Exercise Problem Sets 8
Nov. 12. 2021

In the exercise section of this chapter, we first introduce the concepts of accumulation points,
isolated points and derived set of a set as follows.
Definition 0.1. Let (M, d) be a normed vector space, and A be a subset of M.

1. A point x € M is called an accumulation point of A if there exists a sequence {z,}> ; in

A\{x} such that {z,}*_, converges to x.

2. A point x € A is called an isolated point (¥ B) (of A) if there exists no sequence in A\{z}

that converges to x.
3. The derived set of A is the collection of all accumulation points of A, and is denoted by A’.
Problem 1. Let (M, d) be a metric space, and A be a subset of M.
1. Show that the collection of all isolated points of A is A\A'.

2. Show that A’ = A\(A\A’). In other words, the derived set consists of all limit points that are
not isolated points. Also show that A\A’ = A\A’.

Proof. 1. By the definition of isolated points of sets,

re A\A" & z € A and z is not an accumulation point of A
< reAand 3e > 03 B(z,e) n A\{z} =
< reAand 3e > 03 B(zr,e) n A< {z}
< Jde>03B(z,e) n A= {x};

thus z is an isolated point of A if and only if x € A\A'.

2. First we show that A = A u A’. To see this, let z € A\A. By the fact that A = A\{z}, there

exists {x,}°; € A\{z} such that lim z,, = x. Therefore, x € A" which implies that
n—a0
AAcC A cCA,

where we use the fact that A 2 A’ to conclude the last inclusion. The inclusion relation above
then shows that
A=AVA=AUV(AA)CAVACAVA=A;

thus we establish that A = A U A’. This identity further shows that

AnA'=AuvA)nA =A A CA.



Now, using the identity A\B = A n B® we find that
AAA)=An (An (AN =An (AL VA)=(An AU (An A)
=(AnAYuA =4
Moreover, using A = A u A’ we also have
AA =(AvA)n (A =An(A) =AA. o
Problem 2. Let A and B be subsets of a metric space (M, d). Show that
1. cl(cl(A)) = cl(A).
2. cl(Au B)=cl(A) ucl(B).
3. cl(An B) ccl(A) ncl(B). Find examples of that cl(A n B) < cl(A) n cl(B).
Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A)) = cl(A).

2. Since A< Au B and B < Au B, we have cl(A) € cl(A u B) and cl(B) < cl(A u B); thus
cl(A) u cl(B) < cl(A u B). On the other hand, if x € cl(A u B), there exists a sequence

{z,}*_, in AU B such that lim z, = z. Since AU B contains infinitely many terms of {z,}>_,,
n—0o0

at least one of A and B contains infinitely many terms of {x,}?2 ;. W.L.O.G., suppose that
#{neN|z, e A} = 0. Let

{neN‘xneA}:{nkeN’nk<nk+1}.

Then {z,, };>, € A. Since x,, —» x as n — o, we must have z,, — x as k — o0; thus = € cl(A).
Therefore, cl(A U B) < cl(A) u cl(B).

3. Let z € cl(A n B). Then
(Ve > 0)(B(z,e) n (An B) # &).

Therefore, by the fact that B(z,e)n A < B(z,e)n(AnB) and B(z,e)nB < B(z,e)n(AnB),
we have

(Ve > 0)(B(z,e) n A+ &) and (Ve > 0)(B(z,e) n B # ).

This implies that 2z € A n B. Note that if A= Q and B = Q', then cl(An B) = &,
while A = B = R which provides an example of cl(A n B) £ A B. o

Problem 3. Let A and B be subsets of a metric space (M, d). Show that
1. int(int(A)) = int(A).
2. int(A n B) = int(A) n int(B).

3. int(A u B) 2 int(A) u int(B). Find examples of that int(A u B) 2 int(A) U int(B).



Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since An B < Aand An B < B, we have int(A n B) < int(A) and int(A n B) < int(B); thus
int(A n B) < int(A) n int(B). On the other hand, let z € int(A) nint(B). Then z € int(A)

and z € int(B); thus there exist r1, 79 > 0 such that
B(x,r) < A and B(x,my < B.

Let 7 = min{ry,ro}. Then r > 0, and B(z,r) € B(z,r) and B(z,r) € B(x,r2). Therefore,
B(z,r) € A and B(z,r) € B which further implies that B(x,r) € A n B; thus z € int(A n B).

3. Let z € AuB. Then z € A or « € B; thus there exists » > 0 such that B(z,r) <€ A or
B(z,r) < B. Therefore, there exists r > 0 such that B(z,r) € A u B which shows that
int(A U B) 2int(A) uint(B). Note that if A=Q and B = Q°, then int(Au B) = R while
int(A) = int(B) = J; thus we obtain an example of int(A u B) 2 int(A) U int(B). o

Problem 4. Let (M, d) be a metric space, and A be a subset of M. Show that
0A = (Anc(M\A)) U (cI(A)\A).
Proof. By the definition of the boundary, dA = A n AC; thus

(Ancl(M\A)) U (l(ANA) = (An AF) U (A Ac)i

=[AV(AnA)] A [AEU(AnAY] =An [(A U A) A (AU AY)]
=An [(Euﬁ) mE] =0AnN (Eufl) =0A,
where the last equality follows from that dA < A and 0 A < A°. =

Problem 5. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets
satisfy A € S < cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T, then A is dense in 7.
2. Show that if A is dense in S and B < S is open, then B < cl(A n B).

Proof. 1. If A is dense in S and if S is dense in 7', then A< S < Aand S < T < S. Since S < A,
we must have S < A; thus

AcScTcScA

which shows that A is dense in 7.

2. Let x € B. Since B is open, there exists g > 0 such that B(z,59) € B < S. On the other

hand, x € S since B is a subset of S; thus the denseness of A in S implies that

(Ve > 0)(B(z,e) n A# ).



Therefore, for a given € > 0, if € > ¢y, then
B(xz,e) n (An B) 2 B(z,20) n (AN B) = B(z,e0) n A # &)

while if € < g, then
B(z,e)n(AnB)=B(z,e) n A# .

This implies that
(Ve > 0)(B(z,e) n(An B) # &);

thus z € cl(A n B). o
Problem 6. Let A and B be subsets of a metric space (M, d). Show that
1. 0(0A) < 0(A). Find examples of that 0(0A) < dA. Also show that (0 A) = 0 A if A is closed.
2. 0(AuB)cdAudB < d(AuB)uAu B. Find examples of that equalities do not hold.
3. If cl(A) ncl(B) = &, then d(Au B) =0A v dB.
4. 0(An B) € 0A u dB. Find examples of the equalities do not hold.
5. 0(0(0A)) = 0(2A).
Proof. 1. We note that if F' is closed, then
OF=FAnF=FnFcF, (0)

Since 0 F is closed, we must have d(0A) < dA. Note that if A =Q n [0, 1], then 0A = [0, 1];
thus 0(0A) = {0,1} < JdA. Finally we show that d(0A) = 0A if A is closed. Using (¢), it
suffices to show that 0 A < d(0A). Using 2 of Problem E,

0(0A) = 0A A c((0A)) = 0A A (A U AT) = A (AL U cl(AT)
— (@A A) U (PAC(AT)) 2 (0A N AT) = 0A.
2. Using 2 and 3 of Problem E,

J(AuB)=AuBncdl

:(AmACmBC)u(B

ES

C

3
D\_(j

On the other hand, since 04 = A\A and A < A, we have
ACAVIAC AU (AA)=A
which implies that A U 0 A = A. Therefore,

0A

N

AcAUB=AuBuUd(AuB)



and similarly 0B € A u B u d(A u B). Therefore,

0JAuvdB<d(AuB)UAuB.
Note that if A =[-1,0] U (Q " [0,1]) and B = [-1,0] u (Q* n [0,1]), then AU B = [-1,1],
0A = 0B = {-1} u [0,1] which implies that
0J(AuB)={-1,1}cdAuvidBc AuB=0(AuB)UAUB.
3. By 2, it suffices to shows that )AUdB € 0(AuB)if AnB = . Letz € 0AudB. W.L.O.G.,
assume that z € 0A. Then = € A; thus « ¢ B which further implies that there exists ¢y > 0
such that B(z,g0) n B = J or equivalently, B(z,gy) € B°. Therefore, for given r > 0, if

r < &g, then
B(z,r)n(AuB)2B(z,r)nA# J

and

B(z,r)n ((AuB)") = B(z,r) n (A" n B*) = B(z,r) n A" # &
while if r > g, then
B(z,r)n(Au B) < B(x,e0) n (AU B) 2 B(x,e9) nA#

and
B(z,r) n ((Au B)") 2 B(z,5) n (A" " B%) = B(x,50) n A" # .

As a consequence, for each r > 0,
B(z,r)n(AUuB)# @& and B(x,7)n (AuB),
thus € AU B and z € cl((A U B)") which implies that z € d(A U B).

4. Using 2 and 3 of Problem E,

8(AmB):AmBmcl((AmB)C):AmBmclACuBC)g(Amé)m(ﬁu@)

= [(An B) mﬁ] v [(An B) mEC} c(AnA) U (BnBY)=0AuU0dB.
Note that if A=Q and B = Q°, then 0A = 0B = R but
O(AnB) =g <cR=0AndB.
5. Since 0 A is closed, 1 implies that 0(0(0A)) = d(0A). o

Problem 7. Let (M,d) be a metric space, and A be a subset of M. Show that A = A’ if and only
if A is closed.

Proof. “<” Note that 2 of Problem m implies that A 2 A’; thus if A is closed, A=A 2 A’.



“=" In 2 of Problem EI, we show that A = A U A’. Therefore, if A © A’, we have A
which shows that A is closed.

Problem 8. Show that the derived set of a set (in a metric space) is closed.

Proof. Let y ¢ A’. Then there exists € > 0 such that
B(y,e) n (A\{y}) = (Bly,e)\y}) n A=
Then A < (B(y,s)\{y})c. Since
c c
(Bly.o\{y}) = (Bly.e) n {y}) = Bly,e)" v {y},
by the fact that B(y, )" is closed, (B(y,es)\{y})C is closed. Therefore,
A< (B(y, ae)\{(y})C or equivalently, An By, e)\{y} =T .
Since A = A U A, the equality above implies that
A" By, e)\{y} = J;
thus the fact that y ¢ A" implies that B(y,e) n A" = .

=AUvA =A

[m]

Problem 9. Let A < R". Define the sequence of sets A" as follows: A® = A and A+ =

the derived set of A" for m € N. Complete the following.

1. Prove that each A™ for m e N is a closed set; thus AN 2 A®) o...,

2. Show that if there exists some m € N such that A" is a countable set, then A is countable.

w

. For any given m € N, is there a set A such that A™ % ¢f but A+ = &?

4. Let A be uncountable. Then each A™ is an uncountable set. Is it possible that

ot

Let A= {% + % m— 1> k(k—1),m,k e N}. Find A, A® and A®).

0
N A™ = 7

m=1

Proof. 1. See Problem B for that A’ is closed for all A < M. Moreover, Problem H shows that A 2 A’
if A is closed (in fact, A is closed if and only if A 2 A’). Therefore, knowing that A is closed

for all m € N, we obtain that A 2 A+ for all m e N.

2. Note that A\A’ consists of all isolated points of A. For m € N, define B(™~Y
Then B~ consists of isolated points of A™~1; thus B Y is countable

(why?). Since for any subset A of M, we have
Ac (AA)uU A

and equality holds if A is closed, 1 implies that

— Alm=1)\ AOm)

for all m ¢ N

AcC (A\A(l)) uA® = BO) A0 — BO) [(A(l)\A(z)) U A(2)} — BO , M, A®

If A(™ is countable, we find that A is a subset of a finite union of countable

countable.

sets; thus A is



4. By 2, if A is countable for some m € N, then A is countable; thus if A is uncountable, A™

must be uncountable for all m € N.

e}
5. For each k € N, let B), = {i + %‘m —1>k(k—1),mke N}. Then A = J By. Moreover,

m k=1
for each k € N,

1 1 1
By=——"-—"—+4+ -+ d inf B, = —:
sup by, k:(k;—l)—|—2+k: an inf By, 5

thus sup Byy1 < inf By, for each k € N. Therefore, By, is on the left of By for each k € N. We

also note that every element in A is an isolated point of A.
Suppose that {z,}°, is a convergent sequence in A.
(a) Suppose that there exists k € N such that {n e N ‘ Ty € Bk} = o0. Then lim z,, € By.
n—o0

(b) Suppose that for all £ € N we have {n eN ‘ Ty € Bk} < o0. Then there exists a subsequence
{n; 172, of {zn}y, satisfying that z,, , < x,, for all j € N. Such a subsequence must
converge to 0 since for each k£ € N only finitely many terms of x,, belongs to the set
By U By U -+ - U By, while the supremum of the rest of the subsequence is not greater than
inf By,.

Therefore, by the fact that B, = By, U {%}, we find that
A:Au{%‘keN}u{O}.
Then the fact that every point in A is an isolated point of A implies that
A" = A\ collection of isolated point of A = {% ‘ ke N} u {0} .

Noting that every point of A’ except {0} is an isolated point of A’, we have A® = {0} so that
AB) = g,
3. Following 5, we have a clear picture how to construct such a set. Let

1 1 1. . . .
Am:{,—+,—+-~—|—— zjeNandzj+1—1>zj(zj~1)fora111<j<m}.

21 192 Im

Then A/ = Ap_1 U {0}, AP = A5 0 {0}, -+, A% = A, U {0} if m >k, AJY = {0} and
AGY = g, o

Problem 10. Recall that a cluster point z of a sequence {xz,}>_, satisfies that
Ve > 0,#{neN|xn € B(x,s)} = .

Show that the collection of cluster points of a sequence (in a metric space) is closed.



Proof. Let (M,d) be a metric space, {x};~; be a sequence in M, and A be the collection of cluster
points of {z;}? ;. We would like to show that A 2 A.
Let y € A*. Then y is not a cluster point of {x;}7_,; thus

Je>03#{neN|z, e B(y,e)} <.

For z € B(y,e), let r = ¢ —d(y,z) > 0. Then B(z,r) < B(y,¢) (see Figure m or check rigorously

using the triangle inequality). As a consequence, #{n eN ’ x, € B(z, 7")} < o0 which implies that
z¢ A

~ -
N~ = /

\\\8 - d(ya Z) /’/

-

Figure 1: B(z,e —d(y,z)) < B(y,¢) if z € B(y,¢)

Therefore, if z € B(y, ) then z € A% thus B(y,e) n A = . We then conclude that if y € A" then
y¢ A o

Problem 11. Let (V,||-|) ba a normed vector space. A set C'in V is called convex if for all z,y € C,

the line segment joining x and y, denoted by Zy, lies in C. Let C' be a non-empty convex set in V.
1. Show that C is convex.

2. Show that if & € C and y € C, then (1—A)z+ Ay € C for all A € (0,1). This result is sometimes

called the line segment principle.

3. Show that C' is convex (you may need the conclusion in 2 to prove this).

o

4. Show that cl(C) = cl(C).
5. Show that int(C) = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that € int(C) can be written as (1 — A)y + Az for some y e C and z € B(x,¢) < C.

Proof. 1. Let z,y € C and 0 < A < 1 be given. Then there exist sequences {z;}? , and {y,},
in C such that ; — x and y, — y as £ — . Since C is convex, (1 — Nz + \y, € C
for each k € N; thus by the fact that C < C, (1 — A& + Ay, € C for each k € N. Since
(1= Nz + Ay, — (1 =Nz + Ay as k — oo and C is closed, we must have (1 — Nz + Ay e C;

thus C is convex if C is convex.



2. Suppose the contrary that there exists A € (0,1) such that (1 — \)& + Ay ¢ C. Then for each
k € N, there exists z; ¢ C such that

1
H(l—)\)w+)\y—zkH<% VkeN.
Since y € C, there exists a sequence {y,}?° , € C satisfying
1
lyr =9l < VYheN.
Therefore, if k€ N,

2
|1 =Nz + Ay, — 2 <[ = N2+ Ay — 2] + My — )| < 75

thus \ 5
2k — A\Yy,
— keN.
o= I <pa=y ke
Since x € é’, there exists N > 0 such that B(a:, (1—2)\)]\7) c (; thus zkl%)\)\yk e C' whenever
k = N. By the convexity of C,
Zr — AYy
zk:(l—/\)ﬁ—k)\ykeC’,

a contradiction.

3. Let @, y € C. By the line segment principle, (1 — )z + Ay € C for all A € (0,1) (since C = C
so that y € C'). This further implies that (1 — )z + \y € C for all \ e [0, 1] since @,y € C;

thus C' is convex.

4. Tt suffices to show that cl(C) 2 cl(C). Let & € cl(C). Pick any y € C. By the line segment
principle,
1

1 .
mkz(l—g)m—l—gyeC Vk=2.

Since @, — x as k — o0, we find that z € cl(C).

5. It suffices to show that int(C') < int(C). Let x € int(C'). Then there exists € > 0 such that
B(z,e) < C. Let y € int(C). If y = x, then z € int(C). If y # x, define z = = + a(z — y),

where

€
o0=—.
2|z — o]

Then |z — z| = %; thus z € B(z,¢) which further implies that z € C. The line segment

principle implies that (1 — Ay + Az € C for all \e (0,1). Taking A = H—la’ we find that

(1-=Ny+Arz=

vyt —(z+alz-y) ==

o
1+« 1+«

which shows that x € int(C'). o



Problem 12. Let (V,| - |) be a normed vector space. Show that for all x € V and r > 0,
int(Blz,r]) = B(z, 7).

Proof. Let y €V such that | — y| = r. Then  + \(y — ) € B[z, r|" for all |A| > 1. In particular,
y,=x+ (1+ l)(y — ) € Blz,7]* for all n € N. Moreover,
n

1 r
”yn—yH:EHw—yHZHHO as n — 0.

Therefore, lim y, = y which implies that y € 0 B[x,r] (since y € Bz, r] and y is the limit of a
n—00

sequence from Blz, r]*); thus
{yeV||z—y|=r}coBlz,r].

On the other hand, B(x,r) is open and Blz,r] = B(z,r) u{y e V||z— y| = r}. Therefore, B(z,r)

is the largest open set contained inside B[, r]; thus B(x,r) = int(B[z, r]). D

Problem 13. Let M,,,, denote the collection of all n x n square real matrices, and (M xn, | - [p.q)

be a normed space with norm | - |,, given in Problem 4 of Exercise 6. Show that the set
GL(n) = {4 € My, | det(A) # 0}

is an open set in M,,x,,. The set GL(n) is called the general linear group.

Proof. Let A € GL(n) be given. Then A~! € M,,,, exists; thus
A a]s < JA o2 2]  VEzeR™

which, using the fact that A : R”L:»R”, implies that

1 n
HA71H22HwH2 < | Az, VezeR".
Let r = ”All” For B € B(A,r), we have |A — B|a2 < r; thus for each & € R™,
2,2
1
rlals = WH-’BHz < |Azlen < (A = B)a|s + | Bl < [A = Bl2o|2e- + | Bz,

which further implies that
|Bz|z > (r — |[A— Blap)|z]s  VaeR".
Therefore, Bx = 0 if and only if @ = 0 which shows that B is invertible; thus we established that

for cach A € GL(n), there exists r = > 0 such that B(A,r) < GL(n).

A= 22

This shows that GL(n) is open. o



Problem 14. Show that every open set in R is the union of at most countable collection of disjoint

open intervals; that is, if U < R is open, then

U= J(ax, br),

keZ

where 7 is countable, and (ay, bx) N (ag, by) = & if k # L.
Hint: For each point z € U, define L, = {y e R|(y,z) = U} and R, = {y € R| (z,y) < U}. Define
I, = (inf L,,sup R,). Show that I, = I, if (z,y) € U and if (z,y) $ U then I, n [, = J

Proof. As suggested in the hint, for each point x € U we define L, = {y e R ’ (y,x) < U} and
R, = {y € R| (x,y) < U}. We note that a = inf L, ¢ U since if a € U, by the openness of U there
exists r > 0 such that (a —r,a +r) < U which implies that (¢ —r,z) < U so that a —r € L,, a
contradiction to the fact that a = inf L,. Similarly, sup R, ¢ U. Therefore, I, = (inf L,,sup L,) is
the maximal connected subset of U containing x.

Suppose that z,y € U and (z,y) < U. If z € L, (so (z,2) < U), by the fact that (z,y) =
(z,z) U {z} U (z,y), we find that z € L,. Therefore, L, < L, which implies that inf L, < infL,.
Moreover, if inf L, < inf L,, then there exists z € L, such that infL, < z < infL,. Since z € L,,
(z,y) € U; thus (z,2) < U which shows that z € L,, a contradiction to that z < inf L,. Therefore,
inf L, = inf L,. Similarly, sup R, = sup I, so we conclude that I, = I,,.

On the other hand, if that z,y € U but (z,y) &€ U, then there exists < z < y with z ¢ U which
results in that sup R, < z < inf L, so that I, n I, = (J. Therefore, we establish that

1. if z,y € U and (x,y) < U, then I, = I,.
2. ifz,ye U and (z,y) € U, then I, n I, = .

This implies that U is the union of disjoint open intervals. Since every such open interval contains a

rational number, we can denote each such open interval as I, where k£ belongs to a countable index

set 7. Write Ik = (ak,bk), then U = U ((Ik,bk). O

keZ

Problem 15. Let (M, d) be a metric space. A set A € M is said to be perfect if A = A’ (so that
there is no isolated points). The Cantor set is constructed by the following procedure: let Ey = [0, 1].

1 2
Remove the segment (5’ §)’ and let £ be the union of the intervals

0.5, [3.1]

Remove the middle thirds of these intervals, and let E5 be the union of the intervals
1 2 37 6 79 8
L= == =1, 1=, 1]
[O’ 9}’ [97 9}’ [9’ 9}’ [9’ }
Continuing in this way, we obtain a sequence of closed set Ej such that

(a‘> EIQEQQEQQ---;



(b) E, is the union of 2" intervals, each of length 37".

o]
The set C' = () E, is called the Cantor set.

n=1

1. Show that C'is a perfect set.
2. Show that C' is uncountable.
3. Find int(C).

Proof. 1. Let x € C'. Then x € E for some N € N. For each n € N, F,, is the union of disjoint closed

1
intervals with length 3 and 0 F, consists of the end-points of these disjoint closed intervals
1
3N—1+n :
Since 0E, < C for each n € N, we find that {z,}r_, € C\{z}. Moreover, 11m x, = x; thus

whose union is E,. Therefore, there exists x, € 0 Exyn_1\{z} such that |z, —z| <

x € C'" which shows C' < (. Since C' is the intersection of closed sets, C' is closed, thus

CcC'cC=0C

Iﬂ

so we establish that ¢’ = C.
2. For x € [0, 1], write = in ternary expansion (= i& =& B ); that is,
¢ = 0.dydods - - - - - '

Here we note that repeated 2’s are chosen by preference over terminating decimals. For example,

we write % as 0.02222 - - instead of 0.1. Define
A= {I = O.dldgdg"' ‘d] € {0,2} for alleN}

Note each point in 0 E, belongs to A; thus A < C. On the other hand, A has a one-to-one

di d
correspondence with [0, 1] (x =0.didy---€ A<=y =0. 5152 -+ € [0,1], where y is expressed
in binary expansion (= i& i~ & B ) with repeated 1’s instead of terminating decimals). Since

[0, 1] is uncountable, A is uncountable; thus C' is uncountable.

3. If int(C) is non-empty, then by the fact that int(C) is open in (R, |-|), by Problem 7 the Cantor
set C' contains at least one interval (x,y). Note that there exists N > 0 such that |z —y| <
for all n = N. Since the length of each interval in E,, has length — we find that if n > N, the

interval (z,y) is not contained in any interval of FE,. In other Words, there must be z € (z,y)

0
such that z € E' which shows that (z,y) & () E,. Therefore, int(C) = . o

n=1



