x ´ y} =

r

n
Ñ 0 as n Ñ 8 .

Therefore, lim
nÑ8

yn = y which implies that y P BB[x, r]
(
since y P B[x, r] and y is the limit of a

sequence from B[x, r]A
)
; thus

␣

y P V
ˇ

ˇ }x ´ y} = r
(

Ď BB[x, r] .

On the other hand, B(x, r) is open and B[x, r] = B(x, r)Y
␣

y P V
ˇ

ˇ }x ´ y} = r
(

. Therefore, B(x, r)

is the largest open set contained inside B[x, r]; thus B(x, r) = int(B[x, r]). ˝

Problem 13. Let Mnˆn denote the collection of all n ˆ n square real matrices, and (Mnˆn, } ¨ }p,q)

be a normed space with norm } ¨ }p,q given in Problem 4 of Exercise 6. Show that the set

GL(n) ”
␣

A P Mnˆn

ˇ

ˇ det(A) ‰ 0
(

is an open set in Mnˆn. The set GL(n) is called the general linear group.

Proof. Let A P GL(n) be given. Then A´1 P Mnˆn exists; thus

}A´1x}2 ď }A´1}2,2}x}2 @ x P Rn

which, using the fact that A : Rn 1´1
ÝÝÑ
onto

Rn, implies that

1

}A´1}2,2
}x}2 ď }Ax}2 @ x P Rn .

Let r =
1

}A´1}2,2
. For B P B(A, r), we have }A ´ B}2,2 ă r; thus for each x P Rn,

r}x}2 =
1

}A´1}2,2
}x}2 ď }Ax}Rn ď }(A ´ B)x}2 + }Bx}2 ď }A ´ B}2,2}x}Rn + }Bx}2

which further implies that

}Bx}2 ě
(
r ´ }A ´ B}2,2

)
}x}2 @ x P Rn .

Therefore, Bx = 0 if and only if x = 0 which shows that B is invertible; thus we established that

for each A P GL(n), there exists r =
1

}A´1}2,2
ą 0 such that B(A, r) Ď GL(n).

This shows that GL(n) is open. ˝



Problem 14. Show that every open set in R is the union of at most countable collection of disjoint
open intervals; that is, if U Ď R is open, then

U =
ď

kPI
(ak, bk) ,

where I is countable, and (ak, bk) X (aℓ, bℓ) = H if k ‰ ℓ.
Hint: For each point x P U , define Lx =

␣

y P R
ˇ

ˇ (y, x) Ď U
(

and Rx =
␣

y P R
ˇ

ˇ (x, y) Ď U
(

. Define
Ix = (infLx, supRx). Show that Ix = Iy if (x, y) P U and if (x, y) Ę U then Ix X Iy = H

Proof. As suggested in the hint, for each point x P U we define Lx =
␣

y P R
ˇ

ˇ (y, x) Ď U
(

and
Rx =

␣

y P R
ˇ

ˇ (x, y) Ď U
(

. We note that a ” infLx R U since if a P U , by the openness of U there
exists r ą 0 such that (a ´ r, a + r) Ď U which implies that (a ´ r, x) Ď U so that a ´ r P Lx, a
contradiction to the fact that a = infLx. Similarly, supRx R U . Therefore, Ix = (infLx, supLx) is
the maximal connected subset of U containing x.

Suppose that x, y P U and (x, y) Ď U . If z P Lx (so (z, x) Ď U), by the fact that (z, y) =

(z, x) Y txu Y (x, y), we find that z P Ly. Therefore, Lx Ď Ly which implies that infLy ď infLx.
Moreover, if infLy ă infLx, then there exists z P Ly such that infLy ď z ă infLx. Since z P Ly,
(z, y) Ď U ; thus (z, x) Ď U which shows that z P Lx, a contradiction to that z ă infLx. Therefore,
infLy = infLx. Similarly, supRy = supRx so we conclude that Ix = Iy.

On the other hand, if that x, y P U but (x, y) Ę U , then there exists x ă z ă y with z R U which
results in that supRx ď z ď infLy so that Ix X Iy = H. Therefore, we establish that

1. if x, y P U and (x, y) Ď U , then Ix = Iy.

2. if x, y P U and (x, y) Ę U , then Ix X Iy = H.

This implies that U is the union of disjoint open intervals. Since every such open interval contains a
rational number, we can denote each such open interval as Ik, where k belongs to a countable index
set I. Write Ik = (ak, bk), then U =

Ť

kPI
(ak, bk). ˝

Problem 15. Let (M,d) be a metric space. A set A Ď M is said to be perfect if A = A1 (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let E0 = [0, 1].
Remove the segment

(1
3
,
2

3

)
, and let E1 be the union of the intervals

[
0,

1

3

]
,
[2
3
, 1
]
.

Remove the middle thirds of these intervals, and let E2 be the union of the intervals[
0,

1

9

]
,
[2
9
,
3

9

]
,
[6
9
,
7

9

]
,
[8
9
, 1
]
.

Continuing in this way, we obtain a sequence of closed set Ek such that

(a) E1 Ě E2 Ě E2 Ě ¨ ¨ ¨ ;



(b) En is the union of 2n intervals, each of length 3´n.

The set C =
8
Ş

n=1

En is called the Cantor set.

1. Show that C is a perfect set.

2. Show that C is uncountable.

3. Find int(C).

Proof. 1. Let x P C. Then x P EN for some N P N. For each n P N, En is the union of disjoint closed
intervals with length 1

3n
, and BEn consists of the end-points of these disjoint closed intervals

whose union is En. Therefore, there exists xn P BEN+n´1ztxu such that |xn ´ x| ă
1

3N´1+n
.

Since BEn Ď C for each n P N, we find that txnu8
n=1 P Cztxu. Moreover, lim

nÑ8
xn = x; thus

x P C 1 which shows C Ď C 1. Since C is the intersection of closed sets, C is closed; thus

C Ď C 1 Ď sC = C

so we establish that C 1 = C.

2. For x P [0, 1], write x in ternary expansion (三進位展開); that is,

x = 0.d1d2d3 ¨ ¨ ¨ ¨ ¨ ¨ .

Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,
we write 1

3
as 0.02222 ¨ ¨ ¨ instead of 0.1. Define

A =
␣

x = 0.d1d2d3 ¨ ¨ ¨
ˇ

ˇ dj P t0, 2u for all j P N
(

.

Note each point in BEn belongs to A; thus A Ď C. On the other hand, A has a one-to-one
correspondence with [0, 1]

(
x = 0.d1d2 ¨ ¨ ¨ P A ô y = 0.

d1
2

d2
2

¨ ¨ ¨ P [0, 1], where y is expressed
in binary expansion (二進位展開) with repeated 1’s instead of terminating decimals

)
. Since

[0, 1] is uncountable, A is uncountable; thus C is uncountable.

3. If int(C) is non-empty, then by the fact that int(C) is open in (R, | ¨ |), by Problem 7 the Cantor
set C contains at least one interval (x, y). Note that there exists N ą 0 such that |x´ y| ă

1

3n

for all n ě N . Since the length of each interval in En has length 1

3n
, we find that if n ě N , the

interval (x, y) is not contained in any interval of En. In other words, there must be z P (x, y)

such that z P EA
n which shows that (x, y) Ę

8
Ş

n=1

En. Therefore, int(C) = H. ˝


