Exercise Problem Sets 11

Dec. 03. 2021

Problem 1. Complete the following.

1. Find a function f : R? — R such that

lim lim f(z,y) and hm hm f(z,y)

z—0y—0 —0z—0
exist but are not equal.

2. Find a function f : R? — R such that the two limits above exist and are equal but f is not
continuous.

3. Find a function f : R?> — R that is continuous on every line through the origin but is not
continuous.

Problem 2. Complete the following.

RQ

1. Show that the projection map f : (2,9) —

is continuous.

2. Show that if U < R is open, then A = {(w, y) € R? ‘ x € U} is open.

3. Give an example of a continuous function f : R — R and an open set U < R such that f(U)
is not open.

Problem 3. Show that f: A — R™, where A € R", is continuous if and only if for every B < A,
f(el(B) n A) < c(f(B)).

Proof. “=" Let B< A and y € f(cl(B) n A). Then there exists x € cl(B) n A such that y = f(x).
By the property of B, there exists a sequence {x,,}*_; € B such that lim x,, = x. Since B < A,
n—0o0
{z,}2 , < A; thus the continuity of f (at z) implies that
lim f(z,) = f(z).

n—0o
On the other hand, {f(x,)}>_, is a sequence in f(B), so the limit f(x) must belong to cl(f(B)).
Therefore, y = f(x) € cl(f(B)) which shows the inclusion f((cl(B) n A) < cl(f(B)).

” Suppose the contrary that there exists a sequence {x,}> ; € A with limit z € An A’ such that

lim f(x,) # f(x). Then there exists ¢ > 0 such that for all N > 0 there exists n = N such
n—o0

that ||f(:rn) f(z)| = €. Let ny € N be such that | f(z,, — f(z)| = e. Let ny > ny such that
| f(2n,) — f(z)| = e. Continuing this process, we obtain an increasing sequence {n;}?%, such
that

|f(zn,) = f(z)| = V¥jeN. ()



Let B = {xn]} Then z € B since lim z, = z (so that lim x,, = x) On the other hand, (*)

implies that f(x) ¢ cl(f(B)) since g??(x), e)n f(B) = gooTherefore,
f(el(B) n A) & cl(f(B)),
a contradiction. o

Problem 4. Let T': R" — R™ satisfy T'(z + y) = T'(z) + T'(y) for all x,y € R".

1.

2.

Show that T'(rz) = rT(z) for all r € Q and z € R™.

Suppose that T is continuous on R"™. Show that 7" is linear; that is, T'(cx +y) = ¢T'(x) + T(y)
forall ce R, x,y € R™.

Suppose that T is continuous at some point xy in R™. Show that T is continuous on R".
Suppose that T is bounded on some open subset of R™. Show that 7" is continuous on R".

Suppose that T" is bounded from above (or below) on some open subset of R"”. Show that 7" is

continuous on R".

Construct a T : R — R which is discontinuous at every point of R, but T'(z +y) = T'(z) + T(y)
for all z,y € R.

Proof. 1. By induction, T'(kx) = kT(x) for all k£ € N. Moreover, T'(0) = T'(0 +0) = T(0) + T°(0)

which implies that 7°(0) = 0; thus 7'(0z) = 07'(z) and if k € N,
—kT(z) = —kT(2)+7T(0) = —kT(x)+ T (kx+(—kx)) = —kT(x)+T(kx)+T(—kx) = T(—kx) .

Therefore, T'(kx) = kT'(z) for all k € Z and x € R". Let r = j—) for some p,q € Z. Then for
reR"™

pT(re) = T(prz) = T(qz) = qT (x)
which implies that T'(rz) = rT'(x) for all r € Q and = € R™.

Let z,y € R™ and ¢ € R. Then there exists {cx}; < Q such that klim ¢, = c. This further
—00

implies that ¢,z — cx as k — o0 since
Jim epz — el = lim (¢, — c)a| = |z] lim [e, —c] =0

Therefore, by the continuity of T,

T(cx+y)=T(cx)+T(y) = kh—{?o T(exx) +T(y) = kh_r)glc T (x)+T(y)=cT(x)+T(y).
Let a € R™ and € > 0 be given. By the continuity of T" at z¢, there exists 6 > 0 such that

|T(z — o) = |T'(z) — T(x0)|| <& whenever |z —z¢|<0.
The statement above implies that if |z| < 0, then |T'(z)| < e. Therefore,
|T(x) —T(a)| = ||T(x —a)| <e whenever |z —al <¢

which shows that T is continuous at a.



4. Suppose that T is bounded on an open set U so that T'(U) < B(0, M). Let zy € U. Then there
exists r > 0 such that B(zg,r) € U. Therefore, if x € B(0,7), then x 4+ xy € B(z, ) so that

1T ()| < [T(x +x0)| + [ T(20)| < M+ |T(x0)| = R
thus we establish that there exists » and R such that
|T(x)] < R whenever |z| <.

Let € > 0 be given. Choose ¢ € Q so that 0 < ¢ < % For such a fixed ¢ € Q, choose 0 < § < cr.

If |z| < 6, then H%H < g < r; thus if |2| < §, we have HT(%)H < R so that

IT@)| = |7()] = [T ()] = AT ()] < R <=
Therefore, T' is continuous at 0. By 3, T is continuous on R".

5. Suppose that Tz < M (so that in this case m = 1) for all z € U, where U is an open set in R".
Let g € U. Then there exists r > 0 such that B(zg,r) € U; thus if 2 € B(0, ),

Tex =T(x+x9) —T(xo) <M —T(x0) =R.
Therefore, we establish that there exist » and R such that
T(x) <R whenever xe B(0,r).

For z € B(0,r), we must have —z € B(0,r); thus

thus —R < T'(z) whenever = € B(0,r). Therefore, |T'(x)| < R whenever |z|| <r. By 4, T is

continuous on R™. o

Problem 5. Let (M, d) be a metric space, A< M, and f: A— R. For a € A’, define

liminf f(z) = Tl_i)%l+ inf{f(x) |$ € B(a,r) N A\{a}} )

r—a

limsup f(z) = Tlir& sup{f(z) |z € B(a,r) n A\{a}}.

r—a

Complete the following.

1. Show that both liminf f(x) and limsup f(z) exist (which may be +o0), and

T—a T—a

liminf f(x) < limsup f(x).

T—a T—a
Furthermore, there exist sequences {x,}> 1, {yn}rr; < A\{a} such that {z,}> , and {y,}>,

both converge to a, and

lim f(x,) = liminf f(x) and hm f(yn) = limsup f(x).

n—0o T—a T—a



2. Let {z,}°, < A\{a} be a convergent sequence with limit a. Show that

liminf f(z) < liminf f(z,) < limsup f(y,) < limsup f(z).

r—a n—00 n—o0 r—a

3. Show that lim f(z) = ¢ if and only if

r—a

liminf f(z) = limsup f(z) = £.

r—a T—a

4. Show that liminf f(z) = ¢ € R if and only if the following two conditions hold:

(a) for all € > 0, there exists § > 0 such that { —e < f(x) for all z € B(a,d) n A\{a};
(b) for all ¢ > 0 and § > 0, there exists x € B(a,d) n A\{a} such that f(x) < {+e¢.

Formulate a similar criterion for limsup and for the case that ¢ = +oo.

5. Compute the liminf and limsup of the following functions at any point of R.
if xe Q"

0
(a) flz) = ]19 ifx:%with(p,q)zl,q>0,paé0.

(b) f(x):{ r ifrxeQ,

—z ifreQ.
Proof. For r > 0, define m, M : A’ — R* by
m(r) = inf{f(z)|z € Bla,r) n A\{a}} and M(r)=sup{f(z)|z e Bla,r) n A\{a}}.
We remark that it is possible that m(r) = —oo or M(r) = co. Note that m is decreasing and M is
increasing in (0, ).
1. By the monotonicity of m and M, Tlir(r)1+ m(r) and rliI(I)IJr M(r) “exist” (which may be +o0).

Moreover, m(r) < M(r) for all r > 0; thus lim m(r) < lim M (r) so we conclude that
r—0 r—0

liminf f(z) = lim m(r) < lim M(r) = limsup f(z).

T—a r—0t r—0+ r—a
Since liminf f(x) = —limsup(—f)(x), it suffices to consider the case of the limit superior.

(a) If limsup f(x) = oo, then for each n € N there exists 0 < ¢,, < % such that

Tr—a

M(r) =n whenever 0<r <9,.

By the definition of the supremum, for each n € N there exists x,, € B(a, %") N A\{a}

such that f(z,) =n — 1.



(b) If limsup f(z) = L, then for each n € N there exists 0 < §,, < % such that

r—a

|M(r) - L| < L whenever 0<r< O -
n

By the definition of the supremum, for each n € N there exists z, € B(a, %”) N A\{a}
such that . .
L——<f(z,) <L+ —.
n n

Since §, — 0 as n — o, we find that {z,}°; < A\{a} converges to a and lim f(z,) =

n—0o0
lim sup f(z).
r—a

2. It suffices to show the case of the limit inferior. Let {x,}> , < A\{a} and x,, — a as n — .

For every k € N, there exists Ny > 0 such that 0 < d(z,,a) < Z whenever n > N,. W.L.O.G.,

we can assume that N, > k and N1 > N; for all k£ € N. By the definition of infimum,
m(=) < f(z,) whenever n = N

which further implies that
m(%) < inf f(z,).

. . 1 o o
Note that TIL%L m(r) = ]}%m(%) and kh_r& n;nj\ffk flzg) = kll_{rolo égif(xk), we conclude that

lim inf f(2) = lim m(r) = lim m(7) < lim inf f(z,) = lim inf f(z,) = lminf f(z,).

3. (=) Let € > 0 be given. There exists § > 0 such that
|f(z) —¢| <e whenever xe€ B(a,d)n A\{a}.

Therefore,
{—e< f(x) <l+e whenever =z € B(a,d)n A\{a}

which implies that
l—e<m(d) < M(@O)<l+ce.

By the monotonicity of m and M, the inequality above implies that
(—e<m(0)<m(r) < M(r)< M(§) <l+e VO<r<g.
Passing to the limit as » — 07, we find that

¢ —e < liminf f(z) < limsup f(z) <l +¢.

r—a z—a

Since € > 0 is chosen arbitrary, we conclude that liminf f(z) = limsup f(z) = /.

r—a r—a



(<) Let {z,}, < A\{a} be a sequence with limit a. Then 2 and the assumption that
liminf f(z) = limsup f(z) = ¢ imply that liminf f(x,) = limsup f(x,) = ¢. Therefore,
r—a n—00

r—a n—0o0

lim f(x,)=/¢.
n—o0
4. (=) This direction is proved by contradiction.

(a) Suppose the contrary that there exists € > 0 such that for each n € N, there exists
z, € B(a, %) n A\{a} such that f(z,) < ¢ —e. Then {z,} A\{a} and Agrolo Ty =
however,

liminf f(x,) < ¢ —¢e < ¢ =liminf f(x),

n—o0 r—a

a contradiction to 2.

(b) Suppose the contrary that there exist € > 0 and 0 > 0 such that
flx) =l+¢ Va e B(a,0) n A\{a}.
Then m(0) = ¢ + ¢; thus the monotonicity of m implies that
C+e<m(d) <m(r) whenever 0<r <.
Passing to the limit as » — 07, we conclude that
{4+ < lim m(r) = liminf f(x),

r—0t r—a

a contradiction.

(<) Let {z,}>; < A\{a} be a sequence with limit a, and € > 0 be given. Then (a) provides
9 > 0 such that f(x) > ¢ — e whenever x € B(a,d) n A\{a}. For such § > 0, there exists
N > 0 such that 0 < d(z,,a) < 0 for all n > N. Therefore, if n > N, f(z,) > { —¢ which

implies that liminf f(x,) = ¢ — . Since ¢ > 0 is chosen arbitrary, we conclude that
n—oo

liminf f(z,) = ¢ for every convergent sequence {x,}~ ; < A\{a} with limit a.
n—0o0

On the other hand, using (b) we find that for each n € N, there exists z,, € B(a, %) nA\{a}

such that f(z,) < 6—1—%. Then h,{riio?ff@n) < ¢, and (i) further implies that lirrlriioglff(xn) =
¢; thus we establish that there exists a convergent sequence {z,}r_; < A\{a} with limit a
such that ligglff(xn) = /.

By 1 and 2, we conclude that ¢ = liminf f(x).

r—a

5. (a) liminf f(z) = limsup f(x) = 0 for all a € R.

T—a T—a

(b) liminf f(z) = —|al|, limsup f(z) = |a|. In particular, lim f(x)=0. o

Problem 6. Let (M,d) be a metric space, and A < M. A function f : A — R is called

liminf f(z) = f(a),

at a € A if either a € A\A’ or limsup £(x) < f(a), and is called

r—a

lower /upper semi-continuous on A if f is lower/uppser semi-continuous at a for all a € A.

lower semi-continuous
upper semi-continuous



1. Show that f : A — R is lower semi-continuous on A if and only if f~!((—o0,7]) is closed relative
to A. Also show that f : A — R is upper semi-continuous on A if and only if f~!([r,o0)) is

closed relative to A.

2. Show that f is lower semi-continuous on A if and only if for all convergent sequences {z,}>_ , <
A and {s,}; < R satistying f(z,) < s, for all n € N, we have

n=1 =

f( lim asn) < lim s, .

n—ao0 n—o0

3. Let {fa}aer be a family of lower semi-continuous functions on A. Prove that f(z) = sup f,(z)
ael
is lower semi-continuous on A.

4. Let A be a perfect set (that is, A contains no isolated points) and f : A — R be given. Define

f*(x) = limsup f(y) and f«(x) = liminf f(y).

y—x Yy—x

Show that f* is upper semi-continuous and f, is lower semi-continuous, and f,(z) < f(z) <
f*(x) for all x € A. Moreover, if g is a lower semi-continuous function on A such that g(x) <
f(z) for all x € A, then g < f,.

Proof. We first note that by 1, 2 and 4 of Problem H,
f A — Ris lower semi-continuous at a
< for all € > 0, there exists 6 > 0 such that f(a) —e < f(z) for all x € B(a,0) n A (o)
< for all convergent sequence {z,}°; € A with limit a, f(a) < liminf f(z,).
n—00
We note that the first statement implies the second one because of 4(a) in Problem H, the second

statement implies the third one because of x,, € B(a,d) n A when n » 1, and the third statement

implies the first one because of 1 in Problem B

1. (=) It suffices to prove the case for limit inferior since limsup f(x) = —liminf(—f)(z). We

r—a

note that F is closed relative to A if and only if F n A is a closed set in the metric space
(A, d). Therefore, a subset of E of A is closed relative to A if and only if

every sequence {x,}._; € F that converges to a point in A must also has limit in FE.

Let 7 € R and {z,}®_, be a sequence in £ = f~1((—o0,7]) such that {x,}*_, converges to
a point a € A. Then f(a) < liminf f(x,) < r which implies that a € f~*((—c0,7]).
n—ao0

(«<) Let a € A and € > 0 be given. Define r = f(a) —e. Then V = f~!((r,o0)) is open relative
to A (since f~1((—o0,7]) is closed relative to A). Since a € V, there exists 6 > 0 such that
B(a,0) n A < V. This implies that

fla) —e < f(2) Ve Bla,0)nA.

Therefore, the equivalence (¢) shows that f is lower semi-continuous at a.



2. (=) Let {x,};°.; be a convergent sequence in A with limit a, {s,}r_, be a real sequence with

limit s, and f(x,) < s, for all n € N. Suppose that f(a) > s. Let ¢ = f(a)z— ® . Since f

is lower semi-continuous at a, liminf f(z) > f(a); thus there exists 6 > 0 such that
fla) —e < f(z) Ve Bla,0)nA.

On the other hand, there exists N > 0 such that z,, € B(a,d) n A and s,, < s+¢ whenever

n = N. Therefore, if n > N,
Sn < s+e=fla) —e < f(xa),

a contradiction.

(<) Let a € A, and {x,};_, < A be a sequence with limit a. Let {,,}72, be a subsequence
of {z,};2, such that lim f(z,,) = liminf f(z,). Define s; = f(z,,). Then clearly
J—0 n—:0o0

f (:cnj) < s; for all j € N; thus by assumption

f(a) < lim s; = liminf f(x,,).
J—00 n—00

3. Let ae An A" and {z,}>_, < A\{a} be a sequence with limit a. Then f,(x,) < f(x,) for all

n e Nand a € I. Since f, is lower semi-continuous for each o € I, for aw € I we have

fa(a) < liminf f,(z) < liminf f(x).

r—a r—a

The inequality above implies that

fla) = suII) fo(a) < liminf f(z);
e z—a
thus f is lower semi-continuous at a. =
Problem 7. Complete the following.
1. Show that if f: R™ — R™ is continuous, and B < R" is bounded, then f(B) is bounded.
2. If f: R — R is continuous and K < R is compact, is f~(K) necessarily compact?

3. If f:R — R is continuous and C' < R is connected, is f~*(C) necessarily connected?

Solution. 1. Since B is bounded, B is closed and bounded; thus the Heine-Borel Theorem implies
that B is compact. Since f : R" — R™ is continuous, f(B) is also compact; thus bounded.
The boundedness of f(B) then follows from the fact that f(B) < f(B).

2. No. For example, consider f : R — R given by f(z) = sinz and K = [-1,1]. Then K is
compact but f~'(K) is the whole real line so that f~!(K) is not compact.

3. No. For example, consider f : R — R given by f(z) = 2% and C' = [1,4]. Then C is connected

since it is an interval but f~'(C) = [-2, —1] U [1, 2] which is clearly disconnected. a



Problem 8. Consider a compact set K € R” and let f : K — R™ be continuous and one-to-one.
Show that the inverse function f~!': f(K) — K is continuous. How about if K is not compact but

connected?

Proof. Let F be a closed subset of K. Then 1 of Problem 1 in Exercise 9 implies that F'is compact.
Therefore, f(F) is compact since f is continuous. Since f(F) = (f~')7!(F), we conclude that the
pre-image of F' under f~! is compact; hence (f~!)~!(F) is closed in f(K) for all closed sets F' < K.
Therefore, Theorem 4.14 in the lecture note shows that f~!: f(K) — K is continuous.

However, f~!: f(K) — K is not necessarily continuous if K is connected. For example, consider
f:[0,27) — R? given by f(t) = (cost,sint). Then f is one-to-one but f=!: f([0,27)) — [0, 27) is

not continuous at f(0) = (1,0) since the sequences {x,}> |, {y, }r_, given by
1 .1 1\ . 1
T, = (cos E,sm ;) and Y, = (cos (27T — g),sm (27r — ;))

both converges to (1,0) but f~!(z,) = 1 and Yy, =27 — L g0 that
n n

lim f'(z,) =0 # 27 = lim f '(y,). o
n—0o0

n—0o0

Problem 9. Let (M,d) be a metric space, K < M be compact, and f : K — R be lower semi-

continuous (see Problem B for the definition). Show that f attains its minimum on K.

Proof. Claim: there exists a sequence {z,}>_; such that lim f(z,) = inlg f(z).
n—00 xe

Proof of claim: If in}f(’f(m) € R, for each n € N there exists x,, € K such that
xTe

. . 1
inf f(2) < f(za) < Inf fla) + .
If inlf(f(x) = —oo, for each n € N there exists =, € K such that f(x,) < —n. In either case,
e
Jim f(wn) = inf f(z). °

W.L.O.G. we can assume that f(x,) > in1f< f(z) for all n € N (for otherwise we find that f attains
e
its minimum at some x,). Let n; = 1, and for given n;, choose nj11 > ny, such that f(z,,) > f(2n,,,).

In this way we obtain a subsequence {z,, };°, of {z,}r_, satisfying that
lim f(z,,) = inf f(z) and f(xn,) = f(2n,,,) YEeN.
k—00 reK

Since {z,,}i~, < K, by the compactness of K there exists a convergent subsequence {xnke}le of

{z,, }72,. Suppose that Zlim Tn,, = a. Then by the fact that x,, # x,, for all k # ¢, we have
—00
#{leN|z,, =a}<1.

Therefore, up to deleting one term in the sequence we can assume that {xnkz }zil < K\{a}. In such

a case the lower semi-continuity of f implies that

lim inff(xnkz) > lirri)inff(x) > f(a).

£—00



Since lim f(z,) = in}f{’ f(x), the inequality above implies that
n—0oo e

inf f(z) = lim inff(a:nkz) > liminf f(x) = f(a) = inf f(z);

zeK £—00 T—a zeK

thus f(a) = inf f(x). o

zeK
Problem 10. Let (M,d) be a metric space. Show that a subset A < M is connected if and only if

every continuous function defined on A whose range is a subset of {0, 1} is constant.

Proof. “=" Assume that A is connected and f : A — {0, 1} is a continuous function, and 6 = 1/2.
Suppose the contrary that f~1({0}) # & and f~'({1}) # &. Then A = f~'((—4,d)) and
B = fY(1 —4,1+6)) are non-empty set. Moreover, the continuity of f implies that A and

B are open relative to A; thus there exist open sets U and V such that
FU=6,8)=UnA and f((1-0,1+6)=VnA.

Then
(1) AnUnV =f7((=6,0) n fTH((1-6,1+0)) =,
(2) AnU# Jand AnV # J,
(3) A< U u 'V since the range of f is a subset of {0, 1};

thus A is disconnect, a contradiction.

“<” Suppose the contrary that A is disconnected so that there exist open sets U and V such that

(1) AnUnV =g, 2AnNU#T, B)AnNV g, (A AcUuUV.

Let f: A — R be defined by

Fz) = 0 ifeeAnU,

Y711 ifrednV.

We first prove that f is continuous on A. Let a € A. Thena € AnU orae AnV. Suppose that
a€ AnU. In particular a € U; thus the openness of U provides r > 0 such that B(a,r) < U.
Note that if x € B(a,r) n A, then z € A < U; thus

f(z) — fla)| =0 VYazeBlar)nA

which shows the continuity of f at a. Similar argument can be applied to show that f is

continuous at a € An V. o

Problem 11. Let D < R” be an open connected set, where n > 1. If a,b and ¢ are any three points
in D, show that there is a path in G which connects a and b without passing through c. In particular,

this shows that D is path connected and D is not homeomorphic to any subset of R.

In Exercise Problem @ through , we focus on another kind of connected sets, so-called path

connected sets. First we introduce path connectedness in the following



Definition 0.1. Let (M, d) be a metric space. A subset A € M is said to be path connected if for
every x,y € A, there exists a continuous map ¢ : [0, 1] — A such that ¢(0) = z and p(1) = y.

Figure 1: Path connected sets

Problem 12. Recall that a set A in a vector space V is called convex if for all z,y € A, the line
segment joining x and y, denoted by Ty, lies in A. Show that a convex set in a normed space is path

connected.

Proof. Let C' be a convex set in a normed space (V,| - |), and @,y € C. Define ¢ : [0,1] — V by
©(t) = (1 —t)x + ty. Then ¢([0,1]) = Zy; thus the convexity of C' implies that ¢ : [0,1] — C. o

Problem 13. A set S in a vector space V is called star-shaped if there exists p € S such that for
any q € S, the line segment joining p and ¢ lies in S. Show that a star-shaped set in a normed space

is path connected.

Proof. Suppose that there exists p € S such that for any ¢q € S, the line segment joining p and ¢ lies
in S. In other words, such p € S satisfies that

(I1-=XNg+IpsS VAel0,1]]and ge S.

Let z,y in S. Define
(1-2et2p  H0<t<L.
p(t) = 1
—2t)p + (2t — if - <t<
(2—-2p+ (2t — 1)y if 5 1

Then ¢ is continuous on [0,1] (since lim ©(t) = lim @(t) = p so that ¢ is continuous at 0.5).
t—0.5 t—0.5—

Moreover, ¢([0,0.5]) = p and ¢([0.5,1]) = py so that ¢ : [0,1] — A is continuous with ¢(0) = z
and ¢(1) = y. Therefore, A is path connected. o

Problem 14. Let A = {(x, sin %) ‘x e (0, 1]}u({0} x [—1,1]). Show that A is connected in (R?, ||-||2),
but A is not path connected.

Proof. Assume the contrary that A is path connected such that there is a continuous function ¢ :

[0,1] — A such that ¢(0) = (x,y0) € {(x,sin %) EXs (0,1)} and ¢(1) = (0,0) € {0} x [-1,1].

Let to = inf {t € [0,1] | (¢) € {0} x [~1,1]}. In other words, at ¢ = #; the path touches 0 x [—1,1]

for the “first time”. By the continuity of ¢, ¢(ty) € {0} x [—1,1]. Since ¢(0) ¢ {0} x [-1,1],
.1

0([0,20)) < {(x,sm 1) ‘x e (0, 1)}.



Suppose that ¢(ty) = (0,7) for some 7 € [—1,1], and ¢(t) = (z(t),sin x(lt)) for 0 <t < t5. By

the continuity of ¢, there exists 6 > 0 such that if |t — t5| < 9, |¢(t) — ¢(to)| < 1. In particular,

1 2
Jf(t)Z—f-(SlH%—g) <1 Vte(t0—5,t)
On the other hand, since ¢ is continuous, z(t) is continuous on [0, #y); thus by the fact that [0,%,) is

connected, z([0, o)) is connected. Therefore, ([0, 1)) = (0, z] for some Z > 0. Since tlir? x(t) =0,
—lo

there exists {t,};; € [0,%9) such that ¢, — to as n — o and |sin

t, € (to — 5, to) but

—gj| > 1. Forn » 1,

1
z(tn)

1 2
2(t)? + (sm =T gj) > 1,

a contradiction.
On the other hand, A is the closure of the connected set B = {(m,sin l) ‘x e (0, 1)} (the
x

: 1y .
connectedness of B follows from the fact that the function i (z) = (:U,Sln—) is continuous on the
x

connected set (0, 1)) Therefore, by Problem 12 in Exercise 9, A = B is connected. =

Problem 15. Let (M, d) be a metric space, and A < M. Show that if A is path connected, then A
is connected.

Hint: Apply Theorem 3.68 in the lecture note and prove by contradiction.

Proof. Assume the contrary that there are non-empty sets A;, A, such that A = A; U Ay but
AinAy=A,nA =& Let v € A and y € A,. By the path connectedness of A, there exists
a continuous map ¢ : [0,1] — A such that p(0) = z and ¢(1) = y. Define I} = p~!(4;) and
I, = ¢ 1(Ay). Then clearly 0 € I and 1 € I, and I, n I, = ¢. Moreover,

0,1] =9 (A) =9 (A1 U Ay) = H(A) U H(A) =L U .

Claim: [ nlh=I,nI, = &.
Suppose the contrary that ¢t € I; n I,. Then t € p(A;) which shows that ¢(t) € A;. On the other
hand, ¢ € I5; thus there exists {t,}*_, < I, such that t,, — t as n — oo. By the continuity of ¢,

p(t) = lim p(tn) € Ap;

n—00

thus we find that ¢(t) € A; n Ay, a contradiction. Therefore, I, n I, = . Similarly, I n [, = J;

thus we establish the existence of non-empty sets I; and I, such that
0,1]=hLul, LiL#g, Lnh=Lnl=g
which shows that [0, 1] is disconnected, a contradiction. D

Alternative proof. Assume the contrary that there are two open sets V; and V5 such that

LAnVInVo=¢; 2. AnVi#@;, 3. AnVe#; 4 AcViuVs.



Since A is path connected, for x € AnV; and y € An V5, there exists a continuous map ¢ : [0,1] — A
such that ¢(0) = z and (1) = y. By Theorem 4.14 in the lecture note, there exist U; and U, open
in (R, |- |) such that o= '(V1) = U; n [0,1] and ¢! (V3) = U n [0, 1]. Therefore,

0.1 = (A) e (Vi) vy (Va) U1 U Uz

Since 0 € Uy, 1 € Uy, and [0,1] n Uy nUy = ¢ (AN Vi nVy) = &, we conclude that [0, 1] is

disconnected, a contradiction to Theorem 3.68 in the lecture note. o

Problem 16. Let (M,d), (N,p) be metric spaces, A be a subset of M, and f : A — N be a

continuous map. Show that if C' € A is path connected, so is f(C).

Proof. Let y1,y2 € f(C). Then Fz1,29 € C such that f(z;) = y; and f(z3) = yo. Since C' is path
connected, 37 : [0,1] — C such that r is continuous on [0,1] and r(0) = z; and (1) = x9. Let
¢ :[0,1] = f(C) be defined by ¢ = f or. By Corollary 4.24 in the lecture note ¢ is continuous on
[0, 1], and ¢(0) = y1 and ¢(1) = ya. o



