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Problem 1. Determine which of the following real series )] g converge (pointwise or uniformly).
k=1

Check the continuity of the limit in each case.

1 (z) = 0 ife <k,
CIREIT (DR it >k
% if |z| < k,
— if 2] > k.
X

(—DF
3. gr(x) = T cos(kx) on R.

NgE

Proof. 1. By the definition of g, we find that the partial sum S, (z) =
neN,

gr(x) satisfies that for all

k=1

-1 ifze(1,2)u(3,4u--u(2n—1,2n],
Son() _{ 0 otherwise,

and

Son1(2) = -1 ifze(1,2]u3,4u---u(2n—3,2n—-2] U (2n — 1,0),
n—1\T) = 0 otherwise.

Therefore, {S,}7_; converges pointwise to the function

) = -1 ifze(1,2]u(3,4u---u(2n—3,2n—-2] U -,
Y71 0 otherwise

or more precisely,

S(z) = Z Lok—1,28 () -
k=1

The convergence is uniformly on any bounded subset of R, and the limit function S has dis-

continuities on N.

1 a0
2. Let M, = = Then sup |gx(x)| < My and >, Mj, converges (by the integral test). Therefore,
zeR k=1

o0
the Weierstrass M-test implies that > g, converges uniformly on R.
k=1

a0
3. If x = (2n + 1) for some n € Z, then cos(kx) = (—1)* for all k € N; thus > gp(z) diverges at
k=1
x = (2n+ 1)7 (by the integral test).



Now suppose that = ¢ {(2n + 1)m|n € Z}. Let S,(x) = Y (—1)Fcos(kz). Then S,(z) =

1

k=
>, cos(k(x +m)) and
k=1

251n$+7r5n(x):;[sin(k:—l—;)(x—i—ﬁ)—sin(k:—;)(x—f—ﬁ)}
. 1 e rtT
—81n(n+§)(x+7r) sin—5—;
thus 1) ( 1
—1)"cos(n+3)xr 1
Sp(z) = Y ~ 5 VeeR\{(2n+ )7 |neZ}.

The equality above shows that

Su(2)] € —— 4~ VzeR{@n+ r|neZ),

T 2lcosZ| 2

o0
which is bounded independent of n. The Dirichlet test then shows that )] gx(z) converges for
k=1

o0
all x € R\{(2n + 1)7 |n € Z}. Therefore, >, gy converges pointwise on R\{(2n + 1)7 |n € Z}.
k=1

Let A < R be a set satisfying that

d(z,{(2n+ )r|neZ}) =inf{|lr—y||lye {2n+1)n|neZ}} >0 VeeA.

Then the computation above shows that |S,(z)| < R = 2’15 + % forall z € A. If n > m,
COS 5
we have ’
Z cos(kx) = Z — [Sk(z) — Sp_1(z)]
k=m+1 \/> k=m+1 k
= 1 = 1
= > =S(r) = > —=Sa()
k=m+1 k k=m+1 k
n 1 n—1 1
= Y —S(z) - Sk(z)
homir VE o VE 1
1 1 ool 1
=5,(2) ~ ————=5(0) ;(ﬂ —)Si(@)
thus if x € A,
b (=1)k ‘ 1 1 (= 1 2R
cos(kx)| < |— + + - R =
‘k:;H NG (k) L/ﬁ m+1 k:;H(\/E k+1>] m+1

2
Therefore, for a given € > 0, by choosing N > 0 satisfying _ 2R < ¢ we conclude that

VN +1

‘ Z ( COS(]CQ?)‘<€ whenever n >m > N and z € A.



a0
By the Cauchy criterion, Z gr converges uniformly on A; thus Z gx is continuous at
k=1
every point at which the serles converges. =

o0
Problem 2. Let {a;}", = R be a real sequence, and f(x) = Y. azz”® be a power series with radius
k=0

of convergence R > 0. Let s,(z) = > apz® be the n-th partial sum, R,(z) = f(z) — s,(), and
k=0

a0
g(x) = Y kapz*~t. For x, 29 € [—p, p| € (=R, R), where z # x¢, write
k=1

f(x) = flzo) o) = $n () = $n(20) Ro(2) — Ru(xo)

()

— 57,(0) + (s, (20) — g(w0)) +

T — X T — X T — X
1. Show that
R,(r) — R, (x
() (0>‘\ Z k‘ak|pk1
= %o k=n+1
and use the inequality above to show that lim o) = flzo) _ g(xo).

T—>T( r — X0
2. Generalize the conclusion to complex power series: suppose that {ax};”, < C and the power
a0

0¢]
series . azz" has radius of convergence R > 0; that is, Y. a2 converges for all |z| < R but
k=0 k=0

. . 1 & .
for each n € N there exists 2, with |z, — ¢| > R+ — such that Y a;z" diverges. Show that
n k=0

d a0 e¢]
e Z apz® = Z ka2 Vi|z| < R.
k=0 k=

Assume that you have known di S apzt = Y kapz*! for all n e N U {0} (this can be proved
Z k=0 k=1

using the definition of differentiability of functions with values in normed vector spaces provided
in Chapter 5).

0
Proof. Let R be the radius of convergence of the power series > apz*.
k=0

o0
Claim: The series Y. k|ag|p*~! converges for all 0 < p < R.

k=1
0

To see the claim, we note that for each 0 < r < R, > ayr* converges; thus hm apr® = 0. This
k=0

implies that the sequence {a;r*}?_, is bounded for all 0 < r < R. Let M(r) denote a real number

satisfying |axr*| < M(r) for all k € N U {0}. Then for 0 < p < R, we choose r so that 0 < p <7 < R

so that
O O P\ F1 O P\ F1
Z klag| "t = Z klag|r* (—) < M(r) Z k;(—)
k=1 k=1 r =1 "

where the convergence of the series on the right-hand side can be obtained by the ratio test ((5) of
Theorem 2.70). The claim is then established by the comparison test ((2) of Theorem 2.70).

0
1. Since R,(z) = > apa® converges for all x € (—R, R), for x # z we have
k=n+1
R,(z) — R,(x 1 = =
() (z0) _ Dlat —af) = > a(@ 42 Pao + -+ aal + af )
L= o =0 k=n+1 k=n+1



thus if z, 29 € [—p, p| € (=R, R) and x # xo,

Rn-flf _Rn T = - - h a
' ) = Bl < S o (Jol + 2ol + -+ [zl 2 + ol )
T —Zo k=n-+1
0]
< Z kla|p*".
k=n+1

Let € > 0 be given. By the claim above there exists N > 0 such that

0 o0
Z klag||zo)* ™ < % and Z Elag|p" ! < %.

k=n+1 k=n+1

Therefore, (%) implies that

z)— flz Splx) — s, R,(x) — R,(x
f( ) f( 0)—g($0)’< ( ) (0)—87/1(370) +‘S,/L(£Co)—g($o)‘+‘ ( ) (0)
T — X T — X T — o
a0 e}
< 5n(®) = snl@o) _ st (zo)| + Z kapzh ™| + Z klag|p"
T — Zo k=n+1 k=n+1
Sn(x) — $p (o) , 2e
< - -
T — X sa(@0)| + 3
thus
- n — °on 2
lim sup Jl@) = Jao) — g(xo)| < limsup 5n(®) = 5n(20) — s, (zo)| + =
T—x0 Tr — X r—xQ r — To 3
n — 9n 2
— lim |2 (z) = snlzo) _ S;L(xo)‘ L.
-z T — T 3
Since £ > 0 is given arbitrarily, we find that lim W — g(:vo)‘ = 0 which shows that
T—T0 — Xp
lim L8 =S @0) _ oy ;

T—To T — Xo

0
Problem 3. Let {a;};2, = C, c € C, Y ar(x — ¢)* be a power series with radius of convergence

k=0
0

R > 0; that is, > ax(x — ¢)¥ converges for all z € B(c, R) but for each n € N there exists z,, with
k=0
0
ay(z, — ¢)* diverges. Let K < B(c, R) be a compact set. Show that

1
|z, — ¢| > R+ = such that
n k=0

0
1. The power series Y. ax(x — ¢)* converges uniformly on K.
k=0
a0
2. The power series . (k+1)ay;1(z—c)* converges pointwise on B(c, R), and converges uniformly

k=0
on K.

Proof. 1. Since K < B(c, R) is compact, there exists > 0 such that K < Blc, p] € B(c, R). In fact,

o0
p = sup |z — ¢| will do the job. It then suffices to show that > ay(z — ¢)* converges uniformly
veK k=0



0
on Ble,p]. Let r = # Then ¢ + r € B(c, R) so that the series Y ar* converges; thus

k=0
Jim ayr® = 0. Therefore, there exists M(r) > 0 such that
—o0

laglr* < M(r)  VkeN.

Since
o0

Sl = Yl (2) <m0 3 (2)"

k=0 k=0 k=0

A

and the series on the right-hand side converges because of the geometric series test ((1) of
0¢]
Theorem 2.70), the comparison test shows that > |ax|p* converges. Therefore, for each & > 0

k=0
there exists N = N(g) > 0 such that

0

Ddarlet < ¥n=N(e).

k=n+1
As a consequence, for a given ¢ > 0, if x € Blec, p] and n > m > N(e),

n

Z ap(z — c)*

k=m+1

n

< Z \ak]pk <ée

k=m-+1

0

which, by the Cauchy criteria, shows that the power series Y ax(z — ¢)
k=0

k¥ converges uniformly

on Ble, p).
2. The proof of the pointwise convergence on B(c, R) is exactly the same as the claim in Problem

E, and the proof of the uniform convergence on K is the same as the proof in part 1, and we

omit here. o

0 0
Problem 4. Suppose that the series >; a, =0, and f(z) = ) a,2” for —1 < 2 < 1. Show that f

is continuous at x = 1 by complete the following.
1. Write s, = ag+ a1 + -+ a, and S, (x) = ap + a1z + - - - + a,x™. Show that

Sp(z) = (1 —z)(s0+ 812+ + 812" ) + 5,2"
Q0
and f(z) = (1 —x) > s,z™.
n=0

2. Using the representation of f from above to conclude that lim f(x) = 0.
Tz—1—

0
3. What if )] a, is convergent but not zero?

n=0



Proof. 1. Let s, =ag+a;+---+a, and S,(z) = ap + a1x + - - - + a,z".

n n n
Sp(z) = Z apzr® = ag + Z aprt = so + Z(Sk — Sp_1)xk
k=0 k=1 k=1

n n n n—1
=50+ Z spak — Z spqxt = Z spzt — Z spztt
k=1 k=1 k=0 k=0

n—1 n—1

k k

= s,x + Spx” — X Spx
k=0 k=0

=(1—a)(so+ 812+ + 812" ) + 52"
Therefore, by the fact that lim s, = 0, we find that if z € (-1, 1],
n—ao0

0

f(z) = lim S,(z) = (1 — ) Z spa’ .

n—00
k=0

2. Let € > 0 be given. Since lim s, = 0, there exists N > 0 such that |s,| < % for all n > N.

n—ao0

N-1
Choose 0 < 6 < 1 such that § >} |si| < % Thenifl -6 <z <1,
k=0

N-1 0
[f@)] < U= D] sillel* + 11 =2 ) |silll*
k=0 k=N

o]

N—-1
€ € € 1
<5Z]sk]+—]1—$\|x|NZ\x\k<——{——]1—27\ —c
= 2 = 2 2 1—|z|

Therefore, lim f(z) =0 = f(1) which shows that f is continuous at 1.

r—1~

o0 0¢]
3. If s = > ap # 0, we define a new series Y. b,z" by by = a9 — s and b, = a, for all n € N.
n=0

k=0 =
a0
Then g(z) = >, b,a™ also converges for z € (—1, 1] and satisfies that g(1) = 0. Therefore, 1
n=0
and 2 imply that g is continuous at 1; thus lim g(x) = 0. By the fact that g(x) = f(x) — s,
z—1—
we conclude that .
l' = p— n = 1 .
lim f(z) =s ;}a f() o

Problem 5. Let § : (¢([-1,1];R),| - |) — R be defined by §(f) = f(0). Show that § is linear and

uniformly continuous.

Proof. Let ce R and f,g € €([—1,1];R). Then

d(cf +g) = cf(0) +9(0) = cd(f) + 6(g)
which shows that ¢ is linear on €'([—1, 1]; R).

For the uniform continuity of 0, let € > 0 be given. Choose d = ¢. Then if || f — g|, < d, we have

[£(0) = g(O)] < If =gl <d=¢

which implies that ¢ is uniformly continuous. D



Problem 6. Let (M, d) be a metric space, and K € M be a compact subset.

1. Show that the set U = {f € ¢(K;R)|a < f(z) <bfor all z € K} is open in (¢(K;R), | - [)
for all a,b e R.

2. Show that the set F = {f € €(K;R)|a < f(z) <bforall z € K} is closed in (¢(K;R), | |)
for all a,b e R.

3. Let A < M be a subset, not necessarily compact. Prove or disprove that the set B = { fe
€, (A;R) | f(x) > 0 for all z € A} is open in (G,(A;R), |- o).

Proof. 1. Let g € U. By the Extreme Value Theorem, there exists g, x; € K such that

g(@o) = inf g(x)  and  g(z1) =supg(x).
reK zeK

Therefore, a < inf g(z) < sup g(z) < b. Let 7 = min {b — sup g(z), inf g(z) — a}. Then r > 0.
zeK zeK zeK zeK

Moreover, if f € B(g,r) and x € K, we have
[f(z) — g(@)| < sup [f(@) = g(@)| = |f —glw<7.
xTre

Therefore, if f € B(g,r), by the fact that » < b —sup g(x) and r < in}{_g(x) — a, we conclude
zeK z€
that if x € K,

a < inlgg(x)—rég(x)—r<f($) <g(r)+r<supg(zr) +r<b
x€ reK

which implies that f € U. Therefore, B(g,r) < U; thus U is open.

2. Let {f.}?°; be a sequence in F such that {f,}*; converges uniformly to f on K. Then

f € €(K;R). Moreover, by the fact that a < f,(z) < b for all z € K and n € N, we find that

a < f(z) <bforall x € K since f(z) = lim f,(x). This implies that f € F; thus F' is closed
n—o0

(since it contains all the limit points).

3. Consider the case A = (0,1). Then the function f(x) = z belongs to B; however, for every
r > 0, the function g(z) = f(x) — g belongs to B(f,r) since

)
I = gl = sup |f(x) — g@)] = 5 <7
ze(0,1)

However, g ¢ B since if 0 < 2 « 1, we have g(z) < 0. In other words, there exists no
r > 0 such that B(f,r) € B; thus B is not open. o



