Exercise Problem Sets 7

Apr. 03 2022
Problem 1. 1. Let f: [—m, 7] be a Riemann integrable function. Show that
hmJ f(x coslmdx—hm f(z)sinkzdx =0.
k—o0 k—ow J_ .
2. Show the Riemann-Lebesgue Lemma
If f:[—m, 7] — R is an integrable function, then
lim f( )cos kx dx = hm f(z)sinkxdzr =0.
k—00 k—oo J_ .
Hint: First show that for every e > 0 there exists a Riemann integrable function g : [—m, 7] —

R such that f ‘f(x) — g(:v)‘ dr < &, then apply the conclusion in 1.

Proof. 1. Let € > 0 be given. Then by Lemma 6.63 in the lecture note, there exists g € € (|—m, 7]; R)
such that
f(z) <glx) < sup f(z) Vaze|[-mn] and f(z)dx > J g(x)dr — .

zE[—7,7] -7 3
By the Weierstrass Theorem, there exists a polynomial p such that
lg = ple < o
g = Plloo 6n

Since p is a polynomial, integrating by parts (or by Exercise Problem ?7) we can show that
us T

lim p(x)coskrdr = lim | p(z)sinkzdr =0.

k—o0 s k—0o0 .

Therefore, there exists N > 0 such that if &k > N,
‘J p(z) COSk‘Zde) < % and ‘J p(m)sink,’xd:p‘ < g.

—Tr

Therefore, if £k > N,
’ ) cos kx dx‘ < ‘f [f(z) — g(z)] cos kz dx‘ + ‘J [9(z) — p()] cos kx dx‘

+

f p(z) cos kx da:‘

—T

< [ 1) -swlde+ [ lg-plodes

<£r [g(a:)—f(a:)}dm—l—Jwada:—l—g §+§ 3

and similarly,

‘J f(z)cos kx dx‘ <¢e whenever k> N.

—T



2. Let gp(x) = (fT A k)(z) — (f~ A k)(z). Then

[ 1 -awlir=[ 11w - 50 - i)

—T

J‘JH —(fTAE)( )‘da:%—[j ‘f_(x)—(f_/\k)(x)\da:;

thus by the fact that

s s s

klgrolo ) (ftAk)(z)dx = ) fH(x)dr and lgrolo (fAk)(zx)de = _Trf(x)dq;

we find that there exists K > 0 such that

J |f(z) = g(2)] dox < g whenever k> K.

Let h = gk. Note that h is Riemann integrable on [—m, 7]; thus part 1 implies that there exists
N > 0 such that if k > N,

’J ) cos kxdx’ < % and ‘J h(x)sin kx dw’ < g.

Therefore, if k£ >

IJ f(x Cosk:md:v—’J }coskxdm‘—i—‘f cosk::zd:v‘
<J | ‘d:L‘-f—)J coskxdx‘<g+§=6

and similarly,

‘J f(z)sinkx dx‘ <¢e whenever k> N. o

Problem 2. Suppose that f € €%*(T); that is, f is 2r-periodic Hélder continuous function with
exponent « for some « € (0,1]. Show that (without using the Berstein Theorem) the Fourier series

of f converges pointwise to f, by completing the following.

1. Explain why it is enough to show that s,(f,0) — f(0) as n — c0. Also explain why we can
assume that f(0) = 0.

2. Show that |
lim (sn(f, 0) - - f( )Smm dx) ~0.

n—o0 e
Therefore, it suffices to show that lim f(z )Sm " dr =0if f (0) =

n—w J_,

3. Show that if f € €%*(R) and f(0) = 0, then the function y = fix) is integrable. Apply the

Riemann-Lebesgue Lemma to conclude that s,(f,0) — 0 as n — oo.



Proof. 1. Suppose that one can show that if g is a 27-periodic Holder continuous function with
exponent « € (0,1], then s,(g,0) — ¢(0) as n — . If f is 2w-periodic Holder continuous
function with exponent o € (0,1] and a € R, let g(x) = f(x + a). Then g is a 2m-periodic

Holder continuous function with exponent «; thus s,(g,0) — ¢(0) as n — .

On the other hand, let {c,};2, and {sg}2, be the Fourier coefficients of f and {¢x}7, and

{5k}72, be the Fourier coefficients of g. Then

1 (" 1 ("
Cp = — flx+a)coskrdr =— f(x)cosk(zx —a)dz
TJ)_, TJ)_,
1 s
=— f(x)(cos kx cos ka + sin kz sin ka) dx
™ —Tr

= ¢ cos ka + si sinka .

Note that
g, _% Z ¢k cos(k - 0) + 55 sin(k - 0)] Z (cx coska + sy sinka) =s,(f, a);
Py

thus the fact that ¢(0) = f(a) implies that s,(f,a) — f(a) as n — co. Moreover, if f(0) # 0,
we consider the function h(z) = f(z) — f(0). Then h(0) = 0 and s,(f,z) = sp(h,z) + f(0)
so that if the s,(h,0) converges to 0, then s,(f,0) converges to f(0). In other words, we can
further assume that f(0) = 0.

2. Note that s,(f,z) = (D, * f)(z); thus

g sin(n + %)z
2(f,0) = ——2dx.
(0= [ T
Therefore,
1 sin ne sm n+ i)z _ sinnz
W(f,0) = = | a
salf.0= 2| @ = | o[ -
f It sm NI COS § —.i—szm 5 CoSnL  sin nx) e
2sin 2 x
1 COS 3 1
% f( )cosnxalac—i—7r f( )<281n— E)Sinnxdx.
Note that
cosy 1 rcosy —2sing (1l —2)—2(2 -2
1im< '2——>:lim 2 — lim ( 8) (2 48):0;
s=0\28ing T z—0 2 sin 3 z—0 2x- 3
: cosy 1Y\ . : :
thus the function y = f(x) (23‘11 - — ;) is continuous on [—m, 7]. By the Riemann-Lebesgue
my
Lemma,
4 ) 4 CoS 3 1N .
lim f( ) cosnx dr = lim f(x)( —= ——> sinnxdr =0.
n—0oo n—oo J__ 2sing
Therefore,
1
lim (sn(f,())—— f( )Smnmdx)zo. o
n—o0 v



Problem 3 (448 = %2 7 & & FAr®72 &0 % §86 P =2 L M- Y T L %f2F ). This

problem contributes to another proof of showing that the Fourier series of f converges uniformly to
fonRif fe@"T) for % < a < 1. Complete the following.

1. Let f:R — R be 2m-periodic such that f is Riemann integrable on [—m, 7|. Show that

s

]?k = —ij f(a:—i— %)e_i’“ dx

2m ),

and hence 1

fe=1- B [f(z) = fz+T)]e ™ da.

Therefore, if f € €%*(T), the Fourier coefficients fi satisfies | fk| < W.

2. Let f: R — R be 2m-periodic such that f is Riemann integrable on [—7, 7]. Show that
L ’f(a:—l—h)—f(x—h)’de: i lei112(k:h)|fk|2
7 - et '

Therefore, if f € €%(T), the Fourier coefficients fk satisfies

o0

> s’ (k)| fel” < [ [om(ry 2[R (0.1)

k=—00

3. Let f e €% (T), and p € N. Show that
2c

A | F1%0.0(mym
2 (T
> A S T oreprl

2r—lg|k|<2P

. T .
Hint: Let h = 271 0 (@)

o
4. Show that if f € €%%(T) for some % <a<1,then > |fx| < oo; thus Problem B implies that

k=—00
the Fourier series of f converges uniformly to f on R.

Problem 4. Prove Lemma &8.15 in the lecture note.

Proof. Tt suffices to show that

swp (1)~ F)] < (14 %) swp_[(2) ~ f)]

|z —y|<d1 lz—y|<d2
for §; > d5. Suppose that d; > do > 0, and |z — y| < §;. Let N be the largest integer smaller than

) . . . . e
5—1; that is, IV is the unique integer satisfying that
2

——1<N<—. (%)



Then there exist N points xq, 22, -+ ,xy such that r < x; <z <--- < xy <y and
v — 21| <o, |y—zNn| < and |z — x| <de VI<i<N-—-1;

thus the triangle inequality implies that

f(x) = f(y)] <|f(x) = fle)] +[f(y) = flan)| + Z |f () = f@ign))
< (N+1) e |f(z) = f(y)]-

The desired inequality then follows from (). D
Problem 5. Let f be a 2r-periodic Lipchitz function. Show that for n > 2,

1+ 2logn
Hf — Py * fHoo < Tﬂ\f\\%ﬂ’l(m (0-2)

and
s logn)?
15 = a0 < 2B . 03)

Hint: For (@), apply the estimate

1
F,(x) <min{n+ T }

2r 7 2(n+ 1)

in the following inequality:

(2) = Foy + fa f J f\f (2 — 9)| Fua() dy

with 0 = % For (@), use (8.2.7) in the lecture note and note that
onf M =Pl <Uf = Fox fllo

Proof. Recall that the Fejér kernel F,, is given by

1 sin? (”';1)””
if 2 ¢ {2k | ke Z},
Fu@)={ 20t D sints if o ¢ {2kn |k < 2}
L if v e {2hr|keZ}.

Therefore, by the fact that sin|z| > g|3:] for |x| < g, we find that
m

1
F,.(z) <min{n+ T }

27 7 2(n+ 1)a?

Bythefactthatf F,_1(z)dx =0 for all n > 2, we find that if n > 2 and 0 < ¢ < 7,

10)— B @) =| [ 1@ =gy~ [ 0)E— vy
[ U@ - s - ay

—T

[ @ - s - st ay

T

_ fiJrf_éJr flz— )] Fui(y) dy‘ .

T 1



Let 6 = =. Then

n

0

6 ? 0,1 g
[ 1@ = s =i Festas < [ It e dy =" [y

_fleorm 7= 7l flleor

2 n? 2n
Moreover,
T
[ @ re-lramal < [ il 5 d
o<lyl<m 5<lyl<m ny
_ 7l lgor ) fﬂldy _ 7l flgor log ™ = | flgoscr) logn
n s Y n ) n

The two inequalities above implies (@)
For the validity of (@), by the fact that

inf )Hf_p”oo <|f = Fux fleo

pePy (T

we conclude from (@) and (8.2.7) in the lecture note that

_ (3 +1logn)(1+ 2log(n + 1))

[f = sulf.9)],, < B+1logn)|f = Fux fllo < 2 ) [ f o my
and the desired inequality follows from the fact that
2
(3 +1logn)(1+ 2log(n + 1)) - 2(1+logn) Y2, i

2(n+1) N n

Problem 6. In this problem, we are concerned with the following

Theorem 0.1 (Bernstein). Suppose that f is a 2m-periodic function such that for some constant C
and a € (0, 1),
inf — <Cn™“
_int | ~pl < Cn
for alln e N. Then f € €%*(T).

Complete the following to prove the theorem.

1. Show that
[p'lee <nlple  ¥pe Zu(T). (0.4)

2. Choose p, € Z,(T) such that | f—p,|e < 2Cn~* for n € N. Define gy = p1, and ¢,, = pan —pan—1

for n € N.

o0
(a) Show that > ¢, = f and the convergence is uniform.
n=0

(b) Show that

‘qn(a:) - qn(y)| < 60n2" Y|z —y| and !qn(x) — qn(y)‘ < 12027,



(c) For any z,y € T with |z — y| < 1, choose m € N such that 27 < |x — y| < 2'™™. Then

use the inequality

f(z) = fy)] < :ij |an(2) = @)+ D [an(z) = au(v)]

to show that |f(z) — f(y)| < B|z — y|* for some constant B > 0.

Hint of 1: Suppose the contrary that there exists p € Z2,(T) such that ||p’|| > n|p|ls. By rescaling

p and relabeling points in T if necessary, without loss of generality we can assume that

[p'loc > 7, Iplee <1, and p'(0) = [p'|e -

Choose v € [—%, g] such that sin(nvy) = —p(0) and cos(ny) > 0, and define r(z) = sinn(x—~)—p(x).
Show that r has at least 2n + 2 distinct zeros in ( — T4+ 1, T++ 1) by showing that r has at

1
least one zero in (ag, ayy1), where ag, = v+ u (k+ 5) for each |k| < n, while r has at least 3 distinct
n

zeros in (a, aisyq) if 0 € (as, as11). On the other hand, the fact that r € &2,(T) implies that r has

at most 2n distinct zeros in T unless r is the zero function which leads to a contradiction.

Problem 7. 1. Let {ax}j2, be a sequence, and {b,};"; be the Cesaro mean of {a;}{_,; that is,

1 .
b, = — Y, ag. Show that if {ax};2, converges to a, then {b,}>_, converges to a.

" k=1
2. Let {fi};2, be a sequence of bounded real—valued functions defined on A, and {g,}’°_; be the
Cesaro mean of {f}{,; that is, g, = Z fr. Show that if {fi}72, converges uniformly to f

n =1
on B < A and f is bounded on B, then {g,}>, converges uniformly to f on B.

Proof. 1. Let € > 0 be given. Since lim a; = a, there exists N; > 0 such that
k—0o0

5
lax — a| < 5 whenever k> Nj.

Since lim — Z lay — a| = 0, there exists Ny > 0 such that

n—oo N
£
- Z lag — a| < 5 whenever n > N,.
n

Let N = max{Ny, No}. Then if n > N,

]bn—a\:’%Zak—a‘S%Z\ak—a\ Zlak—al+ Z]ak—a\
P -

kNl

1 & ¢ 5n—N1+1
= — = _ —< )
+n22 n c



2. Suppose that |fx(z)| < M, and |f(z)| < M for all z € B. Since {f;}7, converges uniformly
to f on B, there exists N; > 0 such that

‘fk(x)—f(llf)‘<% Vk> N, andze B.

If x € B, by the fact that

S fule) = £()] < DM+ 2) < o0,

Ny
we find that lim — > lfk = fllo = 0; thus there exists Ny > 0 such that
n—w N k=1

N1
lZ:‘fk(ac)—f(yc)‘<E whenever n > Ny and x € B.
n = 2

Let N = max{Ny, No}. Then if n > N and = € B,

n N1 n
on(2) = 7@ = [, 350 = 5] < 5 B 1) = 1@+ D ) = 1)
< g +% y g <e€;
k=N
thus {g,}>_; converges uniformly to f on B. o

Problem 8. Let f € ¥(T) and { fk}fz,w be the Fourier coefficients defined in Remark 8.2 in the

o
lecture note. Show that if > | fk| < o0, then the Fourier series of f converges uniformly to f on R.
k=—0

~ o
Proof. Let My = |fy| and >, |fi| = M. Then |s,(f, )| < M for all n € N and z € R. Moreover,
k=—00

o6}
|fre®®| < M, YzeR  and D My=M<o.
k=—0
Therefore, the Weierstrass M-test implies that the Fourier series converges uniformly on R. Suppose
that the Fourier series converges uniformly to g. Then ‘ g(x)‘ < M for all z € R; thus Problem H
implies that the Cesaro mean of {si(f,-)}=; converges uniformly to g on R. Since f € %(T), the

Cesaro mean of the Fourier series of f converges uniformly to f on R; thus f = g. a



