Exercise Problem Sets 3
Mar. 05. 2022

Problem 1. Define a set S < [0, 1] x [0, 1] by

S={(2, 2y e0,1x[0,1]|mp ke N ged(m,p) = Tand 1<k <m—1}.

Jol <L1 15(z,y) dy)d:z: = fol (Ll 1s(z,y) da:)dy —0

but 1g is not Riemann integrable on [0, 1] x [0, 1].

Show that

Proof. Note that for each x € [0, 1], then 1g(x,y) # 0 for only finitely many y € [0, 1]. Therefore, for

each x € [0, 1], 1s(z, -) is Riemann integrable on [0, 1] and

1
J 1s(z,y)dy = 0.
0

Similarly, for each y € [0, 1], then 1g(z,y) # 0 for only finitely many x € [0, 1]; thus for each y € [0, 1],

1s(z,-) is Riemann integrable on [0, 1] and

1
J 1s(z,y)dx =0.
0

Ll (Ll 1s(x,y) dy)dx = Ll (Ll 1s(x,y) dx)dy —0.

However, for each partition P of [0,1] x [0, 1], we have A n S # ¢F for all A € P; thus U(1lg,P) =1
for all partition P of [0, 1] x [0, 1]. Therefore,

J 1s(z,y)dy =1
AxB

Therefore,

which, by the Fubini Theorem, implies that 1g is not Riemann integrable on [0, 1] x [0, 1]. o
Problem 2. Let f:[0,1] x [0,1] — R be given by
22 if (z,y) € [277, 277 x [277,27") pe N,

0 otherwise .

1

1. Show that f flx,y)dr =0 forall y € [0, %)
0
1

2. Show that J f(z,y)dy =0 for all x € [0,1).
0

11 11
3. Justify if the iterated (improper) integrals j J f(x,y)dxdy and j f f(x,y) dydzr are iden-
0 Jo 0 Jo

tical.



1
Proof. 1. Since f(z,0) = 0 for all x € [0, 1], we have J f(z,0)dz = 0. Suppose that y € (O, 1)
0
Then y € [27",27""!) for a unique natural number n > 2. In this case,
22 if g e [277, 27
fla,y) =< =221 if g e [27ntt 27nt2)

0 otherwise ,

so that

1
J f(z,y)dx = J 221 o 4 f _92n—1 ..
0 [2*n72*n+1) [27n+1727n+2)

— 22n<27n+1 o 2711) - 22n71(27n+2 o 27n+1) — 0 )

1
2. Since f(0,y) for all y € [0,1], we have f f(0,y)dy = 0. Suppose tat z € (0,1). Then
0
x € [27™,27) for a unique n € N. In this case,
9221 ifye[27" 27" neN,
flo,y) =< =221 ifye 271 27) neN,

0 otherwise ,

so that

1
J flx,y)dy = f 22" dg + J —22n L dy
0 [2777,72777,4»1) [271171,2777,)

— 22n(27n+1 - 2771,) - 22n+1 (2771, - 2,n,1) — 0 )

3. By 2, we immediately conclude that

Llﬂf(x,y)dydx:o.

1
4 ifze sl
On the other hand, note that if y € [%7 1), then f(z,y) = { e [2’ ) '

so that
0 otherwise,

Jl f(z,y)de = ﬁl4d:c =2.

0 3

Therefore,

fff(a:,y)dxdy:ﬁ Llf@,y)dggderfﬂf(x,y)dxdy:dey: 1

1 1 1 1
which shows that J J f(z,y)dxdy # J J f(z,y) dydz for this particular f. D
0 Jo 0 Jo



Problem 3 (The multiple integral version of Theorem 6.65 in the lecture note). Let A be a closed
rectangle in R™, and f; : A — R be a decreasing sequence of bounded functions. Show (without
applying Theorem 6.69 and 6.70 in the lecture note) that if klim fr(z) =0 for all z € A, then

—00

i _L frlw) da =

Conclude the Monotone Convergence Theorem (Theorem 6.69 in the lecture note) and the Bounded

Convergence Theorem (Theorem 6.70 in the lecture note) using the this conclusion of convergence.
Problem 4. Let A < R", B < R™ be Riemann measurable sets, and f : Ax B — R be non-negative,

uniformly continuous and integrable on A x B. Define F'(x J f(z,y) dy.

1. Show that if B is bounded, then F': A — R is continuous. How about if B is not bounded?
2. Let f have the additional property that for each ¢ > 0, there exists N > 0 such that
‘J (f/\k)(x,y)dy—ff(a:,y)dy‘<€ Vk>Nandxe A.
BnB(0,k B
Show that F'is continuous on A. In particular, show that if f(x,y) < g(y) for all (z,y) € Ax B,
and g is integrable on B, then F' is continuous.

Proof. 1. If B is bounded, then B has volume. Let ¢ > 0 be given. By the uniform continuity of f,
there exists 6 > 0 such that

|z, y1) = flaa,10)] <

v(B)+1

Therefore, if |1 — 23] < § and z1, 29 € A,

| .CCQ ‘_ ‘J .Tl, IQJ J ‘f I,y x27 ‘dy

V|(z1,51) — (22,52)| <6 and 21,20 € A, y1,y2 € B.

< e 0
B z/(B) +1 (B) + -
This implies that F is uniformly continuous on A.

If B is unbounded, then the argument above does not apply. In fact, consider the case

_ Wz _ _
f(x,y)—HnyQ, A=10,1 and B=R.

Then f is non-negative and uniformly continuous on A x B (by Exercise Problem ?7). Note
that F'(0) = 0 while if z > 0,

Tovr

o L+ 2%y?

Y=00 T

y=—0 T

dy = Ve arctan(xy)
x

- [ fayan-

Therefore, the Tonelli Theorem implies that

foBf(xy) J ffxydy dx—Jd$—27r<oo

which shows that f is integrable on A x B. However, F' is not continuous at x = 0.



2. Let € > 0 be given. Since f has the property mentioned above, there exists N > 0 such that
‘f (f/\k:)(x,y)dy—ff(x,y)aly‘<E Vk>=Nandze A.
BAB(0,k B 3

By the uniform continuity of f on A x B, there exists ¢ > 0 such that

‘f(xlayl) - f(anyQ)‘ < v ‘(mlayl) - (x27y2)| < ¢ and T1,T2 € Avylay2 €.

Wl M

Suppose that |r; — x9| <, 1,29 € A and y € B.
(a) If f(z1,y) and f(xq,y) are both not greater than N, then
((f AN)(@1,y) = (f AN)(@2,9)| = [ f21,y) = flr2y)| <e.
(b) If f(z1,y) and f(xs,y) are both greater than N, then

|(fAN)(x1, y)— (fAN)(z2,y ]_|N N|=0.
(¢) If one and only one of f(z1,y) and f(xs,y) is greater than N, then
(f AN)(21,9) = (f AN)(@2,9)] < | f(21,) = fl22,9)] <&
Case (a), (b) and (c) show that

((f AN (@1, y) = (f AN)(22,9)] <

9
3v(B(0,N)) Vv — a9 < d,m1,m€Aand yeB.

Therefore, if 21,25 € A and |z — z3| < 0,
Pl - Fa| <] [ (A dy— | fenw)dy]
BnB(0,N B
+U (fAN)(asz,y)dy—J f(ﬂﬁz,y)dy‘
BAB(0,N) B
[ Ay | <fAN><x2,y>dy\
BAB(0O,N BAB(0,N)

19 19
<—+—+J |(f AN)(21,y) = (f AN)(22,)|dy <
3 3 JeaBO,N)

This implies that F' is uniformly continuous on A.

Now suppose that f(z,y) < g(y) for all (z,y) € A x B, and g is integrable on B. Then

lim (gnE)(y)dy = J 9(y) dy;

k=% JpAB(0,k) B

thus there exists N > 0 such that

‘f (gAk)(y)dy — J 9(y) dy‘ <e whenever k> N.
BAB(0k B



Therefore, for all k > N and x € A,

}meffw)(xy wy— [ s

JBmB (f k) y)dy - meB(O,k) fe.y) dy‘ +J [z, y)dy

BnB(0,k)t

JB o (f ~E) () — (x,y)lderJ g9(y) dy

BAB(0,k)C

f [f(x.y) — k] dy + f 9(y) dy
{yeBnB(0,k) | f(z,y)>k}

BAB(0,k)C
< j [o(y) — k] dy + j o(y) dy
{yeBnB(0,k) | g(y)>k} BnB(0,k)t
< J [9(y) — (9 A K)(y)] dy + f 9(y) dy
BAB(0,k) BAB(0,k)C

= JBg(y) dy — JB B(Ok)(g Ak)(y)dy <e.

This shows that f satisfies the condition mentioned in 2, so F' is continuous on A. =

Problem 5. Let f: R — R be a Riemann measurable function, and F' : R — R be defined by

= JRf(y) cos(r —y) dy

whenever the integral exists. Show that if the function f is integrable, then F'is defined on R and is

differentiable on R with derivative

— [ 1) costa =)y == | f)sinte =)y

Proof. Let x € R be given. Since f is Riemann measurable, the function g : R — R defined by
9(y) = f(y) cos(x —y) is Riemann measurable and |g(y)| < |f(y)| for all y € R. Since f is integrable,
the comparison test implies that ¢ is integrable. Therefore, F' is defined everywhere on R.

Let {ht}7, be a non-zero sequence with limit 0. Define
cos(x + hy —y) — cos(x —
nly) = f( =Y Z T =),

Then for all y € R, lim gy(y) = f(5) —(cos(x — y)) = —f(y)sin(z — y).

Since ‘% coS x‘ < 1, the Mean Value Theorem implies that
| cos(z + by, — y) — cos(z — y)| < |hi|.

Therefore,
l9:(v)| < |f(v)] VeeR.

Since f is integrable on R, | f| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Pz + hy) — F(z) = lim | grx(y)dy = —f f(x)sin(x — y) dy .
k—o0 hi k- Jp R



The equality above shows that for each non-zero sequence {hy};>; with limit 0, the limit

lim
k—o0 h,

S Er—

exists. By the definition of the limit of functions,

. Flz+ h
lim
h—0

N Ry D

Problem 6. Let f : R — R be an integrable Riemann measurable function, and F' : R — R be

defined by
ZLﬂwm%wMy

(which exists for all € R since f is integrable). Show that if the function g(x) = x f(x) is integrable,
then F' is differentiable on R and

J flz)=— cos(xy) dy = — J xf(z)sin(zy) dy .

Proof. Let y € R be given, and {h;}{2; be a non-zero sequence with limit 0. Define

au(a) = J ) DD Z conlz)

Then for all z € R, kh—>nolo gr(x) = f(x)ai/(cos(xy)) = —xf(x)sin(zy).

Since ‘j cos :v‘ < 1, the Mean Value Theorem implies that
Y

| cos(z(y + hi)) — cos(zy)| < |zhyl .
Therefore,
’gk ’ }xf ’—}g ‘ VzeR.

Since g is integrable on R, |g| is integrable on R; thus the Dominated Convergence Theorem implies
that

lim Fly+h) = Fly) = lim | hg(x)dy = —f zf(z)sin(zy) dy .

k—0o0 hk k—0o0 R

The equality above shows that for each non-zero sequence {hy};>; with limit 0, the limit

lim Fly+he) = Fy) = f xf(z)sin(zy) dy

k—o0 h’k‘

exists. By the definition of the limit of functions,

F h)—F
lim (y+h) ) =— f xf(z)sin(zy) dy . o
h—0 h R
e %Wsiny .
——= ify#£0,
Problem 7. Let f(z,y) = Yy nY

1 ify=0.



1. Show that f,(x,y) is continuous everywhere, and show that f(z,-) is integrable on [0, c0) for

all x > 0.

1

2. Define F(x J f(z,y)dy for x > 0. Show that F'(z) = T

3. Show that F(z) = g —tan~! z if x > 0, and conclude that

Proof. 1. Note that if y # 0, f.(x,y) = e ®siny while f,(z,0) = 0. Clearly f, is continuous on R?

except perhaps on the z-axis. On the other hand, since ( l)nr% : f(z,y) = 0, we conclude that
z,y)—(a,0
fz is also continuous on the x-axis. Therefore, f, is continuous everywhere.

Let x > 0 be given. Then ’f(a;’, y)‘ < e™™. Since the right-hand side function, for given x > 0,

is integrable on [0, ), the comparison test implies that f(z,-) is integrable on [0, o).

2. Let 2 > 0 be given, and {h};2; be a non-zero sequence with limit 0. W.L.O.G., we can assume

that |hy| < g since « > 0. Define

e Yhr — 167% siny
gr(y) = hi

ity #0,
0 ify=0.

—yhr _ zy
l < e? |y|; thus

The Mean Value Theorem implies that ‘6

‘ ¥

‘gk(y) <

Since the right-hand side function, for given x > 0, is integrable on [0,00), the Dominated

Convergence Theorem implies that

. Flz+hy) - F(z f+hyy) = flay)
lim " = lim f s dy = lim ) 9x(y) dy
0 0]
= f lim gx(y) dy = —J e sinydy
g k—ow 0

Integrating by parts, by the fact x > 0 we find that

y=00 0
— f e " cosydy

0
J e Wsinydy = —e " cosy
y=0 0

0

y=00 o0
=1- :r;[e’xy sin y‘ + :L‘J e Ysinydy
y=0 0

thus we conclude that




for all x > 0 and non-zero sequence {hy}{, with limit 0. Therefore, for x > 0 the limit
lim F(x+h)— F(x)

lim - exists (so that F' is differentiable on (0,0)) and
/ . F(z+h) - F(z) 1
F(J?):flllircl) Y =11 Ve>0.

By the (generalized version of) Fundamental Theorem of Calculus, for a,b > 0 we have

b b 1 r=b
F(b) — F(a) JF’(:c)da::—f 1+x2d:c:arctanx

= arctana — arctanb.

Note that for a > 0 we have
@ —aY \y=o00 1
Fal< [ emay =2
0 —aly=0 a
thus lim F(a) = 0 by the Sandwich lemma. Therefore, for x > 0
a— 00

. : m
F(z) = ah_)rr;) [F(z) — F(a)] = ah_r)glo (arctana — arctanz) = = — arctan
Finally, we show that F'(0) = lim+ F(z). Let € > 0 be given. Since

z—0
0 ,—e ®cosy —xe siny — .
a—y( 2 +cosy) = (e —1)siny,
integrating by parts shows that for all n > 0
* sin 1/—e — re ™ si y=0
J (=¥ — 1) Yy dy = _( e cosy2 re % siny —|—Cosy)
n Y y e +1 y=n
Q0 _ _ .
—e "Wcosy —xe Ysiny > 1
+L ( 21 + cosy ygdy.
By the fact that
—e Y — xe Y gi r+1 5
‘ c COSny_f_gl:e Smy—l—cosy‘é 1< - <3,

- - <
2+ 1 + 2
we have

@ i 3 3 6
J (e_xy—l)SIZydy) < f 7 dy + — e
Therefore, for all n > 0,

-0 - | [ -8

‘f J—— Slny dy‘ w(@fmy B 1)simy dy
Y
6 e"™ -1 6
\J (1—e7" )dy+——n+—+—
0 x n
so that 6
limsup |F(z) — F(0)| < — Vn>0.
z—0t n
Since n > 0 is given arbitrarily, we conclude that limsup |F(z) — F(0)| = 0 which shows that
z—0t

F(0). As a consequence,

sinx , T m
fo " dr = F(0) = mli%l+ F(x) = mlir(l)l+ (5 —arctanz) = — .



