
Exercise Problem Sets 1
Feb. 18. 2022

Problem 1. Let A Ď Rn be a bounded set, and f : A Ñ R be a function.

1. Show that if f is Riemann integrable on A, then f is bounded.

2. Show that if f is Darboux integrable on A, then f is bounded.

Note that we in some sense use these properties in the proof of the equivalence between the Riemann
integrability and the Darboux integrability, so you’d better not use this equivalence in the proof.

Proof. Since f is Riemann integrable on A, there exists I P R and δ ą 0 such that if P is a
partition of A satisfying }P} ă δ, then any Riemann sum of f for P locates in (I ´ 1, I + 1).
Let P = t∆1,∆2, ¨ ¨ ¨ ,∆Nu be a partition of A satisfying }P} ă δ. For each 1 ď k ď N , let ck

be the center of ∆k. Then for each 1 ď ℓ ď N ,

I ´ 1 ă f
A

(x)ν(∆ℓ) +
ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k) ă I + 1 @x P ∆ℓ

since f
A

(x)ν(∆ℓ) +
ř

1ďkďN,k‰ℓ f
A

(ck)ν(∆k) is a Riemann sum of f for P . In particular,

I ´ 1 ă f(x)ν(∆ℓ) +
ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k) ă I + 1 @x P ∆ℓ X A .

which further implies that

1

ν(∆ℓ)

[
I ´ 1 ´

ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k)
]

ă f(x) ă
1

ν(∆ℓ)

[
I + 1 ´

ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k)
]

Since f is real-valued, fA

(ck) is a real number. The numbers M and m defined by

M ” max
! 1

ν(∆ℓ)

[
I + 1 ´

ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k)
] ˇ
ˇ

ˇ
1 ď ℓ ď N

)

,

m ” min
! 1

ν(∆ℓ)

[
I ´ 1 ´

ÿ

1ďkďN,k‰ℓ

f
A

(ck)ν(∆k)
] ˇ
ˇ

ˇ
1 ď ℓ ď N

)

,

are both real numbers. Moreover, m ď f(x) ď M for all x P A; thus f is bounded.

2. Let P be a partition of A, and ∆ P P . Since f is real-valued, we must have

´8 ă sup
xP∆

f
A

(x) ď 8 and ´ 8 ď inf
xP∆

f
A

(x) ă 8 .

The fact above implies that

(a) if f is not bounded from above, then U(f,P) = 8 for all partitions P of A;

(b) if f is not bounded from below, then L(f,P) = ´8 for all partitions P of A.



Therefore, if f is not bounded, either
ż

A
f(x) dx = 8 or

ż

A
f(x) dx = ´8; thus if f is Darboux

integrable on A, then f must be bounded. ˝

Problem 2. Let A Ď Rn be a bounded set, and f, g : A Ñ R be functions. Show that
ż

A

f(x) dx ď

ż

A

g(x) dx and
ż

A

f(x) dx ď

ż

A

g(x) dx .

Proof. By the fact that f
A

ď gA on Rn, we find that

U(f,P) ď U(g,P) and L(f,P) ď L(g,P) @ partitions P of A.

Since
ż

A
f(x) dx is a lower bound for

␣

U(f,P)
ˇ

ˇP is a partition of A
(

and
ż

A
g(x) dx is an upper

bound for
␣

L(g,P)
ˇ

ˇP is a partition of A
(

, we find that
ż

A

f(x) dx ď U(f,P) ď U(g,P) and L(f,P) ď L(g,P) ď

ż

A

g(x) dx @ partitions P of A.

The inequalities above shows that
ż

A
f(x) dx is a lower bound for

␣

U(g,P)
ˇ

ˇP is a partition of A
(

and
ż

A
g(x) dx is an upper bound for

␣

L(f,P)
ˇ

ˇP is a partition of A
(

; thus we conclude that

ż

A

f(x) dx ď

ż

A

g(x) dx and
ż

A

f(x) dx ď

ż

A

g(x) dx . ˝

Problem 3. 1. Let f : [0, 1] Ñ R be a bounded monotone function. Show that f is Riemann
integrable on [0, 1].

2. Let f : [0, 1] ˆ [0, 1] Ñ R be a bounded function such that f(x, y) ď f(x, z) if y ă z and
f(x, y) ď f(t, z) if x ă t. In other words, f(x, ¨) and f(¨, y) are both non-decreasing functions
for fixed x, y P [0, 1]. Show that f is Riemann integrable on [0, 1] ˆ [0, 1].

Proof. Let ε ą 0 be given.

1. W.L.O.G., we can assume that f is increasing. Choose n P N so that f(1) ´ f(0)

n
ă ε. Then if

P = t0 = x0 ă x1 ă ¨ ¨ ¨ ă xn = 1u is a regular partition of [0, 1]; that is, xk =
(k ´ 1)

n
, then

the monotone
U(f,P) =

n
ÿ

k=1

f(xk)(xk ´ xk´1) =
1

n

n
ÿ

k=1

f(xk)

and
L(f,P) =

n
ÿ

k=1

f(xk´1)(xk ´ xk´1) =
1

n

n
ÿ

k=1

f(xk´1) ;

thus

U(f,P) ´ L(f,P) =
1

n

[ n
ÿ

k=1

f(xk) ´

n
ÿ

k=1

f(xk´1)
]
=

1

n

[
f(xn) ´ f(x0)

]
=

f(1) ´ f(0)

n
ă ε .

Therefore, f is Riemann integrable on [0, 1] because of Riemann’s condition.



2. Let P be a partition of [0, 1] ˆ [0, 1]. Then for ∆ P P ,

sup
xP∆

f(x) ´ inf
xP∆

f(x) ď f(∆ru) ´ f(∆ℓb), ,

where ∆ur and ∆bℓ denote the up-right vertex and the bottom-left vertex of ∆. Therefore, with
Px = t0 = x0 ă x1 ă ¨ ¨ ¨ ă xn = 1u and Py = t0 = y0 ă y1 ă ¨ ¨ ¨ ă yn = 1u denoting regular
partitions of [0, 1] with xk = yk =

k ´ 1

n
, we have

U(f,P) ´ L(f,P) =
1

n2

n
ÿ

k,ℓ=1

f(xk, yℓ) ´
1

n2

n
ÿ

k,ℓ=1

f(xk´1, yℓ´1)

=
1

n2

[
f(1, 1) ´ f(0, 0) +

n´1
ÿ

k=1

(
f(xk, yn) + f(xn, yk) ´ f(xk, y0) ´ f(x0, yk)

)]
Since f(x, y) ď f(x, z) if y ă z and f(x, y) ď f(t, z) if x ă t, we have

f(xk, yn) ´ f(xk, y0) ď f(1, 1) ´ f(0, 0) and f(xn, yk) ´ f(xk, y0) ď f(1, 1) ´ f(0, 0) ;

thus by choosing n " 1 so that 2

n

[
f(1, 1) ´ f(0, 0)

]
ă ε, we find that

U(f,P) ´ L(f,P) ď
1 + 2(n ´ 1)

n2

[
f(1, 1) ´ f(0, 0)

]
ă ε .

Therefore, f is Riemann integrable on [0, 1] ˆ [0, 1] because of Riemann’s condition. ˝

Problem 4. Let f, g : [a, b] Ñ R be functions, where g is continuous, and f be non-negative,
bounded, Riemann integrable on [a, b]. Show that fg is Riemann integrable.

Proof. Let ε ą 0 be given, and M ą 0 be an upper bounds of f + |g|; that is, f(x) + |g(x)| ď M for
all x P [a, b]. Since g is uniformly continuous on [a, b], there exists δ ą 0 such that

ˇ

ˇg(x) ´ g(y)
ˇ

ˇ ă
ε

8M(b ´ a)
whenever |x ´ y| ă δ

On the other hand, since f is Riemann integrable on [a, b], by Riemann’s condition there exists a
partition P1 such that

U(f,P1) ´ L(f,P1) ă
ε

2M
.

Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be a refinement of P1 such that }P} ă δ. For each 1 ď k ď n,
choose ξk P ∆k ” [xk´1, xk] such that

f(ξk)g(ξk) ą sup
xP∆k

(fg)(x) ´
ε

8(b ´ a)

Then with xk+ 1
2

denoting the middle point of ∆k, by the non-negativity of f we find that

sup
xP∆k

(fg)(x) ă f(ξk)g(ξk) +
ε

4(b ´ a)
ă f(ξk)

[
g(xk+ 1

2
) +

ε

8M(b ´ a)

]
+

ε

8(b ´ a)

ď f(ξk)g(xk+ 1
2
) +

ε

4(b ´ a)
.



Therefore,

U(fg,P) ď

n
ÿ

k=1

f(ξk)g(xk+ 1
2
)(xk ´ xk´1) +

ε

4
.

Similarly, if ηk P ∆k is chosen so that f(ξk)g(ξk) ă inf
xP∆k

(fg)(x) +
ε

4(b ´ a)
, then

L(fg,P) ě

n
ÿ

k=1

f(ηk)g(xk+ 1
2
)(xk ´ xk´1) ´

ε

4
.

Therefore,

U(fg,P) ´ L(fg,P) ď

n
ÿ

k=1

[
f(ξk) ´ f(ηk)

]
g(xk+ 1

2
)(xk ´ xk´1) +

ε

2

ď

n
ÿ

k=1

[
sup
xP∆k

f(x) ´ inf
xP∆k

f(x)
]
M(xk ´ xk´1) +

ε

2

= M
[
U(f,P) ´ L(f,P)

]
+

ε

2
ă ε .

Therefore, fg is Riemann integrable on [a, b]. ˝

Problem 5. Let f : [a, b] Ñ R be differentiable and assume that f 1 is Riemann integrable. Prove

that
ż b

a
f 1(x) dx = f(b) ´ f(a).

Hint: Use the Mean Value Theorem.

Proof. Let I =
ż b

a
f 1(x) dx, and ε ą 0 be given. Since f 1 is Riemann integrable on [a, b], there

exists δ ą 0 such that if P is a partition of [a, b] satisfying }P} ă δ, then any Riemann sum of f
for P locates in (I ´ ε, I + ε). Let P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu be such a partition. Then
the Mean Value Theorem implies that for each 1 ď k ď n there exists ck P (xk´1, xk) such that
f(xk) ´ f(xk´1) = f 1(ck)(xk ´ xk´1); thus

f(b) ´ f(a) =
n
ÿ

k=1

[
f(xk) ´ f(xk´1)

]
=

n
ÿ

k=1

f 1(ck)(xk ´ xk´1) .

Note that the right-hand side is a Riemann sum of f for P ; thus f(b) ´ f(a) P (I ´ ε, I + ε) or

I ´ ε ă f(b) ´ f(a) ă I + ε .

Since ε ą 0 is given arbitrarily, we conclude that I = f(b) ´ f(a). ˝

Problem 6. Suppose that f : [a, b] Ñ R is Riemann integrable, m ď f(x) ď M for all x P [a, b], and
φ : [m,M ] Ñ R is continuous. Show that φ ˝ f is Riemann integrable on [a, b].

Proof. Let ε ą 0 be given. Since φ : [m,M ] Ñ R is uniformly continuous, there exists δ ą 0 such
that

ˇ

ˇφ(y1) ´ φ(y2)
ˇ

ˇ ă
ε

2(b ´ a)
whenever |y1 ´ y2| ă δ and y1, y2 P [m,M ] .



Since f is Riemann integrable, there exists a partition P = ta = x0 ă x1 ă ¨ ¨ ¨ ă xn = bu such that

U(f,P) ´ L(f,P) ă
εδ

4(supyP[m,M ] |φ(y)| + 1)
. (0.1)

We claim that U(φ ˝ f,P) ´ L(φ ˝ f,P) ă ε.
Let mi = inf

xP[xi´1,xi]
f(x) and Mi = sup

xP[xi´1,xi]

f(x). Define

C1 =
␣

1 ď i ď n
ˇ

ˇMi ´ mi ă δ
(

, C2 =
␣

1 ď i ď n
ˇ

ˇMi ´ mi ě δ
(

.

Note that
δ
ÿ

iPC2

(xi ´ xi´1) ď
ÿ

iPC2

(Mi ´ mi)(xi ´ xi´1) ď U(f,P) ´ L(f,P) ;

thus (0.1) implies that
ÿ

iPC2

(xi ´ xi´1) ă
ε

4(supyP[m,M ] |φ(y)| + 1)
.

Therefore,

U(φ ˝ f,P) ´ L(φ ˝ f,P) =
n
ÿ

i=1

[
sup

xP[xi´1,xi]

(φ ˝ f)(x) ´ inf
xP[xi´1,xi]

(φ ˝ f)(x)
]
(xi ´ xi´1)

=
n
ÿ

i=1

[
sup

yP[mi,Mi]

φ(y) ´ inf
yP[mi,Mi]

φ(y)
]
(xi ´ xi´1)

=
(
ÿ

iPC1

+
ÿ

iPC2

)[
sup

yP[mi,Mi]

φ(y) ´ inf
yP[mi,Mi]

φ(y)
]
(xi ´ xi´1)

ď
ÿ

iPC1

ε

2(b ´ a)
(xi ´ xi´1) + 2 sup

yP[m,M ]

|φ(y)|
ÿ

iPC2

(xi ´ xi´1)

ď
ε

2
+

2 supyP[m,M ] |φ(y)|ε

4(supyP[m,M ] |φ(y)| + 1)
ă ε .

Therefore, φ ˝ f is Riemann integrable on [a, b]. ˝


