Problem 1. Determine which of the following real series $\sum_{k=1}^{\infty} g_k$ converge (pointwise or uniformly). Check the continuity of the limit in each case.

1.
$$g_k(x) = \begin{cases} 0 & \text{if } x \leq k, \\ (-1)^k & \text{if } x > k. \end{cases}$$

2.
$$g_k(x) = \begin{cases} \frac{1}{k^2} & \text{if } |x| \leq k, \\ \frac{1}{x^2} & \text{if } |x| > k. \end{cases}$$

3.
$$g_k(x) = \frac{(-1)^k}{\sqrt{k}}\cos(kx)$$
 on \mathbb{R} .

Proof. 1. By the definition of g_k , we find that the partial sum $S_n(x) = \sum_{k=1}^n g_k(x)$ satisfies that for all $n \in \mathbb{N}$,

$$S_{2n}(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-1,2n], \\ 0 & \text{otherwise,} \end{cases}$$

and

$$S_{2n-1}(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-3,2n-2] \cup (2n-1,\infty), \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, $\{S_n\}_{n=1}^{\infty}$ converges pointwise to the function

$$S(x) = \begin{cases} -1 & \text{if } x \in (1,2] \cup (3,4] \cup \dots \cup (2n-3,2n-2] \cup \cdot, \\ 0 & \text{otherwise} \end{cases}$$

or more precisely,

$$S(x) = \sum_{k=1}^{\infty} \mathbf{1}_{(2k-1,2k]}(x)$$
.

The convergence is uniformly on any bounded subset of \mathbb{R} , and the limit function S has discontinuities on \mathbb{N} .

- 2. Let $M_k = \frac{1}{k^2}$. Then $\sup_{x \in \mathbb{R}} |g_k(x)| \leq M_k$ and $\sum_{k=1}^{\infty} M_k$ converges (by the integral test). Therefore, the Weierstrass M-test implies that $\sum_{k=1}^{\infty} g_k$ converges uniformly on \mathbb{R} .
- 3. If $x = (2n+1)\pi$ for some $n \in \mathbb{Z}$, then $\cos(kx) = (-1)^k$ for all $k \in \mathbb{N}$; thus $\sum_{k=1}^{\infty} g_k(x)$ diverges at $x = (2n+1)\pi$ (by the integral test).

Now suppose that $x \notin \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Let $S_n(x) = \sum_{k=1}^n (-1)^k \cos(kx)$. Then $S_n(x) = \sum_{k=1}^n \cos(k(x+\pi))$ and

$$2\sin\frac{x+\pi}{2}S_n(x) = \sum_{k=1}^n \left[\sin\left(k + \frac{1}{2}\right)(x+\pi) - \sin\left(k - \frac{1}{2}\right)(x+\pi) \right]$$
$$= \sin\left(n + \frac{1}{2}\right)(x+\pi) - \sin\frac{x+\pi}{2};$$

thus

$$S_n(x) = \frac{(-1)^n \cos(n + \frac{1}{2})x}{2 \cos \frac{x}{2}} - \frac{1}{2} \qquad \forall x \in \mathbb{R} \setminus \{(2n + 1)\pi \mid n \in \mathbb{Z}\}.$$

The equality above shows that

$$|S_n(x)| \le \frac{1}{2|\cos\frac{x}{2}|} + \frac{1}{2} \qquad \forall x \in \mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\},$$

which is bounded independent of n. The Dirichlet test then shows that $\sum_{k=1}^{\infty} g_k(x)$ converges for all $x \in \mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Therefore, $\sum_{k=1}^{\infty} g_k$ converges pointwise on $\mathbb{R} \setminus \{(2n+1)\pi \mid n \in \mathbb{Z}\}$. Let $A \subseteq \mathbb{R}$ be a set satisfying that

$$d(x, \{(2n+1)\pi \mid n \in \mathbb{Z}\}) = \inf\{|x-y| \mid y \in \{(2n+1)\pi \mid n \in \mathbb{Z}\}\} \geqslant \delta \qquad \forall x \in A.$$

Then the computation above shows that $|S_n(x)| \leq R \equiv \frac{1}{2|\cos\frac{\delta}{2}|} + \frac{1}{2}$ for all $x \in A$. If n > m, we have

$$\sum_{k=m+1}^{n} \frac{(-1)^k}{\sqrt{k}} \cos(kx) = \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} \left[S_k(x) - S_{k-1}(x) \right]$$

$$= \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_k(x) - \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_{k-1}(x)$$

$$= \sum_{k=m+1}^{n} \frac{1}{\sqrt{k}} S_k(x) - \sum_{k=m}^{n-1} \frac{1}{\sqrt{k+1}} S_k(x)$$

$$= \frac{1}{\sqrt{n}} S_n(x) - \frac{1}{\sqrt{m+1}} S_m(x) + \sum_{k=m+1}^{n-1} \left(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \right) S_k(x);$$

thus if $x \in A$,

$$\Big| \sum_{k=m+1}^{n} \frac{(-1)^k}{\sqrt{k}} \cos(kx) \Big| \le \Big[\frac{1}{\sqrt{n}} + \frac{1}{\sqrt{m+1}} + \sum_{k=m+1}^{n-1} \Big(\frac{1}{\sqrt{k}} - \frac{1}{\sqrt{k+1}} \Big) \Big] R = \frac{2R}{\sqrt{m+1}}.$$

Therefore, for a given $\varepsilon > 0$, by choosing N > 0 satisfying $\frac{2R}{\sqrt{N+1}} < \varepsilon$ we conclude that

$$\Big|\sum_{k=m+1}^n \frac{(-1)^k}{\sqrt{k}} \cos(kx)\Big| < \varepsilon \quad \text{whenever } n > m \geqslant N \text{ and } x \in A.$$

By the Cauchy criterion, $\sum_{k=1}^{\infty} g_k$ converges uniformly on A; thus $\sum_{k=1}^{\infty} g_k$ is continuous at every point at which the series converges.

Problem 2. Let $\{a_k\}_{k=0}^{\infty} \subseteq \mathbb{R}$ be a real sequence, and $f(x) = \sum_{k=0}^{\infty} a_k x^k$ be a power series with radius of convergence R > 0. Let $s_n(x) = \sum_{k=0}^n a_k x^k$ be the *n*-th partial sum, $R_n(x) = f(x) - s_n(x)$, and $g(x) = \sum_{k=1}^{\infty} k a_k x^{k-1}$. For $x, x_0 \in [-\rho, \rho] \subsetneq (-R, R)$, where $x \neq x_0$, write $f(x) = f(x_0)$

$$\frac{f(x) - f(x_0)}{x - x_0} - g(x_0) = \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) + \left(s'_n(x_0) - g(x_0)\right) + \frac{R_n(x) - R_n(x_0)}{x - x_0}. \quad (\star)$$

1. Show that

$$\left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right| \le \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1},$$

and use the inequality above to show that $\lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = g(x_0)$.

2. Generalize the conclusion to complex power series: suppose that $\{a_k\}_{k=0}^{\infty} \subseteq \mathbb{C}$ and the power series $\sum_{k=0}^{\infty} a_k z^k$ has radius of convergence R > 0; that is, $\sum_{k=0}^{\infty} a_k z^k$ converges for all |z| < R but for each $n \in \mathbb{N}$ there exists z_n with $|z_n - c| > R + \frac{1}{n}$ such that $\sum_{k=0}^{\infty} a_k z_n^k$ diverges. Show that

$$\frac{d}{dz} \sum_{k=0}^{\infty} a_k z^k = \sum_{k=1}^{\infty} k a_k z^{k-1} \qquad \forall |z| < R.$$

Assume that you have known $\frac{d}{dz} \sum_{k=0}^{n} a_k z^k = \sum_{k=1}^{n} k a_k z^{k-1}$ for all $n \in \mathbb{N} \cup \{0\}$ (this can be proved using the definition of differentiability of functions with values in normed vector spaces provided in Chapter 5).

Proof. Let R be the radius of convergence of the power series $\sum_{k=0}^{\infty} a_k x^k$.

Claim: The series $\sum_{k=1}^{\infty} k|a_k|\rho^{k-1}$ converges for all $0 < \rho < R$.

To see the claim, we note that for each 0 < r < R, $\sum_{k=0}^{\infty} a_k r^k$ converges; thus $\lim_{k \to \infty} a_k r^k = 0$. This implies that the sequence $\{a_k r^k\}_{k=1}^{\infty}$ is bounded for all 0 < r < R. Let M(r) denote a real number satisfying $|a_k r^k| \le M(r)$ for all $k \in \mathbb{N} \cup \{0\}$. Then for $0 < \rho < R$, we choose r so that $0 < \rho < r < R$ so that

$$\sum_{k=1}^{\infty} k |a_k| \rho^{k-1} = \sum_{k=1}^{\infty} k |a_k| r^{k-1} \left(\frac{\rho}{r}\right)^{k-1} \le M(r) \sum_{k=1}^{\infty} k \left(\frac{\rho}{r}\right)^{k-1}$$

where the convergence of the series on the right-hand side can be obtained by the ratio test ((5) of Theorem 2.70). The claim is then established by the comparison test ((2) of Theorem 2.70).

1. Since $R_n(x) = \sum_{k=n+1}^{\infty} a_k x^k$ converges for all $x \in (-R, R)$, for $x \neq x_0$ we have

$$\frac{R_n(x) - R_n(x_0)}{x - x_0} = \frac{1}{x - x_0} \sum_{k=n+1}^{\infty} a_k(x^k - x_0^k) = \sum_{k=n+1}^{\infty} a_k(x^{k-1} + x^{k-2}x_0 + \dots + xx_0^{k-2} + x_0^{k-1});$$

thus if $x, x_0 \in [-\rho, \rho] \subseteq (-R, R)$ and $x \neq x_0$,

$$\left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right| \le \sum_{k=n+1}^{\infty} |a_k| \left(|x|^{k-1} + |x|^{k-2} |x_0| + \dots + |x| |x_0|^{k-2} + |x_0|^{k-1} \right)$$

$$\le \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1}.$$

Let $\varepsilon > 0$ be given. By the claim above there exists N > 0 such that

$$\sum_{k=n+1}^{\infty} k|a_k||x_0|^{k-1} < \frac{\varepsilon}{3} \quad \text{and} \quad \sum_{k=n+1}^{\infty} k|a_k|\rho^{k-1} < \frac{\varepsilon}{3}.$$

Therefore, (\star) implies that

$$\left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \leq \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \left| s'_n(x_0) - g(x_0) \right| + \left| \frac{R_n(x) - R_n(x_0)}{x - x_0} \right|$$

$$\leq \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \left| \sum_{k=n+1}^{\infty} k a_k x_0^{k-1} \right| + \sum_{k=n+1}^{\infty} k |a_k| \rho^{k-1}$$

$$\leq \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3};$$

thus

$$\lim \sup_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| \le \lim \sup_{x \to x_0} \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3}$$

$$= \lim_{x \to x_0} \left| \frac{s_n(x) - s_n(x_0)}{x - x_0} - s'_n(x_0) \right| + \frac{2\varepsilon}{3} < \varepsilon.$$

Since $\varepsilon > 0$ is given arbitrarily, we find that $\lim_{x \to x_0} \left| \frac{f(x) - f(x_0)}{x - x_0} - g(x_0) \right| = 0$ which shows that

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = g(x_0).$$

Problem 3. Let $\{a_k\}_{k=0}^{\infty} \subseteq \mathbb{C}$, $c \in \mathbb{C}$, $\sum_{k=0}^{\infty} a_k(x-c)^k$ be a power series with radius of convergence R > 0; that is, $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges for all $x \in B(c,R)$ but for each $n \in \mathbb{N}$ there exists x_n with $|x_n-c| > R + \frac{1}{n}$ such that $\sum_{k=0}^{\infty} a_k(x_n-c)^k$ diverges. Let $K \subseteq B(c,R)$ be a compact set. Show that

- 1. The power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges uniformly on K.
- 2. The power series $\sum_{k=0}^{\infty} (k+1)a_{k+1}(x-c)^k$ converges pointwise on B(c,R), and converges uniformly on K.

Proof. 1. Since $K \subseteq B(c,R)$ is compact, there exists r > 0 such that $K \subseteq B[c,\rho] \subseteq B(c,R)$. In fact, $\rho = \sup_{x \in K} |x-c|$ will do the job. It then suffices to show that $\sum_{k=0}^{\infty} a_k (x-c)^k$ converges uniformly

on $B[c, \rho]$. Let $r = \frac{\rho + R}{2}$. Then $c + r \in B(c, R)$ so that the series $\sum_{k=0}^{\infty} a_k r^k$ converges; thus $\lim_{k \to \infty} a_k r^k = 0$. Therefore, there exists M(r) > 0 such that

$$|a_k|r^k \leqslant M(r) \qquad \forall k \in \mathbb{N}.$$

Since

$$\sum_{k=0}^{\infty} |a_k| \rho^k = \sum_{k=0}^{\infty} |a_k| r^k \left(\frac{\rho}{r}\right)^k \leqslant M(r) \sum_{k=0}^{\infty} \left(\frac{\rho}{r}\right)^k$$

and the series on the right-hand side converges because of the geometric series test ((1) of Theorem 2.70), the comparison test shows that $\sum_{k=0}^{\infty} |a_k| \rho^k$ converges. Therefore, for each $\varepsilon > 0$ there exists $N = N(\varepsilon) > 0$ such that

$$\sum_{k=n+1}^{\infty} |a_k| \rho^k < \varepsilon \qquad \forall \, n \geqslant N(\varepsilon) \,.$$

As a consequence, for a given $\varepsilon > 0$, if $x \in B[c, \rho]$ and $n > m \ge N(\varepsilon)$,

$$\left| \sum_{k=m+1}^{n} a_k (x-c)^k \right| \leqslant \sum_{k=m+1}^{n} |a_k| \rho^k < \varepsilon$$

which, by the Cauchy criteria, shows that the power series $\sum_{k=0}^{\infty} a_k(x-c)^k$ converges uniformly on $B[c,\rho]$.

2. The proof of the pointwise convergence on B(c, R) is exactly the same as the claim in Problem 2, and the proof of the uniform convergence on K is the same as the proof in part 1, and we omit here.

Problem 4. Suppose that the series $\sum_{n=0}^{\infty} a_n = 0$, and $f(x) = \sum_{n=0}^{\infty} a_n x^n$ for $-1 < x \le 1$. Show that f is continuous at x = 1 by complete the following.

1. Write $s_n = a_0 + a_1 + \cdots + a_n$ and $S_n(x) = a_0 + a_1 x + \cdots + a_n x^n$. Show that

$$S_n(x) = (1-x)(s_0 + s_1x + \dots + s_{n-1}x^{n-1}) + s_nx^n$$

and
$$f(x) = (1 - x) \sum_{n=0}^{\infty} s_n x^n$$
.

- 2. Using the representation of f from above to conclude that $\lim_{x\to 1^-} f(x) = 0$.
- 3. What if $\sum_{n=0}^{\infty} a_n$ is convergent but not zero?

Proof. 1. Let $s_n = a_0 + a_1 + \dots + a_n$ and $S_n(x) = a_0 + a_1 x + \dots + a_n x^n$.

$$S_n(x) = \sum_{k=0}^n a_k x^k = a_0 + \sum_{k=1}^n a_k x^k = s_0 + \sum_{k=1}^n (s_k - s_{k-1}) x^k$$

$$= s_0 + \sum_{k=1}^n s_k x^k - \sum_{k=1}^n s_{k-1} x^k = \sum_{k=0}^n s_k x^k - \sum_{k=0}^{n-1} s_k x^{k+1}$$

$$= s_n x^n + \sum_{k=0}^{n-1} s_k x^k - x \sum_{k=0}^{n-1} s_k x^k$$

$$= (1-x)(s_0 + s_1 x + \dots + s_{n-1} x^{n-1}) + s_n x^n.$$

Therefore, by the fact that $\lim_{n\to\infty} s_n = 0$, we find that if $x \in (-1,1]$,

$$f(x) = \lim_{n \to \infty} S_n(x) = (1 - x) \sum_{k=0}^{\infty} s_k x^k$$
.

2. Let $\varepsilon > 0$ be given. Since $\lim_{n \to \infty} s_n = 0$, there exists N > 0 such that $|s_n| < \frac{\varepsilon}{2}$ for all $n \ge N$. Choose $0 < \delta < 1$ such that $\delta \sum_{k=0}^{N-1} |s_k| < \frac{\varepsilon}{2}$. Then if $1 - \delta < x < 1$,

$$|f(x)| \leq |1 - x| \sum_{k=0}^{N-1} |s_k| |x|^k + |1 - x| \sum_{k=N}^{\infty} |s_k| |x|^k$$

$$\leq \delta \sum_{k=0}^{N-1} |s_k| + \frac{\varepsilon}{2} |1 - x| |x|^N \sum_{k=0}^{\infty} |x|^k < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} |1 - x| \frac{1}{1 - |x|} = \varepsilon.$$

Therefore, $\lim_{x\to 1^-} f(x) = 0 = f(1)$ which shows that f is continuous at 1.

3. If $s = \sum_{k=0}^{\infty} a_k \neq 0$, we define a new series $\sum_{n=0}^{\infty} b_n x^n$ by $b_0 = a_0 - s$ and $b_n = a_n$ for all $n \in \mathbb{N}$. Then $g(x) = \sum_{n=0}^{\infty} b_n x^n$ also converges for $x \in (-1,1]$ and satisfies that g(1) = 0. Therefore, 1 and 2 imply that g is continuous at 1; thus $\lim_{x \to 1^-} g(x) = 0$. By the fact that g(x) = f(x) - s, we conclude that

$$\lim_{x \to 1^{-}} f(x) = s = \sum_{n=0}^{\infty} a_n = f(1).$$

Problem 5. Let $\delta: (\mathscr{C}([-1,1];\mathbb{R}), \|\cdot\|_{\infty}) \to \mathbb{R}$ be defined by $\delta(f) = f(0)$. Show that δ is linear and uniformly continuous.

Proof. Let $c \in \mathbb{R}$ and $f, g \in \mathcal{C}([-1, 1]; \mathbb{R})$. Then

$$\delta(cf + g) = cf(0) + g(0) = c\delta(f) + \delta(g)$$

which shows that δ is linear on $\mathscr{C}([-1,1];\mathbb{R})$.

For the uniform continuity of δ , let $\varepsilon > 0$ be given. Choose $\delta = \varepsilon$. Then if $||f - g||_{\infty} < \delta$, we have

$$|f(0) - g(0)| \le ||f - g||_{\infty} < \delta = \varepsilon$$

which implies that δ is uniformly continuous.

Problem 6. Let (M,d) be a metric space, and $K \subseteq M$ be a compact subset.

- 1. Show that the set $U = \{ f \in \mathscr{C}(K; \mathbb{R}) \mid a < f(x) < b \text{ for all } x \in K \}$ is open in $(\mathscr{C}(K; \mathbb{R}), \| \cdot \|_{\infty})$ for all $a, b \in \mathbb{R}$.
- 2. Show that the set $F = \{ f \in \mathscr{C}(K; \mathbb{R}) \mid a \leqslant f(x) \leqslant b \text{ for all } x \in K \}$ is closed in $(\mathscr{C}(K; \mathbb{R}), \| \cdot \|_{\infty})$ for all $a, b \in \mathbb{R}$.
- 3. Let $A \subseteq M$ be a subset, not necessarily compact. Prove or disprove that the set $B = \{f \in \mathscr{C}_b(A;\mathbb{R}) \mid f(x) > 0 \text{ for all } x \in A\}$ is open in $(\mathscr{C}_b(A;\mathbb{R}), \|\cdot\|_{\infty})$.

Proof. 1. Let $g \in U$. By the Extreme Value Theorem, there exists $x_0, x_1 \in K$ such that

$$g(x_0) = \inf_{x \in K} g(x)$$
 and $g(x_1) = \sup_{x \in K} g(x)$.

Therefore, $a < \inf_{x \in K} g(x) \le \sup_{x \in K} g(x) < b$. Let $r = \min \{b - \sup_{x \in K} g(x), \inf_{x \in K} g(x) - a\}$. Then r > 0. Moreover, if $f \in B(g,r)$ and $x \in K$, we have

$$|f(x) - g(x)| \le \sup_{x \in K} |f(x) - g(x)| = ||f - g||_{\infty} < r.$$

Therefore, if $f \in B(g,r)$, by the fact that $r \leq b - \sup_{x \in K} g(x)$ and $r \leq \inf_{x \in K} g(x) - a$, we conclude that if $x \in K$,

$$a \leqslant \inf_{x \in K} g(x) - r \leqslant g(x) - r < f(x) < g(x) + r \leqslant \sup_{x \in K} g(x) + r \leqslant b$$

which implies that $f \in U$. Therefore, $B(g,r) \subseteq U$; thus U is open.

- 2. Let $\{f_n\}_{n=1}^{\infty}$ be a sequence in F such that $\{f_n\}_{n=1}^{\infty}$ converges uniformly to f on K. Then $f \in \mathcal{C}(K; \mathbb{R})$. Moreover, by the fact that $a \leq f_n(x) \leq b$ for all $x \in K$ and $n \in \mathbb{N}$, we find that $a \leq f(x) \leq b$ for all $x \in K$ since $f(x) = \lim_{n \to \infty} f_n(x)$. This implies that $f \in F$; thus F is closed (since it contains all the limit points).
- 3. Consider the case A=(0,1). Then the function f(x)=x belongs to B; however, for every r>0, the function $g(x)=f(x)-\frac{r}{2}$ belongs to B(f,r) since

$$||f - g||_{\infty} = \sup_{x \in (0,1)} |f(x) - g(x)| = \frac{r}{2} < r.$$

However, $g \notin B$ since if $0 < x \ll 1$, we have g(x) < 0. In other words, there exists no r > 0 such that $B(f, r) \subseteq B$; thus B is not open.