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Problem 1. Define B to be the set of all even functions in the space € ([—1, 1];R); that is, f € B
if and only if f is continuous on [—1,1] and f(x) = f(—=z) for all z € [-1,1]. Prove that B is

closed but not dense in € ([—1, 1]; R). Hence show that even polynomials are dense in B, but not in

€ ([-1,1];R).

Proof. Let {fi}7, be a sequence in B and {fi}72, converges uniformly to f on [—1,1]. Then f is

continuous. Moreover, for each = € [—1, 1],
flz) = lim fi(z) = lim fi(=z) = f(=2);
k—o0 k—o0
thus f is even. Therefore, f € B which shows that B is closed. However, B is not dense in B since

there exists no f € B satisfying that

1
AV =g

since

f(=1) + 1|} = max{|f(1) — 1

: N +1)) =1,

max |f(z) — x| = max{|f(1) — 1

Let A denote the collection of even polynomials, and f be an even continuous function. Then

the Weierstrass Theorem implies that there exists a sequence of polynomial {p,}>_; such that

lim max | f(v/z) — pa(z)| = 0.

n—a z€(0,1]

For each n € N, define ¢, : [~1,1] — R by ¢,(z) = p,(2?). Then {¢,}*, < A and

lim max [f(z) — ¢u(z)| = lim max |f(z) — pa(2?)| = lim max |f(v/z) — pu(z)| =0

n—o ze[—1,1] n—0 zel0,1] n—0a0 z€(0,1]

which shows that {g,}’°; converges uniformly to f on [—1,1]; thus A is dense in B. On the other
hand, since A € B, we must have A € B ¢ %([—1,1];R) which implies that A is not dense in
Cg([—l,l];R). O

Problem 2. Let f:[0,1] — R be a continuous function.
1. Suppose that :
f f(z)z"dx =0 VneNu{0}.
Show that f =0 on [0, 1]. O
2. Suppose that for some m € N,
flf(a:)x"dx:O Vne{0,1,--- ,m}.
0

Show that f(z) = 0 has at least (m + 1) distinct real roots around which f(x) change signs.



Proof. 1. By the Weierstrass Theorem, for each & € N there exists a polynomial p; such that
1
If = prleo < % Since J f(z)x™ dz = 0 for all n € N U {0}, we find that
0

Lf(ﬂf)pk(ﬂf)deO VkeN.

Note that f(f — pr) converges to the zero function uniformly on [0, 1] since

1
IFCf =2l < [ flloollf = Prlloe < ZUFloc — 0 as & — o0

thus by the fact that

1
0

1
| s in = | s@) (5@ - o) do.
0
1
we find that J f(x)?dx = 0. Therefore, by the continuity of f, we conclude that f = 0 on
0
[0, 1].
2. Let

D = {k € N’if fe€(0,1];R) and f changes signs around 0 < ag < --- < o < 1,

1=

then y = f(z) | [(z — a;) does not change sign} :

1

<.
Il

Suppose that f € €([0,1];R) changes sign only around 0 < a7 < 1. Then y = f(x)(z — ay)
does not change sign so that 1 € D. Assume that £ € D. If f changes signs only around

0<a; <@y < <ager <1, then the function y = f(x)(x — ayy1) changes signs only around

k k+1
0<a; < - <a<lythusy = f(z)(x — 1) [[(x — ;) = f(z) [ [ (z — ;) does not change
j=1 j=1

sign which shows that £k + 1 € D. By induction, we conclude that D = N.

Now suppose the contrary that f(z) = 0 has at most m distinct real roots 0 < a; < -+ <
ar < 1, where 0 < k < m, around which f(x) change signs. Then y = f(x) ﬁ(x — a;) does
not change sign. W.L.O.G., we assume that f(z) ﬁ(:p —a;)=0forallze [O,jI]l Then by the
fact that -

flf(x)x"dx:O Vne{0,1,---,m}.
0

and k < m, we find that
k

Jolf(m)n(x_aj)dx:o;

J=1

thus the sign-definite property and the continuity of the function y = f(x) [[(z — a;) im-
j=1
k k
plies that f(z) [[(z — «;) = 0 for all € [0,1]. Therefore, f(z) [[(z — a;
j=1

Jj=1

k
) = 0 for all

x € [0, 1\{aq, g, - ,ax} or equivalently, f(z) = 0 for all x € [0,1\{aq, a9, - ,ax}. The
continuity of f further implies that f = 0 on [0, 1], a contradiction to that f has at most m

distinct real roots around which f changes signs. =



Problem 3. Let f:[0,1] — R be continuous. Show that

1 1

lim | f(x)cos(nx)dr =0 and lim | f(x)sin(nz)dx =0.

Proof. We only show the latter case since the proof of the former case is the same.
1 1

We first show that lim [ z*sin(nz)dz = lim | 2¥cos(nz)dx =0 for all k e NuU {0}. Let

n—o0 0 n—0o0 0

1 1
lim | 2Fsin(nz)dr = lim | 2" cos(nz)dr = O} :

D:{keNu{O}

Then 0 € D since

z=1 cos(0 —cosn
= — 0 as n—

1
f sin(nz) de = ———=
0

and
r=1 sinn — sin0
=— (0 as n— .

Jl cos(nx) dr = sin(na)

0 n o la=0 n
Suppose that k € D. Then
1 k+1 =1 k 1 1
J 2* 1 sin(nax) do = _ 2 cos(na) M f z¥ cos(nx) dx
0 n 2=0 n o Jo
E+1
- B, il J 2* cos(nz)dr — 0 as n — oo.
n n o Jo

By induction, D = N u {0}.
Having established that D = N u {0}, we immediately conclude that

1
lim | p(z)sin(nz)dxr =0 for all polynomial p.

n—o0 0

Let € > 0 be given. By the Weierstrass Theorem, there exists a polynomial p such that |[f —pl, < %
1

By the fact that lim | p(x)sin(nz)dz = 0, there exists N > 0 such that

n—w0 Jo
‘J ) sin(nz dx‘ < g whenever n > N.
Therefore, if n > N,
’ f f(z) sin(nz) dx ‘ J sm nx dx‘ + ‘ J x) sin(nz) dx

<j If ~plodo+ 5 <
0

1
which establishes that lim | f(z)sin(nz)dz = 0. o

n—ao0 0



Problem 4. Put py = 0 and define

pre1(x) = pr(x) + % VkeNu{0}.

Show that {py};~; converges uniformly to |z| on [—1,1].
Hint: Use the identity

o] — pica () = [Jo] — put)] [1 - 2 (+)

to prove that 0 < px(z) < pry1(x) < |z if |z] < 1, and that

|rc|>’“ 2
— < —_ PR
o = pu(@) < el (1= ) <

if || <1
Proof. Let D = {k € N|0 < py() < pry1(z) < |z| Vo € [-1,1]}. We first note that if 0 < p(z) < |z]
for all x € [—1, 1], then
. . . 22 — pi(x) )
1. using the iterative formula, pgiq1(z) — pr(z) = fk > 0 for all z € [—1, 1] which shows
that pry1(z) = pi(z) = 0.

2. using (*) we find that |z| — pyi1(z) = [|z|— pr(z)] (1= |z]) = 0 which shows that pyi1(z) < |z.

Therefore, D is indeed the set {k € N|0 < pp(x) < |z| Vo € [-1,1]}. The fact that p(z) = °

2
2
implies that 1 € D, while if k € D implies that k£ + 1 € D. By induction, D = N.
Using (x) again, we find that

0 < |z] — pr(z) = Ux| —pk—l(xﬂ [1 - WW} < [|$| —Pk—l(xﬂ (1 - m) VkeN;

2 2
thus
0< - 1=y < e - -l
2] = pr(@) < [l = per(@)] (1= F) < [Jl2] = pra(@)] (1 - 5)
x x
< [l - @) (1= D = 1al(1 - 2",
_ lalyw _
By the fact that || (1 5 )< | for all z € [—1, 1], we conclude that
li =0
i o~
which shows that {py};2; converges uniformly to y = |x| on [—1,1]. o

Problem 5. Suppose that p, is a sequence of polynomials converging uniformly to f on [0, 1] and f
is not a polynomial. Prove that the degrees of p,, are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points xg, -+ ,zn

via Lagrange’s interpolation formula

k=0 ()
where mi(x) = (x — xo)(x — 1) - (x —zn) /(x — x8) = 1<171N(a: — ;).



Proof. Suppose the contrary that there exists a sequence of polynomial {p,}>; which converges
uniformly to f on [0, 1] and deg(p,) < N for all n e N. W.L.O.G. we assume that

P — fllow <1 VneN.

Then |p,(z)| < [ flo + 1 for all z € [0,1] and n € N.

Since deg(p,) < N, using the Lagrange interpolation formula with 2, = k/N, we have

0) = Y mle) 2 = S
Pn\T) = TE(X = Aind” .
k=0 () =0 ’

Let [N/2] denote the largest integer smaller than N /2. Note that
i )|—k k-1 11 N-k _ [N/2)
TITNTTN N'N N~ NN

so that N

pn(xk)’<:(|fa)+-1)ﬁJ

N
Moreover, () = 3, c;a? with |e;| < Cf 5. Therefore,
i=0

(fllo +1)NY
[N /2]!

|ajn| = <(N+1) CiNjg  V0<j<NandneN.

4 C'pn@k)
kz_;) Jﬂ'k(dik)

In other words, the coefficients of each p, is bounded by a fixed constant. This allows us to pick a

subsequence {py, }7=; of {p,}; such that

klim @jn, = aj exists for all 0 < j < N.
—00

N .

This implies that {p,, },~; converges uniformly to the polynomial p(z) = >] a;27 since {py,, };-, con-
7=0

verges pointwise to p and {p,}>_, converges uniformly on [0, 1] so that {p,, }}~; converges uniformly

on [0, 1]. On the other hand, since {p, }**_; converges uniformly to f on [0, 1], we conclude that f = p,

a contradiction. o

Problem 6. Consider the set of all functions on [0, 1] of the form

h(x) = Z a;e’”
j=1
where a;, b; € R. Is this set dense in ([0, 1];R)?

Proof. Let A= {Zn a;ebi®

j=1

aj,bj € R} Then

1. A is an algebra since if f(x) = >, a;e%” and g(x) = Y, cre®®, we have
j=1

n m n m

bix drr\ __ bi+dp)r Byx

(Sa) Baaet) = 32 5 aetrrae = 3 g
7=1 k=1 j

for some Ay, By € R, and clearly, f + g€ A and cf € A if ce R.



2. A separates points of [0, 1] since the function f(z) = e* € A which is strictly monotone so that
f(x1) # f(x2) for all zy # xs.

3. A vanishes at no point of [0, 1] since the function f(x) = e* € A which is non-zero at every
point of [0, 1].

By the Stone Theorem, A is dense in € ([0, 1]; R). a



