Problem 1. Let $\{T_k\}_{k=1}^{\infty} \subseteq \mathcal{B}(\mathbb{R}^n, \mathbb{R}^m)$ be a sequence of bounded linear maps from $\mathbb{R}^n \to \mathbb{R}^m$. Prove that the following three statements are equivalent:

- 1. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that $\{T_k \boldsymbol{x}\}_{k=1}^{\infty}$ converges to $T\boldsymbol{x}$ for all $\boldsymbol{x} \in \mathbb{R}^n$;
- 2. $\lim_{k,\ell\to\infty} ||T_k T_\ell||_{\mathscr{B}(\mathbb{R}^n,\mathbb{R}^m)} = 0;$
- 3. there exists a function $T: \mathbb{R}^n \to \mathbb{R}^m$ such that for every compact $K \subseteq \mathbb{R}^n$ and $\varepsilon > 0$ there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \varepsilon$$
 whenever $\boldsymbol{x} \in K$ and $k \geqslant N$.

Proof. "1 \Rightarrow 3" Let K be a compact set in \mathbb{R}^n , and $\varepsilon > 0$ be given. Then there exists R > 0 such that $K \subseteq B[0, R]$. By assumption, for each $1 \leq i \leq n$, there exist $N_i > 0$ such that

$$||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \frac{\varepsilon}{Rn}$$
 whenever $k \geqslant N_i$.

For $\mathbf{x} \in \mathbb{R}^n$, write $\mathbf{x} = x^{(1)}\mathbf{e}_1 + x^{(2)}\mathbf{e}_2 + \dots + x^{(n)}\mathbf{e}_n$. Then if $\mathbf{x} \in K$, $\left|x^{(i)}\right| \leq R$ for all $1 \leq i \leq n$. Therefore, if $\mathbf{x} \in K$ and $k \geq N \equiv \max\{N_1, \dots, N_n\}$,

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} = ||T_k \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right) - T \left(\sum_{i=1}^n x^{(i)} \mathbf{e}_i \right) ||_{\mathbb{R}^m} = ||\sum_{i=1}^n x^{(i)} \left(T_k \mathbf{e}_i - T \mathbf{e}_i \right) ||_{\mathbb{R}^m}$$

$$\leq \sum_{i=1}^n |x^{(i)}| ||T_k \mathbf{e}_i - T \mathbf{e}_i||_{\mathbb{R}^m} < \sum_{i=1}^n R \frac{\varepsilon}{Rn} = \varepsilon.$$

"3 \Rightarrow 2" Let K = B[0,1] (which is compact), and $\varepsilon > 0$ be given. By assumption there exists N > 0 such that

$$||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{\varepsilon}{3}$$
 whenever $\boldsymbol{x} \in B[0,1]$ and $k \geqslant N$.

If $k, \ell \geqslant N$ and $\boldsymbol{x} \in B[0, 1]$,

$$||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant ||T_k \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} + ||T_\ell \boldsymbol{x} - T \boldsymbol{x}||_{\mathbb{R}^m} < \frac{2\varepsilon}{3}$$

which shows that

$$||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)} = \sup_{\boldsymbol{x} \in B[0,1]} ||T_k \boldsymbol{x} - T_\ell x||_{\mathbb{R}^m} \leqslant \frac{2\varepsilon}{3} < \varepsilon \qquad \forall \, k, \ell \geqslant N \,.$$

Therefore, $\lim_{k \neq -\infty} ||T_k - T_\ell||_{\mathscr{B}(\mathbb{R}^n, \mathbb{R}^m)} = 0.$

"2 \Rightarrow 1" This part is essentially identical to the proof of Proposition 5.8 in the lecture note (with $X = \mathbb{R}^n$ and $Y = \mathbb{R}^m$).

Problem 2. Recall that $\mathcal{M}_{m \times n}$ is the collection of all $m \times n$ real matrices. For a given $A \in \mathcal{M}_{m \times n}$, define a function $f : \mathcal{M}_{n \times m} \to \mathbb{R}$ by

$$f(M) = \operatorname{tr}(AM) \,,$$

where tr is the trace operator which maps a square matrix to the sum of its diagonal entries. Show that $f \in \mathcal{B}(\mathcal{M}_{n \times m}, \mathbb{R})$.

Hint: You may need the conclusion in Example 4.29 in the lecture note.

Proof. Let $A = [a_{ij}]_{1 \le i \le m, 1 \le j \le n}$ and $M = [m_{jk}]_{1 \le j \le n, 1 \le k \le m}$. Then

$$\operatorname{tr}(AM) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji}.$$

First we show that $f \in \mathcal{L}(\mathcal{M}_{n \times m}, \mathbb{R})$. Let $M = [m_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ and $N = [n_{jk}]_{1 \leq j \leq n, 1 \leq k \leq m}$ be matrices in $\mathcal{M}_{n \times m}$ and $c \in \mathbb{R}$. Then

$$f(cM+N) = \operatorname{tr}(A(cM+N)) = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} (cm_{ji} + n_{ji}) = c \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} m_{ji} + \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} n_{ji}$$
$$= c \operatorname{tr}(AM) + \operatorname{tr}(AN) = cf(M) + f(N).$$

Let $\|\cdot\|: \mathcal{M}_{n\times m} \to \mathbb{R}$ be defined by

$$\|[m_{jk}]_{1 \le j \le n, 1 \le k \le m}\| = \sum_{j=1}^n \sum_{k=1}^m |m_{jk}|.$$

Then $\|\cdot\|$ is a norm on $\mathcal{M}_{n\times m}$, and

$$\sup_{\|M\|=1} |f(M)| = \sup_{\sum_{j=1}^n \sum_{k=1}^m |m_{jk}|=1} \left| \sum_{i=1}^m \sum_{j=1}^n a_{ij} m_{ji} \right| \leqslant \sum_{i=1}^m \sum_{j=1}^n |a_{ij}| < \infty;$$

thus $f: (\mathcal{M}_{n \times m}, \|\cdot\|) \to (\mathbb{R}, |\cdot|)$ is bounded. Let $\|\cdot\|$ be another norm on $\mathcal{M}_{n \times m}$. Since $\mathcal{M}_{n \times m}$ is finite dimensional vector spaces over \mathbb{R} , there exists c and C such that

$$c||M|| \le ||M|| \le C||M|| \quad \forall M \in \mathcal{M}_{n \times m}.$$

Therefore, $\{M \in \mathcal{M}_{n \times m} \mid |||M||| \leqslant 1\} \subseteq \{M \in \mathcal{M}_{n \times m} \mid ||M|| \leqslant \frac{1}{c}\}$

$$\sup_{\|M\|=1} |f(M)| \leqslant \sup_{\|M\| \leqslant 1/c} |f(M)| = \sup_{\|cM\| \leqslant 1} \frac{1}{c} |f(cM)| \leqslant \frac{1}{c} \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}| < \infty;$$

thus $f: (\mathcal{M}_{n \times m}, ||| \cdot |||) \to \mathbb{R}$ is bounded.

Problem 3. Let $\mathscr{P}([0,1))$ be the collection of all polynomials defined on [0,1], and $\|\cdot\|_{\infty}$ be the max-norm defined by $\|p\|_{\infty} = \max_{x \in [0,1]} |p(x)|$.

1. Show that the differential operator $\frac{d}{dx}: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Show that $\frac{d}{dx}: \left(\mathscr{P}([0,1]), \|\cdot\|_{\infty}\right) \to \left(\mathscr{P}([0,1]), \|\cdot\|_{\infty}\right)$ is unbounded; that is, show that $\sup_{\|p\|_{\infty}=1} \|p'\|_{\infty} = \infty.$

Proof. 1. Let $p, q \in \mathcal{P}([0,1])$ and $c \in \mathbb{R}$. Then by the rule of differentiation,

$$\frac{d}{dx}(cp+q)(x) = cp'(x) + q'(x) = c\frac{d}{dx}p(x) + \frac{d}{dx}q(x);$$

thus $\frac{d}{dx}: \mathscr{P}([0,1]) \to \mathscr{P}([0,1])$ is linear.

2. Consider $p_n(x) = x^n$. Then $||p_n||_{\infty} = \max_{x \in [0,1]} x^n = 1$ for all $n \in \mathbb{N}$; however,

$$||p'_n||_{\infty} = \max_{x \in [0,1]} nx^{n-1} = n \qquad n \in \mathbb{N};$$

thus $\sup_{\|p\|_{\infty}=1} \|p'\|_{\infty} = \infty$.

Problem 4. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces, and $T \in \mathcal{B}(X, Y)$. Show that for all $x \in X$ and x > 0,

$$\sup_{\boldsymbol{x}' \in B(\boldsymbol{x},r)} \|T\boldsymbol{x}'\|_{Y} \geqslant r\|T\|_{\mathscr{B}(X,Y)}.$$

Hint: Prove and make use of the inequality $\max\{\|T(\boldsymbol{x}+\boldsymbol{\xi})\|_Y, \|T(\boldsymbol{x}-\boldsymbol{\xi})\|_Y\} \ge \|T\boldsymbol{\xi}\|_Y$ for all $\boldsymbol{\xi} \in Y$. Proof. Let $\boldsymbol{x} \in X$ and r > 0 be given. Then for all $\boldsymbol{\xi} \in B(0,r)$,

$$\max \{ \|T(\boldsymbol{x} + \boldsymbol{\xi})\|_{Y}, \|T(\boldsymbol{x} - \boldsymbol{\xi})\|_{Y} \}$$

$$\geqslant \frac{1}{2} \left[\|T(\boldsymbol{x} + \boldsymbol{\xi})\|_{Y} + \|T(\boldsymbol{x} - \boldsymbol{\xi})\|_{Y} \right] \geqslant \frac{1}{2} \|T(\boldsymbol{x} + \boldsymbol{\xi}) - T(\boldsymbol{x} - \boldsymbol{\xi})\|_{Y} = \|T\boldsymbol{\xi}\|_{Y}.$$

Therefore,

$$\sup_{\boldsymbol{\xi} \in B(\mathbf{0},r)} \max \left\{ \|T(\boldsymbol{x} + \boldsymbol{\xi})\|_{Y}, \|T(\boldsymbol{x} - \boldsymbol{\xi})\|_{Y} \right\} \geqslant \sup_{\boldsymbol{\xi} \in B(\mathbf{0},r)} \|T\boldsymbol{\xi}\|_{Y} = r\|T\|_{\mathscr{B}(X,Y)},$$

and the desired inequality follows from the fact that

$$\sup_{{\boldsymbol x}' \in B({\boldsymbol x},r)} \|T{\boldsymbol x}'\|_Y = \sup_{{\boldsymbol \xi} \in B({\boldsymbol 0},r)} \max \left\{ \|T({\boldsymbol x} + {\boldsymbol \xi})\|_Y, \|T({\boldsymbol x} - {\boldsymbol \xi})\|_Y \right\}.$$

Problem 5. Let $(X, \|\cdot\|_X)$ be a Banach space, $(Y, \|\cdot\|_Y)$ be a normed space, and $\mathscr{F} \subseteq \mathscr{B}(X, Y)$ be a family of bounded linear maps from X to Y. Show that if $\sup_{T \in \mathscr{F}} \|T\boldsymbol{x}\|_Y < \infty$ for all $x \in X$, then

$$\sup_{T \in \mathscr{F}} \|T\|_{\mathscr{B}(X,Y)} < \infty.$$

Hint: Suppose the contrary that there exists $\{T_n\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that $\|T_n\|_{\mathscr{B}(X,Y)} \geqslant 4^n$. Using Problem 4 to choose a sequence $\{\boldsymbol{x}_n\}_{n=0}^{\infty}$, where $\boldsymbol{x}_0 = \boldsymbol{0}$, such that

$$x_n \in B(x_{n-1}, 3^{-n})$$
 and $||T_n x_n||_Y \ge \frac{2}{3} \cdot 3^{-n} ||T_n||_{\mathscr{B}(X,Y)}$.

Show that $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$ but $\{T_n\boldsymbol{x}\}_{n=1}^{\infty}$ is not bounded in Y.

Remark: The conclusion above is called the Uniform Boundedness Principle (or the Banach-Steinhaus Theorem). This is one of the fundamental results in functional analysis.

Proof. Suppose the contrary that $\sup_{T \in \mathscr{F}} ||T||_{\mathscr{B}(X,Y)} = \infty$. Then there exists $\{T_n\}_{n=1}^{\infty} \subseteq \mathscr{F}$ such that

$$||T_n||_{\mathscr{B}(X,Y)} \geqslant 4^n \quad \forall n \in \mathbb{N}.$$

Let $\mathbf{x}_0 = \mathbf{0}$. Define $r_n = 3^{-n}$ and $\{\mathbf{x}_n\}_{n=1}^{\infty} \subseteq X$ so that

$$x_n \in B(x_{n-1}, r_n)$$
 and $||T_n x_n||_Y \geqslant \frac{2}{3} r_n ||T_n||_{\mathscr{B}(X,Y)}$.

We note that such $\{x_n\}_{n=1}^{\infty}$ exists because of Problem 4. For m > n,

$$\|\boldsymbol{x}_{n} - \boldsymbol{x}_{m}\|_{X} \leq \|\boldsymbol{x}_{n} - \boldsymbol{x}_{n+1}\|_{X} + \|\boldsymbol{x}_{n+1} - \boldsymbol{x}_{n+1}\|_{X} + \dots + \|\boldsymbol{x}_{m-1} - \boldsymbol{x}_{m}\|_{X}$$

$$\leq 3^{-(n+1)} + 3^{-(n+2)} + \dots + 3^{-m} \leq 3^{-(n+1)} \left(1 + \frac{1}{3} + \dots\right) \leq \frac{1}{2} \cdot 3^{-n};$$

thus $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ is a Cauchy sequence. Since $(X, \|\cdot\|_X)$ is complete, $\{\boldsymbol{x}_n\}_{n=1}^{\infty}$ converges to some point $\boldsymbol{x} \in X$, and $\|\boldsymbol{x} - \boldsymbol{x}_n\|_X \leq \frac{1}{2} \cdot 3^{-n}$. Therefore,

$$||T_n \mathbf{x}||_Y \geqslant ||T_n \mathbf{x}_n||_Y - ||T_n (\mathbf{x} - \mathbf{x}_n)||_Y \geqslant \frac{2}{3} r_n ||T_n||_{\mathscr{B}(X,Y)} - ||T_n||_{\mathscr{B}(X,Y)} ||\mathbf{x} - \mathbf{x}_n||_X$$

$$\geqslant \left(\frac{2}{3} - \frac{1}{2}\right) ||T_n||_{\mathscr{B}(X,Y)} 3^{-n} = \frac{1}{6} ||T_n||_{\mathscr{B}(X,Y)} 3^{-n} \geqslant \frac{1}{6} \cdot \left(\frac{4}{3}\right)^n$$

so that $\sup_{n\in\mathbb{N}} ||T_n \boldsymbol{x}||_Y = \infty$, a contradiction.