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Problem 1. Let (M, d) be a metric space.

1.

2.

3.

Show that a closed subset of a compact set is compact.
Show that the union of a finite number of sequentially compact subsets of M is compact.

Show that the intersection of an arbitrary collection of sequentially compact subsets of M is

sequentially compact.

Proof. 1. Let K be a compact set in M, F' be a closed subset of K, and {zx};2, be a sequence

in F. Then {4}, is a sequence in K; thus the sequential compactness of K implies that
there exists a convergent subsequence {zy,}72, with limit z € K. Note that {xy,}7, itself is a

convergent sequence in F'; thus the limit = of {z;,}3, belongs to I by the closedness of F.

N
Let Ky, Ks,--- , Ky be compact sets, and K = | J K/, and {z,};°; be a sequence in K. Then
=1

there exists 1 < ¢y < N such that
#{neN|z, e K;} = 0.

Let {x,, }2, € K. By the compactness of K, there exists a convergent subsequence

{0, };O_l of {x,, }i, with limit z € K, < K. Since {z,, }j: is a subsequence of {z,}*_;, we
J - 7 =

conclude that every sequence in K has a convergent subsequence with limit in K; thus K is

compact.

Since every compact set is closed, the intersection of an arbitrary collection of compact sets of
M is closed. By 1, this intersection is also compact since the intersection is a closed set of any

compact set (in the family). D

Problem 2. Let (M, d) be a metric space, and M itself is a sequentially compact set. Show that if
e}

{Fr}72, is a sequence of closed sets such that int(F}) = &, then M\ |J F}, # .
k=1

Proof. Let U, = F,E Since Fk = ¢ and F}, is closed, 0 F), = E\Fk = F}.. Therefore, if x € F}, then
x € Uy, while if x ¢ F, then x € Uy. In other words, every point € M belongs to Uy, so that we have
U, S M < U, for all k € N; that is, Uy, is dense in M for all k € N.

o0
Claim: () Uy is dense in M.

k=1

Proof of claim: It suffices (why?) to show that every open ball B(z, ) intersects Uy, for all k € N;
that is, B(z,r) n Uy # & for all ke N, x € M and r > 0.
Let x € M and r > 0 be given. Since U; is dense in M, B(x,r) nU; # . Let xy € B(x,r) n Uy.

Since B(x,r) n Uy is open, there exists r; > 0 such that B(xy,2r;) € B(xz,r) n U;. Since Uy is dense



in M, B(zy,m) nUy # . Let x9 € B(x1,7m1) n Us. By the fact that B(xq,71) n U is open, there
exists ro > 0 such that B(xq,2ry) © B(z1,7m1) N Uy. Continuing this process, we obtain sequences

{zp}, in M and {r;}{, of positive numbers such that
B(xy,2r) € B(xg_1,75-1) N Uy VkeN, where ro = x and rog = r.

Since Blzy,ry] is a closed subset of a (sequentially) compact set M, Blxzy, ry| is itself a (sequentially)

compact set. Moreover,
Blxg,r) < B(wg, 2ry) © B(@g—1,7%-1) 0 U, S Blwg—1,76-1] ,

so {Blxk, 7] }72, is a nested sequence of compact sets. By the nested set property (2 of Problem H),

0
(\ Blxy, ] # &. Therefore, by the fact that

k=1
B(x,r) mﬂUk B(z,r) mUlmﬂUkDB(azl,%l ﬂUkDBxl,rl ﬂUk
k=2 k=2
ee}
D Blxy,ri| n B(x1,71) N ﬂ Ux 2 Blzy,m| n B(z1,7m1) nUs N ﬂ U
k=2 k=3
o0 o0
2 Blxy,r1] N Blxg, ma] N ﬂ U.2---2 ﬂ Blzy, ] # O .
k=3 k=1
ee}
Therefore, every ball intersects (| Uy which concludes the claim. D

k=1
Having established the claim, the desired conclusion follows from the fact that a dense subset of

a non-empty metric space cannot be empty. o

Problem 3. A metric space (M, d) is said to be separable if there is a countable subset A which is

dense in M. Show that every sequentially compact set is separable.

Hint: Consider the total boundedness using balls with radius 1 for n e N.
n

Proof. Let K be a sequentially compact set in M. Then K is totally bounded; thus for each n € N

there exists a finite collection of points {x§”>, xé”), e ,xm} c K such that
N o 1
Kc| B =),
pat (x] ? n)

o0

Let A= | {x(ln), x;"), - ,x%‘j} Then A € K and A is countable since it is union of countably many
n=1

(n) 1).

finite sets. Moreover, for each x € K and n € N, there exists 1 < j < N,, such that x € B(xj
n

thus for all € > 0, B(z,e) n A # J. Therefore, z € A, and this shows that A € K < A; thus A is

dense in K. o

Problem 4. Let (M, d) be a metric space.



Show that if M is complete and A is a totally bounded subset of M, then cl(A) is sequentially

compact.

Show that M is complete if and only if every totally bounded sequence has a convergent

subsequence.

Proof. 1. Let {z,}2, be a totally bounded sequence. The same as the proof of the “if” part of

Theorem 3.53 in the lecture note, there exists a Cauchy subsequence {z,,}72, of {z,};_;. By
the completeness of M, {z,;}72, converges. Therefore, in a complete metric every totally

bounded sequence has a Cauchy subsequence.

“=7 Let {z,}7, be a totally bounded subsequence. Define A = {z,, | n € N}. Then A is totally
bounded, and (part of the proof of 1 shows that A is totally bounded); thus by the fact that
M is complete 1 implies that A is sequentially compact. Since {z,}*_, is a sequence in A, we

find that there exists a convergent subsequence of {z,,}%_, (that converges to a limit in A).

“<" By Proposition 2.58 in the lecture note it suffices to show that every Cauchy sequence is
totally bounded.

Let {z,}> ; be a Cauchy sequence, and r > 0 be given. Then there exists N > 0 such that

d(x,, Tm) < r whenever n,m > N. In particular, d(z,,xy) < r for all n = N which implies
N

that {z,}° v < B(zn,r). Therefore, {z,}r_, < |J B(x,,r) which shows that {z,} is
n=1

totally bounded. O

Problem 5. Let d : R? x R? - R be defined by

3

4

1 — W if xo = 1o,
|1 —y1| 4+ |xe —yo + 1 if 29 # yo.

. Show that d is a metric on R%. In other words, (R?,d) is a metric space.
. Find B(x,r) withr <1, r=1and r > 1.
. Show that the set {c} x [a,b] < (R?,d) is closed and bounded.

. Examine whether the set {c} x [a,b] < (R? d) is sequentially compact or not.

Problem 6. Let {z;}}>; be a convergent sequence in a metric space, and x; — = as k — 0. Show

that the set A = {1, 29, - ,} U {2} is sequentially compact.

Proof. See Example 3.57. =



Problem 7. 1. Show the so-called “Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M. Then K is compact if
and if for any family of closed subsets {F,}.cr, we have

KmﬂFa?ﬁ@

ael

whenever K N ﬂ F, # ¢ for all J < [ satistying #J < o0.

aed

2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space. If {K,}>_, is a sequence of non-empty compact

sets in M such that K; 2 K, for all j € N, then there exists at least one point
o0

in () Kj; that is,
J=1 o0

K 2.

j=1

Proof. 1. Suppose the contrary that K n () ,.; F. = & for some family of closed subsets {Fy,}aer

satisfying that
K n ﬂ F, # & for all J < [ satisfying #.J < c0.

aed

Then .
Kc <ﬂFa> = | L.
acl acl
For each « € I, F,, is closed; thus the statement above shows that {F, g}ae 7 is an open cover of
K; thus the compactness of K provides a finite collection F,,, ---, F,

ays Where o € I for all
1 < j < N, such that

N N C
Kel|JF = (N F) -
=1 =1

N
which implies that K n (1) F,,, = &, a contradiction.
j=1

2. Let K = K, and F; = K for all j € N. Then for any finite subset J of N,
Ko (F =K # 3
jed
thus 1 implies that K n () F; # &. o
jeN

Q0
Problem 8. Let ¢% be the collection of all sequences {x;};°; < R such that Y, |zx|* < c0. In other

k=1

words,

o0
= {{zi}ily |z e Rforall ke N, ) |zy)* < oo} .

k=1



Define | - |2 : 2 — R by

—_

[\

w

I

0 1
[y = (X5 loel”) "
k=1
. Show that || - | is a norm on ¢2. The normed space (¢2,]| - ||) usually is denoted by ¢
. Show that || - |2 is induced by an inner product.

. Show that (2, - [2) is complete.

. Let A= {xe ||z, <1}. Is A sequentially compact or not?

Proof. 1. Let {x}7, and {yx};>, be elements in ¢2 and ¢ € R. Clearly |{z4};2 | = 0 and |[{z};2,| =

0 if and only if z; = 0 for all k£ € N. Moreover,

okl = Henial, = (3 k) = el 3 ) = ell il

Finally, since the 2-norm for R” is a norm, we must have

n 1 n 1 n 1
(Xt mP)” < (X ho)" + (S lwl?)’
k=1 k=1 k=1

Passing to the limit as n — oo, we find that

n

by + o = [Heon + pidica, = Jim (D o+ )

k=1
n 1 n 1
< lim (N hnl?)" + (X tl?) ] = iale + il
k=1 k=1

Therefore, the triangle inequality for | - |2 holds.

. The norm || - |2 is indeed the norm induced by the inner product

by Atz ) = 2 TrYk {2117, b, € 2.

Let {x}{, be a Cauchy sequence. Write x; = {xék)};il. Then for each ¢ € N the sequence

{xék)}le is a Cauchy sequence in R. In fact, for a given ¢ > 0, there exists N > 0 such that
|Z, — @ull2 <& whenever m,n >N

which implies that for each ¢ € N,

‘xém) _ xén)‘ < |xm — zo|a <& whenever m,n > N.

By the completeness of R, klim xék) = xy exists for each ¢ € N. Define & = {z,}2;.
—00

Claim: x € /2.



Proof of claim: By Proposition 2.58 in the lecture note, every Cauchy sequence is bounded;
thus there exists M > 0 such that |xy|, < M for all k € N. This implies that

n

Z‘wék)}QéMQ Vk,neN;

=1
thus . .
(k) E
; |z|? = _113220‘% _;}L{&Z‘x < VneN.
Therefore, ||z|? = Z |z¢|* < M? which implies that = € (2. o

Next we show that {z;}?, converges to x (in £?). Let ¢ > 0 be given. Since {z;}, is a

Cauchy sequence, there exists N > 0 such that
€
@, — 2,2 < 5 whenever n,m > N .

Then similar to the proof of claim, for each r € N and n = N we have

T

2
3
E ]xén) E hm ]ajen) —xz = hm E ]xe —a:g < lim |, — x5 < =

thus if n > N,
2
£
|2 — a3 = 3l — e < <.
Therefore, {x,}*_, converges to x so that we established that every Cauchy sequence in (¢2, ||-2)

converges to a point in £2. This shows that (¢2, | - [2) is complete.

4. Consider the sequence {z;}?°, in ¢* given by that z; = {xék)}le with wék) = 040, where Oy
is the Kronecker delta. Then |x|o = 1 for all £ € N. On the other hand, if a subsequence of
{1}, converges, it must converge to the zero sequence (since :L‘ék) = 0 for all ¢ except ¢ = k)

so that lim HmkH , =0, a contradiction. o
j—00

Problem 9. Let A, B be two non-empty subsets in R". Define
d(A,B) =inf{|z — y|l |z € A,y € B}

to be the distance between A and B. When A = {x} is a point, we write d(A, B) as d(x, B) (which

is consistent with the one given in Proposition 3.6 in the lecture note).
(1) Prove that d(A, B) = inf{d(z, B) |z € A}.
(2) Show that |d(z1, B) — d(z2, B)| < |z1 — 2> for all 21,2, € R™.
(3) Define B. = {z € R"|d(z, B) < €} be the collection of all points whose distance from B is less

than . Show that B. is open and [ B. = cl(B).

e>0



(4) If A is sequentially compact, show that there exists € A such that d(A, B) = d(z, B).

(5) If A is closed and B is sequentially compact, show that there exists x € A and y € B such that
d(A, B) = d(z,y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Proof. The proof of (1)-(4) does not rely on the structure of (R™, || - [|2), so in the proofs of (1)-(4)

we write d(x, y) instead of |z — y|.

(1) Define f: Ax B — R by f(a,b) =d(a,b). By Problem 4 of Exercise 3,

oot (@0 = it (2 S(0.0)) = juf (1nf 7(a. ).

Since gngf(a, b) = d(a, B), we conclude that
€

d(A,B)= inf f(a,b)= irelgd(a, B).

(a,b)eAx B
(2) Let ,y € R™ and € > 0 be given. By the definition of infimum, there exists z € B such that
d(z,B) < d(x,z) <d(xz,B) +¢.
By the definition of d(y, B) and the triangle inequality,
d(y,B) < d(y,z2) <d(y,z) +d(xz, z) < d(xz,y) + d(z,B) +¢;

thus
d(yaB) - d(.’B’B) < d(fl), y) te.

A symmetric argument (switching & and y) also shows that d(z, B) — d(y, B) < d(z,y) + €.

Therefore,

Since € > 0 is given arbitrarily, we conclude that
(3) Let & € B.. Define r = ¢ — d(x, B). Then r > 0; thus there exists z € B such that
d(z, B) < d(zx, z) < d(x, B) + g =c.
. T
Therefore, if y € B(:I:, 5), then
d(y,z) < d(y,z) +d(z, z) < g—l—d(w,B) —|—g =d(xz,B)+r=c¢

which shows that B(a:, %) € B.. Therefore, B, is open.



Next, we note that

d(z,B)=0 < (Ve>0)(d(z,B)<e) = (Ve>0)(zeB.) < ze)B.;

e>0
thus d(z, B) = 0 if and only if & € (] B.. By Proposition 3.6 in the lecture note, we conclude
. e>0
that (] B. = B.

e>0

(4) By the definition of infimum, for each n € N there exists a, € A such that
d(A, B) < d(a,, B) < d(A, B) + ~ .
n

Since A is compact, there exists a convergent subsequence {ay,}72, of {a,};_, with limit a € A.

By the Sandwich Lemma,
d(a,;,B) — d(A,B) as j— ©.
On the other hand, (2) implies that
|d(a,,, B) — d(a, B)| < d(ay,,a) >0 as j — .
Therefore,
|d(a, B) — d(A, B)| < |d(a, B) — d(ay,, B)| +|d(a.,, B) — d(A,B)| - 0 as j — o
which establishes the existence of @ € A such that d(a, B) = d(A, B) if A is compact.
(5) By (4), there exists b e B such that d(A, B) = d(b, A). Let C = B[b,d(A, B) + 1] n A. Then
d(b,A) =d(b,C)

since every point € A\C satisfies that d(b, ) > d(A, B) + 1. On the other hand, the Heine-
Borel Theorem implies that C' is compact; thus (4) implies that there exists ¢ € C' such that
d(b,C) =d(b,c) = |b— c||. The desired result then follows from the fact that C' is a subset of
A (so that ce A).

(6) Let A = {(z,y) € R*|zy = 1,2 > 0} and B = {(z,y) € R?|ay < —1,2 < 0}. Then A
and B are closed set since they contain their boundaries. However, since a = (i,n) e A

n
and b= (—n) € B for all n € N, d(4, B) < d(a,b) = - for all n & N which shows that

d(A, B) = 0. However, the fact that A n B = ¢ implies that d(a, b) > 0 for all ae A and
b € B. Therefore, in this case there are no a € A and b € B such that d(A, B) = d(a, b). a

Problem 10. Let (M, d) be a metric space, and A be a subset of M satisfying that every sequence

in A has a convergent subsequence (with limit in M). Show that A is pre-compact.



Proof. Let A be a subset of M satisfying that every sequence in A has a convergent subsequence,
and {7,}%_, be a sequence in A. Since A is the collection of limit points of A, each x,, is a limit point
of A; thus for each n € N there exists y, € A such that d(x,,y,) < % Using the property of A, there
exists a convergent subsequence {y,,}72; of {y,},—; with limit y. By the fact that {y,};_, < A, we

must have y € A. Next we show that lim T, =Y.
j—o

1
Let € > 0 be given. Choose K > 0 so that %< % Moreover, since {y,,}72, converges to y, there
exists J > 0 such that
€ .
d(Yn,,y) < 5 whenever j = J.

Let N = max{K, J}. Then if j > N, we must have

1 1 ¢ €
d(ﬂfnj,ynj) < TL_J < ; < 5 and d(yn],y) < 5
so that
d(2n;,y) < d(Tn;, Yn;) + d(yn;,y) <€ whenever j=N. a

Problem 11. Let (M, d) be a metric space, and A < M. Show that A is disconnected (not connected)
if and only if there exist non-empty closed set F} and F; such that

1.AﬂF1ﬂF2:@; 2AmF175@, SA(WFQ#@, 4.AQF1UF2.

Proof. By definition, A is disconnected if (and only if) there exist non-empty open set U; and Us
such that

(a) AnUnUs=g, bDA~nU#T, (c)AnUs#&, (d)AcU ul,.

Therefore, A is disconnected if and only if there exist non-empty closed set Fy = U} and F, = US
such that

(1) AnFEnF =@, () AnFr =@, (i) AnFS# @, (iv) A< FP U ES.

Note that (i) above is equivalent to that A < Fy u F,, while (iv) above is equivalent to that A N
Fi n Fy, = . Moreover, note that if A, B, C are sets satisfying An BnC =@, An B # J and
AnC # J, then

S#+ANBcCANC' and @#AnCc An B,

Therefore, (a), (b) and (c¢) above imply 2 and 3 above, while (i) together with 2 and 3 above implies
that (b) and (c); thus we establish that A is disconnected if and only if there exist non-empty closed
sets F; and F, such that

Problem 12. Prove that if A is connected in a metric space (M,d) and A € B < A, then B is

connected.



Proof. Suppose the contrary that B is disconnected. Then Problem [11] implies that there exist two
closed set F; and F, such that

1. BAnFinFkF=O; 2. BnFy # (J; 3. BnFy # (; 4. B F1UF;.

Define Ay = FinAand Ay = Fon A. Then A= A; U Ay. If A} = J, then Ay = A which, together
with 3 of Problem 2 in Exercise 8, implies that

BQA:AQQAF\FQ:AQFQ

which implies that B = B n F,. The fact that B n I} n Fy, = & then implies that B n F} <
(B F,)' = BY thus Bn Fy = (4, a contradiction. Therefore, A; # . Similarly, Ay # . However,

3 of Problem 2 in Exercise 8 implies that
AlﬂAQZAlﬁCl(FQﬁA)gAlﬁFQﬁA:AlﬁFggBﬁFlﬂngg

and
Agﬂgl:AQQCI(FlﬂA)gAgﬂplQA:AgﬂFlgBﬁFgﬂFlzg,

a contradiction to the assumption that A is connected. =

Problem 13. Let (M, d) be a metric space, and A € M be a subset. Suppose that A is connected

and contain more than one point. Show that A < A’.

Proof. Suppose the contrary that there exists z € A\A’. Since A\ A’ is the collection of isolated point
of A, there exists 7 > 0 such that B(z,7) n A = {z}. Let U = B(z,r) and V = Bz, g]c Then

1. AnUnNV =@.
2. AnU={z} # J.
3. AnV 2 A\{z} # ¢ since A contains more than one point.
4. AnM=UuV.
Therefore, A is disconnected, a contradiction. O

Problem 14. Show that the Cantor set C' defined in Problem 15 of Exercise 8 is totally disconnected;
that is, if z,y € C, and = # y, then x € U and y € V' for some open sets U, V separate C.

Proof. Tt suffices to show that for every =,y € C, x < y, there exists z € C* and z < z < y. Note

0
that there exists N > 0 such that |z — y| < 3% foralln > N. If C = () E,, where E, is given in

n=1

Problem 15 in Exercise 8. Then the length of each interval in F), has length 3%; thus if n > N, the

interval [z,y| is not contained in any interval of E,. In other words, there must be z € (x,y) such

that 2z € EC. Since EX < C°, we establish the existence of z < z < y such that z € C*. D



Problem 15. Let F} be a nest of connected compact sets (that is, Fy.1 € F), and F}, is connected

0

for all k € N). Show that (] Fj is connected. Give an example to show that compactness is an
k=1

essential condition and we cannot just assume that Fj, is a nest of closed connected sets.

0

Proof. Let K = (] Fi. Then the nested set property implies that K # . Suppose the contrary
k=1

that there exist open sets U and V' such that

L. KnUnV=g, 2 KnU#g, 3 KnV#g, 4 K<cUuUV.

Define K1 = K nU' and K, = K n V. Then Ky, K, are non-empty closed sets (Check!!!) of K
such that
K:KluKQ and KlﬁKQZQ.

In other words, K is the disjoint union of two compact subsets K; and Ks. By (5) of Problem 9, there
exists z1 € K and x9 € K; such that d(xq, z2) = d(K;, K3). Since K1 n Ky = J, g9 = d(x1, 22) > 0;
thus the definition of the distance of sets implies that
go < d(z,y) Vee Ki,ye K.
Define O, = | B(x, 6—0) and O, = | B(y, 5—0). Note that
reK 3 yeKs 3

Kic0O;, KocOy and O1n0Oy=.
Claim: There exists n € N such that F,, € O; u Os.
Proof. Suppose the contrary that for each ng e N, F,,, € O u Oz. Then
Fo,nOtnOS=F,n(0,u0)#@  VneN.

Since O; and O, are open, F, n O} n O5 is a nest of non-empty compact sets; thus the nested set

property shows that

Q0
KnOfnOs=((F.n0fn0s) + &
n=1

thus K &€ O; U O,, a contradiction. =
Having established the claim, by the fact that Ky < F,, n Oy and Ky < F,,;, n O9, we find that
Fo,,nO#J and F.nOy# .

Together with the fact that F,, n Oy n Oy = & and F,,, < O; u O, we conclude that F,,, is
disconnected, a contradiction.

The compactness of F), is crucial to obtain the result or we will have counter-examples. For
example, let F, = R*\(—k,k) x (=1,1). Then clearly F}, is closed but not bounded (hence Fj,

is not compact). Moreover, Fj, 2 Fyyy for all k£ € N; thus {Fi}2, is a nest of sets. However,
Q0

F, = R*\R x (—1,1) which is disconnected and is the union of two disjoint closed set R x [1,0)
k=1

Qa0
and R x (—oo, —1]. Therefore, if {F}}{; is a nest of closed connected sets, it is possible that (1) Fj
k=1
is disconnected. o



Problem 16. Let {Ax}72, be a family of connected subsets of M, and suppose that A is a connected

subset of M such that A, n A # ¢ for all k € N. Show that the union ( U Ak) U A is also connected.
keN

Proof. By the induction argument, it suffices to show that if A and B are connected sets and
An B # ¢, then A U B is connected. Suppose the contrary that there exist open sets U and
V' such that

. (AuB)nUnV =g,

-
2. (AUB NnU #J,
|

)
)

3 AuB)mV#@,
)

4. (AUB)SUUV.

Note that 1 and 4 implies that An U nV = ¢ and A < U u V; thus by the connectedness of A,
either AnU = For AnV = @. W.LO.G., we assume that A n U = ¢J so that A < V. Then
1 implies that BN U n'V = J, 2 implies that B n U # ¢, and 4 implies that B < U u V. Next
we show that B n'V # ¢ to reach a contradiction (to that B is connected). Suppose the contrary
that BNV = . Then 3 implies that An B A=AnV # @sothat BNV 2 An B # J, a

contradiction. o

Problem 17. Let A, B < M and A is connected. Suppose that An B # & and A n B® # 5. Show
that An 0B # .

Proof. Suppose the contrary that A n 0B = @. Let U = int(B) and V = int(B%). If B = &,
then 0B = B 2 B; thus the assumption that A n B # ¢ implies that A n 0B # . Similarly, if
int(B%) = ¢, then An 0B # .

Now suppose that U and V are non-empty open sets. If z ¢ U UV, then 2 € 0 B; thus (UL V)t <
0B and the assumption that A n 0 B = & further implies that A < U u V. Moreover, U n'V = (;
thus An U nV = . Now we prove that AnU # J and AnV # ¢ to reach a contradiction.

Suppose the contrary that AnU = . Then AnB € AnB = An(UudB) = J, a contradiction.
Therefore, AnU = @&. Similarly, if AnV = &, AnB* € AnBt = An(VUdB®) = An(VUudB) = &,

a contradiction. o

Problem 18. Let (M, d) be a metric space and A be a non-empty subset of M. A maximal connected

subset of A is called a connected component of A.
1. Let a € A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is the disjoint

union of its connected components.

3. Show that every connected component of A is a closed subset of A.



4. If Ais open, prove that every connected component of A is also open. Therefore, when M = R",

show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational numbers

in R.

Proof. 1. Let .# be the family % = {C’ c A ‘ x e Cand C is Connected}. We note that % is not
empty since {z} € #. Let B = [J C. It then suffices to show that B is connected (since if

Ces

so, then it is the maximal connected subset of A containing z).

Claim: A subset A < M is connected if and only if every continuous function defined on A

whose range is a subset of {0, 1} is constant.

Proof. “=" Assume that A is connected and f : A — {0, 1} is a continuous function, and § =

(13

=

R

1/2. Suppose the contrary that f~'({0}) # & and f~'({1}) # &. Then A= f~((—4,9))
and B = f~1((1—4,1+6)) are non-empty set. Moreover, the continuity of f implies that
A and B are open relative to A; thus there exist open sets U and V such that

fU(~-68)=UnA and [fH((1-61+8)=VnA.

Then

(1) AnUnV =fY(=6,0))nf{(1-61+0) =T,
(2) AnU#Jand AnV # &,

(3) A< U vV since the range of f is a subset of {0, 1} ;

thus A is disconnect, a contradiction.

Suppose the contrary that A is disconnected so that there exist open sets U and V' such
that

(1) AnUnV =g, 2AnU#g, B)AnV £y, (A AcULV.
Let f: A — R be defined by

fz) = 0 ifzeAnU,
V=V 1 ifeednV.

We first prove that f is continuous on A. Let a € A. Thenae AnU orae AnV.
Suppose that a € A n U. In particular a € U; thus the openness of U provides r > 0 such
that B(a,r) < U. Note that if x € B(a,r) n A, then z € A < U; thus

|f(z) — fla)) =0  VYazeBlar)nA

which shows the continuity of f at a. Similar argument can be applied to show that f is

continuous at a € An V. o



Now let f : B — {0,1} be a continuous function. Let y € B. Then y € C' for some C € Z.
Since C' is a connected set, f : C'— {0,1} is a constant; thus by the fact that x € C', we must
have f(x) = f(y). Therefore, f(y) = f(x) for all y € B; thus f : B — {0,1} is a constant. The

claim then shows that B is connected.

. By Problem , the union of two overlapping connected sets is connected; thus distinct con-

nected components of A are disjoint.

. Let C be a connected component of A.

Claim: C n A is connected.

Proof. Suppose the contrary that there exist open sets U and V' such that
(1) CnAnUnV =g, 2)CnAnU#Z, B)CnAnV g, A)CnAcCUUV.

Note that (1) and (4) implies that C " U nV = @ and C < U UV since C < C n A. If
C nU = &, then C < U’ thus the closedness of U" implies that C' = U® which shows that
CnANU = &, a contradiction. Therefore, C nU # . Similarly, C "V # &, so we establish

that C' is disconnected, a contradiction. O

Having established that C' n A is connected, we immediately conclude that C' = C' n A since

C < C n A and C is the largest connected component of A containing points in C.

. Suppose that A is open and C' is a connected component of A. Let x € C. Then z € A;
thus there exists r > 0 such that B(z,r) < A. Note that B(z,r) is a connected set and
B(z,r) nC 2 {2} # &. Therefore, Problem [L§ implies that B(z,r) u C' is a connected subset
of A containing x. Since C' is the largest connected subset of A containing x, we must have
B(z,r)u C = C; thus B(z,r) < C.

If M = R", then each connected component contains a point whose components are all rational.

Since Q™ is countable, we find that an open set in R™ has countable connected components.

. In (R,| - |) every connected set is an interval or a set of a single point. Since Q and Q" do not

contain any intervals, the connected component of Q and Q° are points. O



