Exercise Problem Sets 2
Feb. 26. 2022

Problem 1. For a function f : [a,b] — R, define the total variation of f on [a,b] by
V(f) = sup { Z }f(ffk) - f($k_1)‘ ‘{a =9 < --- < x, = b} is a partition of [a,b]} .
k=1

Sometimes V(f) is written as | f|1v (ap)-
A function f : [a,b] is said to have bounded variation on [c,d] or be of bounded variation
on [c, d], where [c, d] < la,b], if V(f) < oo. Complete the following.

1. Let BV(| = {f :[a,b] > R|V2(f) < o0}, called the space of functions of bounded variation
(on [a, b]) Show that BV([a, b]) is a vector space.

2. Is V! a norm on BV([a,b]); that is, does | - | : BV([a,b]) — R defined by | f| = V(f) satisfy
Definition 2.15 in the lecture note?

3. Recall that €' ([a,b; {f [a,b] — R‘f’ is continuous on |a, b} Show that if f €
%*([a,b];R), then f is of bounded variation.

b
4. Show that if f € € ([a,b];R), then V2(f) = J /()| de.
5. Show that if V*(f) < co (f is not necessarily differentiable everywhere), then
= sup f f(zx dq: <;5 e € ([a,b];R), |¢(x)| < 1 for all x € [a,b],d(a) = ¢(b) = 0} :

Proof. For a partition P = {a = 29 < 11 < -+ < x, = b}, define

= D[ F@) = flan)]
k=1
We note that the triangle inequality implies that
V(f,P)<V(f,P') whenever P’is a refinement of P . (0.1)

2. V% is not a norm since any constant function has zero variation. This violates property (b) in

Definition 2.15 in the lecture note.

3. Suppose that f is continuously differentiable on [a,b]. By the Extreme Value Theorem,

sup |f } < . Therefore, for each partition P = {a = 29 < 1 < -+- < x, = b} of
z€la,b]

[a,b], the Mean Value Theorem implies that

n

Z faen] <) sup |f/@)|(@ — 2i)

k=1 TE[TK—1,7k]

< sup |f'(z Zxk—xkl (b—a) sup |f'(z)] < o0;
k=1

z€la,b] z€[a,b]

thus f € BV([a,b]).



4. Suppose that f is continuously differentiable on [a, b]. Then f’ is continuous on [a, b]; thus |f’|
b
is also continuous on [a, b]. Therefore, [ = f | f(z)| dz exists. Next we show that V?(f) = I.

Let € > 0. By the definition of total variation, there exists a partition P; of [a, b] such that

VI =5 < VP,

By the definition of integrals, there exists a partition Py of [a, b] such that

U(lf'],P2) < I+g.

Let P3 ={a =29 < x; <--- < x, = b} be the common refinement of P; and P,. By the Mean

Value Theorem, for each 1 < k < n there exists & € (xx_1,x) such that

f@r) = f(oe—ny = /(&) (Th — 21-1) 5
thus (@) implies that

VAP -2 < VP Z £ @) — Flae)| = 3 1760 e — )
k=1

n

<> swp \f’(x)\(zk—xk_l):U(|f/|,73)<U(|f’|,7?2)<l+§.

k=1 TE[Tr—1,Tk]

Therefore,
V) <T+e. (0.2)

On the other hand, by the uniform continuity, there exists 6 > 0 such that

“f/(g;)} — \f’(y)!’ < 2(b€— a) whenever |x —y| < d and z,y € [a,b] .

Let Py ={a=yo <y1 < < ym = b} be a refinement of P, such that |Ps| < §. The Mean
Value Theorem implies that for each 1 < k < m, there exists nx € (yx—1,yx) such that

F) = flyr—1) = £"(m) (k. — Ya—1) -
Then for each 1 < k < m,

sup |/ ()] < |f'(me)| +

ye[ykflzyk]

The inequality above further implies that

m

<U(IfLP) =) sup ||k — va)

k=1 YE[YE—1,Yk]
$ £
< Z <‘f 77k )) — Yr—1) Z:: (Yr) ykq)‘ + 5
< Vf(f )+
Therefore, together with (@), we conclude that

Vi) -1 <e.



Since € > 0 is given arbitrary, we find that V°(f) = I. o

Problem 2. Complete the following.

1.

Show that if A is a set of volume zero, then A has measure zero. Is it true that if A has measure

zero, then A also has volume zero?
Let a,b € R and a < b. Show that the interval [a,b] does not have measure zero (in R).

Let A € [a,b] be a set of measure zero (in R). Show that [a, b]\A does not have measure zero
(in R).

Show that the Cantor set (defined in Problem 9 of Exercise 7 in the fall semester) has volume

Zero.

Proof. 1. No. The set Q n [0, 1] has measure zero; however, it does not have volume since Dirichlet

2.

3.

Problem 3. Let A = U B(

function is not Riemann integrable on [0, 1].
This is a direct consequence of Corollary 6.25 in the lecture note.

Suppose the contrary that [a,b]\A has measure zero. By the fact that countable union of

measure zero sets has measure zero (Theorem 6.26 in the lecture note), we conclude that
la,b] = A v ([a,b\A)
has measure zero, a contradiction to Corollary 6.25 in the lecture note.

Let E, be the set defined in Problem 9 of Exercise 7 in the fall semester. Then FE, is the

. o 2" . .
union of finite intervals whose volumes sum to 3 Therefore, for each ¢ > 0 there exist finite
- . N 2N .
rectangles S1,S5, -+, Sy whose disjoint union is Fy and kzll/(Sk) =N < ¢. This shows
that the Cantor set has volume zero.

O

o0
R 2k) U ( ; + 21k) be a subset of R. Does A have volume?
k=1

- © 1 1 1 1
Proof. We first show that A= {0} v | [+ — T 27]

1.

2.

k=N+1 k

o0 _ . N
Clearly [l 11 + i} < A. In fact, we have | J B, < cl( U Ba>: if z € |J B,, then

k> k
k=N+1 k 2k 2 ael ael a€el

z € B, for some o € I which implies that there exists a € I and {zi}f, € By < |J Ba such
ael

that x, — x as ¢ — o0. Therefore, = € cl( U Ba).

ael

Suppose that # € A. Then there exists {z,}%, < A such that z; — x as £ — co0. Since every

element in A is positive, we conclude that z > 0.



1
(a) the case x = 0: Since {z,}, defined by z, = 7 is a sequence in A, we conclude that

0 € A since lim x, = 0.
{—00

(b) the case = > 0: By the definition of the limit of sequences, there exists N > 0 such
that z, € (g, 3;) for all £ > N. Since lim 1 + 2% = 0, there exists M > 0 such that

z + 5 < g for all kK > M. Therefore,
M—1
T 3z 1 1 1
An(35) = o G-amnta)

thus there exists 1 < 7 < M — 1 such that

1 11 1
#{EeN‘xge(E—g,}Jrg):oo

o0 P 0 1 1 1 1
Let {mgk}kzl be a subsequence of {x,}2, satisfying that {‘Wk}k:l c (5 T + g), we
1 1 1 1 . .
conclude that z € [; % + 27] since kh_)nglo Ty, = .
Having shown that A = {O} v G [l 11 + i] we conclude that
h=n1 ko 28Tk 2R
0A=MA=ADAc ()t - o |keN}o{t+ 5 ken);
SOV T A=A T ok MRV ’
thus 0 A has measure zero. This implies that A has volume. O

Problem 4. Prove the following statements.
1. The function f(z) = sin L is Riemann integrable on (0,1).
X

2. Let f:(0,1] — R be given by

ifnge@,@o,q):l,

if z is irrational.

!
fle)=q P
0

Then f is Riemann integrable on (0,1]. Find f(z)dz as well.
(0,1]

3. Let A < R" be a bounded set, and f : A — R is Riemann integrable. Then f* (f ek =x > )
is integrable for all k € N.

Proof. 1. Note that (0, 1) has volume, f is bounded on (0, 1) and f is continuous on (0, 1). Therefore,

the Lebesgue Theorem (or its corollary) implies that f is Riemann integrable on (0, 1).

2. In Calculus we have shown that f is continuous on Q' n (0, 1] so that the collection of dis-
continuities of " is Q N (0,1]. Since Q n (0, 1] is countable, we find that the collection of

discontinuities of ?(0’ " has measure zero. Therefore, f is Riemann integrable on (0, 1].



Let P be a partition of (0,1]. Then L(f, P) = 0 since

;egf””( 2)=0 VAeP.

Therefore, J f(z)dxz = 0; thus the fact that f is Riemann integrable on (0, 1] shows that
A

f f(z)dz =0.
(0,1]

3. First we note that the fact that f is Riemann integrable on A implies that f is bounded on A.
Therefore, f* is bounded on A. Moreover, the Lebesgue Theorem implies that the collection
D of discontinuities of 7A has measure zero. Since FA = (?A)k, we find that the collection of
discontinuities of FA is exactly D; thus has measure zero. The

Lebesgue Theorem then implies that f* is Riemann integrable on A. =
Problem 5. Suppose that f : [a,b] — R is Riemann integrable on [a, ], and the set {z € [a, b] ‘ f(z) #

b
0} has measure zero. Show that J f(z)dz =0.

Proof. First we note that for each [¢,d] < [a,b], then there exists = € [c,d] such that f(z) = 0 for
otherwise f(z) # 0 for all x € [¢,d] so that

d) < {ze[a,b]]| f(x) # 0}

and this implies that [c,d] is a set of measure zero, a contradiction to Corollary 6.25 in the lecture
note Therefore, L(|f], 77) < 0 and U(f,P) = 0 for all partitions P of [a,b] which shows that

< 0 and J f(z)dx = 0. Since f is Riemann integrable on [a,b], we conclude that

]qu dr = 0. O

Problem 6. Find an example of the inequality

JAf(:c)dx+JAg(:c)dx<J(f+g f (f+9)(z d:c<Lf(x)d:c+JAg(:c)dx.
Solution. Let f,g:]0,2] — R be defined by
i N i CA
f<m):{1 freQn(0,2], S g(x):{l freQno1],

0 otherwise, 0 otherwise.

Then for A = [0, 2],
dr — dr = d dr =1.
ff f g(x)dz =0, Lf(x) =2 an Lf/@) v=1
Moreover,
(1 ifze0,]]u(@n]L,2])),
(f +9)(z) = { 0 otherwise.
so that

J(f+g)(x)dx=1 and J(f+g)(:v)dx:2.
JA A



Therefore, f and g satisfy the desired inequality.
Another example is given as follows: let f, g : [0, 1] — R be defined by

Y

(1 ifzeQnl0,1], 0 ifxeQnl0,1]
s = 0.1]

d p—y

0 ifzeQ" n]0,1], o 9() {2 if zeQ"n
Then

1 ifzeQn](0,1],

(f+g)(35):{ 2 ifreQ n0,1],

so that we have f(z)dr = j g(x)de = 0, J f(x)dr = f (f + g)(z)dz = 1, and
<[0,1] [0,1] <00,1]

<[0,1]

f[o,”g(x) ds = j[ L o@dr=2 :

Problem 7. Let A € R" be a bounded set, and f : A — R be a bounded function. Show that if f

is Riemann integrable on A, then |f| is also Riemann integrable on A.

Proof. Method 1: Since f is Riemnn integrable on A, the Lebesgue Theorem implies that the
collection of discontinuities of fA has measure zero. Note that if 7A is continuous at a € A,
then mA is also continuous at a since mA = ‘TA‘ Therefore, the collection of discontinuities of
mA is a subset of a measure zero set, the collection of discontinuities of TA; thus the collection
of discontinuities of mA has measure zero. The Lebesgue Theorem then shows that |f] is

Riemann integrable on A.

Method 2: Let ¢ > 0 be given. Since f is Riemann integrable on A, by Riemann’s condition there
exists a partition P of A such that

U(f,P)— L(f,P) <e.

Note that for each A € P,
sup [f*(x)| — inf [F*(2)] < sup " (x) — inf F*(x);
zeA TEA TEA TEA

thus

U(f1.P) = L(f,P) = 3 (sup |7 ()] - inf [F*(2)]) ()

Aep  TEA

< 3 (s @) — i FH@) ) (&) = U, P) — LS, P) < <.

Aep €A

By Riemann’s condition, we conclude that |f| is Riemann integrable on A. D



