Problem 1. 1. Let $f:[-\pi,\pi]$ be a Riemann integrable function. Show that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = 0.$$

2. Show the Riemann-Lebesgue Lemma

If
$$f: [-\pi, \pi] \to \mathbb{R}$$
 is an integrable function, then
$$\lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} f(x) \sin kx \, dx = 0.$$

Hint: First show that for every $\varepsilon > 0$ there exists a Riemann integrable function $g : [-\pi, \pi] \to \mathbb{R}$ such that $\int_{-\pi}^{\pi} |f(x) - g(x)| dx < \varepsilon$, then apply the conclusion in 1.

Proof. 1. Let $\varepsilon > 0$ be given. Then by Lemma 6.63 in the lecture note, there exists $g \in \mathscr{C}([-\pi, \pi]; \mathbb{R})$ such that

$$f(x) \leqslant g(x) \leqslant \sup_{x \in [-\pi,\pi]} f(x) \quad \forall \, x \in [-\pi,\pi] \quad \text{and} \quad \int_{-\pi}^{\pi} f(x) \, dx > \int_{-\pi}^{\pi} g(x) \, dx - \frac{\varepsilon}{3} \, dx$$

By the Weierstrass Theorem, there exists a polynomial p such that

$$\|g-p\|_{\infty} < \frac{\varepsilon}{6\pi}$$
.

Since p is a polynomial, integrating by parts (or by Exercise Problem ??) we can show that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} p(x) \cos kx \, dx = \lim_{k \to \infty} \int_{-\pi}^{\pi} p(x) \sin kx \, dx = 0.$$

Therefore, there exists N > 0 such that if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} p(x) \cos kx \, dx \right| < \frac{\varepsilon}{3}$$
 and $\left| \int_{-\pi}^{\pi} p(x) \sin kx \, dx \right| < \frac{\varepsilon}{3}$.

Therefore, if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right| \leq \left| \int_{-\pi}^{\pi} \left[f(x) - g(x) \right] \cos kx \, dx \right| + \left| \int_{-\pi}^{\pi} \left[g(x) - p(x) \right] \cos kx \, dx \right|$$

$$+ \left| \int_{-\pi}^{\pi} p(x) \cos kx \, dx \right|$$

$$\leq \int_{-\pi}^{\pi} \left| f(x) - g(x) \right| dx + \int_{-\pi}^{\pi} \|g - p\|_{\infty} \, dx + \frac{\varepsilon}{3}$$

$$\leq \int_{-\pi}^{\pi} \left[g(x) - f(x) \right] dx + \int_{-\pi}^{\pi} \frac{\varepsilon}{6\pi} \, dx + \frac{\varepsilon}{3} < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon ,$$

and similarly,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right| < \varepsilon \quad \text{whenever} \quad k \geqslant N.$$

2. Let $g_k(x) = (f^+ \wedge k)(x) - (f^- \wedge k)(x)$. Then

$$\int_{-\pi}^{\pi} |f(x) - g_k(x)| dx = \int_{-\pi}^{\pi} |f^+(x) - f^-(x) - g_k(x)| dx$$

$$\leq \int_{-\pi}^{\pi} |f^+(x) - (f^+ \wedge k)(x)| dx + \int_{-\pi}^{\pi} |f^-(x) - (f^- \wedge k)(x)| dx;$$

thus by the fact that

$$\lim_{k \to \infty} \int_{-\pi}^{\pi} (f^+ \wedge k)(x) \, dx = \int_{-\pi}^{\pi} f^+(x) \, dx \text{ and } \lim_{k \to \infty} \int_{-\pi}^{\pi} (f^- \wedge k)(x) \, dx = \int_{-\pi}^{\pi} f^-(x) \, dx,$$

we find that there exists K > 0 such that

$$\int_{-\pi}^{\pi} |f(x) - g_k(x)| dx < \frac{\varepsilon}{2} \quad \text{whenever} \quad k \geqslant K.$$

Let $h = g_K$. Note that h is Riemann integrable on $[-\pi, \pi]$; thus part 1 implies that there exists N > 0 such that if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right| < \frac{\varepsilon}{2}$$
 and $\left| \int_{-\pi}^{\pi} h(x) \sin kx \, dx \right| < \frac{\varepsilon}{2}$.

Therefore, if $k \ge N$,

$$\left| \int_{-\pi}^{\pi} f(x) \cos kx \, dx \right| = \left| \int_{-\pi}^{\pi} \left[f(x) - h(x) \right] \cos kx \, dx \right| + \left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right|$$

$$\leq \int_{-\pi}^{\pi} \left| f(x) - h(x) \right| dx + \left| \int_{-\pi}^{\pi} h(x) \cos kx \, dx \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

and similarly,

$$\left| \int_{-\pi}^{\pi} f(x) \sin kx \, dx \right| < \varepsilon \quad \text{whenever} \quad k \geqslant N \,.$$

Problem 2. Suppose that $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$; that is, f is 2π -periodic Hölder continuous function with exponent α for some $\alpha \in (0,1]$. Show that (without using the Berstein Theorem) the Fourier series of f converges pointwise to f, by completing the following.

- 1. Explain why it is enough to show that $s_n(f,0) \to f(0)$ as $n \to \infty$. Also explain why we can assume that f(0) = 0.
- 2. Show that

$$\lim_{n \to \infty} \left(s_n(f, 0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx \right) = 0.$$

Therefore, it suffices to show that $\lim_{n\to\infty}\int_{-\pi}^{\pi}f(x)\frac{\sin nx}{x}\,dx=0$ if f(0)=0.

3. Show that if $f \in \mathcal{C}^{0,\alpha}(\mathbb{R})$ and f(0) = 0, then the function $y = \frac{f(x)}{x}$ is integrable. Apply the Riemann-Lebesgue Lemma to conclude that $s_n(f,0) \to 0$ as $n \to \infty$.

Proof. 1. Suppose that one can show that if g is a 2π -periodic Hölder continuous function with exponent $\alpha \in (0,1]$, then $s_n(g,0) \to g(0)$ as $n \to \infty$. If f is 2π -periodic Hölder continuous function with exponent $\alpha \in (0,1]$ and $\alpha \in \mathbb{R}$, let $g(x) = f(x+\alpha)$. Then g is a 2π -periodic Hölder continuous function with exponent α ; thus $s_n(g,0) \to g(0)$ as $n \to \infty$.

On the other hand, let $\{c_k\}_{k=0}^{\infty}$ and $\{s_k\}_{k=1}^{\infty}$ be the Fourier coefficients of f and $\{\bar{c}_k\}_{k=0}^{\infty}$ and $\{\bar{s}_k\}_{k=1}^{\infty}$ be the Fourier coefficients of g. Then

$$\bar{c}_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x+a) \cos kx \, dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos k(x-a) \, dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) (\cos kx \cos ka + \sin kx \sin ka) \, dx$$
$$= c_k \cos ka + s_k \sin ka .$$

Note that

$$s_n(g,0) = \frac{\bar{c}_0}{2} + \sum_{k=1}^n \left[\bar{c}_k \cos(k \cdot 0) + \bar{s}_k \sin(k \cdot 0) \right] = \sum_{k=1}^n \left(c_k \cos ka + s_k \sin ka \right) = s_n(f,a);$$

thus the fact that g(0) = f(a) implies that $s_n(f, a) \to f(a)$ as $n \to \infty$. Moreover, if $f(0) \neq 0$, we consider the function h(x) = f(x) - f(0). Then h(0) = 0 and $s_n(f, x) = s_n(h, x) + f(0)$ so that if the $s_n(h, 0)$ converges to 0, then $s_n(f, 0)$ converges to f(0). In other words, we can further assume that f(0) = 0.

2. Note that $s_n(f,x) = (D_n \star f)(x)$; thus

$$s_n(f,0) = \int_{-\pi}^{\pi} f(x) \frac{\sin(n+\frac{1}{2})x}{2\pi \sin \frac{x}{2}} dx.$$

Therefore,

$$s_n(f,0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left[\frac{\sin(n + \frac{1}{2})x}{2\sin\frac{x}{2}} - \frac{\sin nx}{x} \right] dx$$
$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{\sin nx \cos\frac{x}{2} + \sin\frac{x}{2}\cos nx}{2\sin\frac{x}{2}} - \frac{\sin nx}{x} \right) dx$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx + \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \left(\frac{\cos\frac{x}{2}}{2\sin\frac{x}{2}} - \frac{1}{x} \right) \sin nx dx.$$

Note that

$$\lim_{x \to 0} \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right) = \lim_{x \to 0} \frac{x \cos \frac{x}{2} - 2 \sin \frac{x}{2}}{2x \sin \frac{x}{2}} = \lim_{x \to 0} \frac{x \left(1 - \frac{x^2}{8}\right) - 2\left(\frac{x}{2} - \frac{x^3}{48}\right)}{2x \cdot \frac{x}{2}} = 0;$$

thus the function $y = f(x) \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right)$ is continuous on $[-\pi, \pi]$. By the Riemann-Lebesgue Lemma,

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \cos nx \, dx = \lim_{n \to \infty} \int_{-\pi}^{\pi} f(x) \left(\frac{\cos \frac{x}{2}}{2 \sin \frac{x}{2}} - \frac{1}{x} \right) \sin nx \, dx = 0.$$

Therefore,

$$\lim_{n \to \infty} \left(s_n(f, 0) - \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \frac{\sin nx}{x} dx \right) = 0.$$

Problem 3 (此題太早放,有些背景知識不足,等 §8.6 上完之後再出一次習題並再給解答). This problem contributes to another proof of showing that the Fourier series of f converges uniformly to f on \mathbb{R} if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$ for $\frac{1}{2} < \alpha \leqslant 1$. Complete the following.

1. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic such that f is Riemann integrable on $[-\pi, \pi]$. Show that

$$\widehat{f}_k = -\frac{1}{2\pi} \int_{-\pi}^{\pi} f\left(x + \frac{\pi}{k}\right) e^{-ikx} dx$$

and hence

$$\widehat{f}_k = \frac{1}{4\pi} \int_{-\pi}^{\pi} \left[f(x) - f\left(x + \frac{\pi}{k}\right) \right] e^{-ikx} dx.$$

Therefore, if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, the Fourier coefficients \hat{f}_k satisfies $|\hat{f}_k| \leqslant \frac{\pi^{\alpha} ||f||_{\mathscr{C}^{0,\alpha}(\mathbb{T})}}{2k^{\alpha}}$.

2. Let $f: \mathbb{R} \to \mathbb{R}$ be 2π -periodic such that f is Riemann integrable on $[-\pi, \pi]$. Show that

$$\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x+h) - f(x-h)|^2 dx = \sum_{k=-\infty}^{\infty} 4\sin^2(kh)|\widehat{f}_k|^2.$$

Therefore, if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, the Fourier coefficients \hat{f}_k satisfies

$$\sum_{k=-\infty}^{\infty} \sin^2(kh) |\hat{f}_k|^2 \le ||f||_{\mathcal{C}^{0,\alpha}(\mathbb{T})}^2 2^{2(\alpha-1)} |h|^{2\alpha}$$
(0.1)

3. Let $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$, and $p \in \mathbb{N}$. Show that

$$\sum_{2^{p-1} \le |k| < 2^p} |\widehat{f}_k|^2 \le \frac{\|f\|_{\mathscr{C}^{0,\alpha}(\mathbb{T})}^2 \pi^{2\alpha}}{2^{2\alpha p + 1}}.$$

Hint: Let $h = \frac{\pi}{2p+1}$ in (0.1).

4. Show that if $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$ for some $\frac{1}{2} < \alpha \le 1$, then $\sum_{k=-\infty}^{\infty} |\widehat{f}_k| < \infty$; thus Problem 8 implies that the Fourier series of f converges uniformly to f on \mathbb{R} .

Problem 4. Prove Lemma 8.15 in the lecture note.

Proof. It suffices to show that

$$\sup_{|x-y| \leq \delta_1} \left| f(x) - f(y) \right| \leq \left(1 + \frac{\delta_1}{\delta_2} \right) \sup_{|x-y| \leq \delta_2} \left| f(x) - f(y) \right|$$

for $\delta_1 > \delta_2$. Suppose that $\delta_1 > \delta_2 > 0$, and $|x - y| < \delta_1$. Let N be the largest integer smaller than $\frac{\delta_1}{\delta_2}$; that is, N is the unique integer satisfying that

$$\frac{\delta_1}{\delta_2} - 1 \leqslant N < \frac{\delta_1}{\delta_2} \,. \tag{*}$$

Then there exist N points x_1, x_2, \dots, x_N such that $x < x_1 < x_2 < \dots < x_N < y$ and

$$|x - x_1| < \delta_2$$
, $|y - x_N| < \delta_2$ and $|x_i - x_{i+1}| < \delta_2$ $\forall 1 \le i \le N - 1$;

thus the triangle inequality implies that

$$|f(x) - f(y)| \le |f(x) - f(x_1)| + |f(y) - f(x_N)| + \sum_{i=1}^{N-1} |f(x_i) - f(x_{i+1})|$$

$$\le (N+1) \sup_{|x-y| \le \delta_2} |f(x) - f(y)|.$$

The desired inequality then follows from (\star) .

Problem 5. Let f be a 2π -periodic Lipschitz function. Show that for $n \ge 2$,

$$||f - F_{n-1} \star f||_{\infty} \le \frac{1 + 2\log n}{2n} \pi ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}$$
 (0.2)

and

$$||f - s_n(f, \cdot)||_{\infty} \le \frac{2\pi (1 + \log n)^2}{n} ||f||_{\mathscr{C}^{0,1}(\mathbb{T})}.$$
 (0.3)

Hint: For (0.2), apply the estimate

$$F_n(x) \le \min\left\{\frac{n+1}{2\pi}, \frac{\pi}{2(n+1)x^2}\right\}$$

in the following inequality:

$$|f(x) - F_{n-1} \star f(x)| \le \left[\int_{-\delta}^{\delta} + \int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right] |f(x) - f(x - y)| F_{n-1}(y) dy$$

with $\delta = \frac{\pi}{n}$. For (0.3), use (8.2.7) in the lecture note and note that

$$\inf_{p \in \mathscr{P}_n(\mathbb{T})} \|f - p\|_{\infty} \leqslant \|f - F_n \star f\|_{\infty}.$$

Proof. Recall that the Fejér kernel F_n is given by

$$F_n(x) = \begin{cases} \frac{1}{2\pi(n+1)} \frac{\sin^2 \frac{(n+1)x}{2}}{\sin^2 \frac{x}{2}} & \text{if } x \notin \{2k\pi \mid k \in \mathbb{Z}\}, \\ \frac{n+1}{2\pi} & \text{if } x \in \{2k\pi \mid k \in \mathbb{Z}\}. \end{cases}$$

Therefore, by the fact that $\sin |x| \ge \frac{2}{\pi} |x|$ for $|x| < \frac{\pi}{2}$, we find that

$$F_n(x) \le \min\left\{\frac{n+1}{2\pi}, \frac{\pi}{2(n+1)x^2}\right\}.$$

By the fact that $\int_{-\pi}^{\pi} F_{n-1}(x) dx = 0$ for all $n \ge 2$, we find that if $n \ge 2$ and $0 < \delta < \pi$,

$$|f(x) - F_{n-1} \star f(x)| = \left| \int_{-\pi}^{\pi} f(x) F_{n-1}(x - y) \, dy - \int_{-\pi}^{\pi} f(y) F_{n-1}(x - y) \, dy \right|$$

$$= \left| \int_{-\pi}^{\pi} \left[f(x) - f(y) \right] F_{n-1}(x - y) \, dy \right|$$

$$= \left| \int_{-\pi}^{\pi} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right|$$

$$= \left| \left(\int_{-\delta}^{\delta} + \int_{-\pi}^{-\delta} + \int_{\delta}^{\pi} \right) \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right|.$$

Let $\delta = \frac{\pi}{n}$. Then

$$\left| \int_{-\delta}^{\delta} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right| \leq \int_{-\delta}^{\delta} \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} |y| \cdot \frac{n}{2\pi} \, dy = \frac{n \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{\pi} \int_{0}^{\delta} y \, dy$$
$$= \frac{n \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{2\pi} \frac{\pi^{2}}{n^{2}} = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{2n} \, .$$

Moreover,

$$\left| \int_{\delta \leqslant |y| \leqslant \pi} \left[f(x) - f(x - y) \right] F_{n-1}(y) \, dy \right| \leqslant \int_{\delta \leqslant |y| \leqslant \pi} \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} |y| \cdot \frac{\pi}{2ny^2} \, dy$$

$$= \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{n} \int_{\delta}^{\pi} \frac{1}{y} \, dy = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})}}{n} \log \frac{\pi}{\delta} = \frac{\pi \|f\|_{\mathscr{C}^{0,1}(\mathbb{T})} \log n}{n} \, .$$

The two inequalities above implies (0.2).

For the validity of (0.3), by the fact that

$$\inf_{p \in \mathscr{P}_n(\mathbb{T})} \|f - p\|_{\infty} \le \|f - F_n \star f\|_{\infty}$$

we conclude from (0.2) and (8.2.7) in the lecture note that

$$||f - s_n(f, \cdot)||_{\infty} \le (3 + \log n)||f - F_n \star f||_{\infty} \le \frac{(3 + \log n)(1 + 2\log(n+1))}{2(n+1)}\pi||f||_{\mathscr{C}^{0,1}(\mathbb{T})}$$

and the desired inequality follows from the fact that

$$\frac{(3 + \log n)(1 + 2\log(n+1))}{2(n+1)} \leqslant \frac{2(1 + \log n)^2}{n} \qquad \forall \, n \geqslant 2 \,.$$

Problem 6. In this problem, we are concerned with the following

Theorem 0.1 (Bernstein). Suppose that f is a 2π -periodic function such that for some constant C and $\alpha \in (0,1)$,

$$\inf_{p \in \mathscr{D}_{-}(\mathbb{T})} \|f - p\|_{\infty} \leqslant C n^{-\alpha}$$

for all $n \in \mathbb{N}$. Then $f \in \mathscr{C}^{0,\alpha}(\mathbb{T})$.

Complete the following to prove the theorem.

1. Show that

$$||p'||_{\infty} \leqslant n||p||_{\infty} \qquad \forall p \in \mathscr{P}_n(\mathbb{T}).$$
 (0.4)

- 2. Choose $p_n \in \mathscr{P}_n(\mathbb{T})$ such that $||f-p_n||_{\infty} \leq 2Cn^{-\alpha}$ for $n \in \mathbb{N}$. Define $q_0 = p_1$, and $q_n = p_{2^n} p_{2^{n-1}}$ for $n \in \mathbb{N}$.
 - (a) Show that $\sum_{n=0}^{\infty} q_n = f$ and the convergence is uniform.
 - (b) Show that

$$|q_n(x) - q_n(y)| \le 6Cn2^{n(1-\alpha)}|x - y|$$
 and $|q_n(x) - q_n(y)| \le 12C2^{-n\alpha}$.

(c) For any $x, y \in \mathbb{T}$ with $|x - y| \le 1$, choose $m \in \mathbb{N}$ such that $2^{-m} \le |x - y| \le 2^{1-m}$. Then use the inequality

$$|f(x) - f(y)| \le \sum_{n=0}^{m-1} |q_n(x) - q_n(y)| + \sum_{n=m}^{\infty} |q_n(x) - q_n(y)|$$

to show that $|f(x) - f(y)| \le B|x - y|^{\alpha}$ for some constant B > 0.

Hint of 1: Suppose the contrary that there exists $p \in \mathscr{P}_n(\mathbb{T})$ such that $||p'||_{\infty} > n||p||_{\infty}$. By rescaling p and relabeling points in \mathbb{T} if necessary, without loss of generality we can assume that

$$||p'||_{\infty} > n$$
, $||p||_{\infty} < 1$, and $p'(0) = ||p'||_{\infty}$.

Choose $\gamma \in \left[-\frac{\pi}{n}, \frac{\pi}{n}\right]$ such that $\sin(n\gamma) = -p(0)$ and $\cos(n\gamma) > 0$, and define $r(x) = \sin n(x-\gamma) - p(x)$. Show that r has at least 2n + 2 distinct zeros in $\left(-\pi + \gamma + \frac{\pi}{2n}, \pi + \gamma + \frac{\pi}{2n}\right)$ by showing that r has at least one zero in (α_k, α_{k+1}) , where $\alpha_k = \gamma + \frac{\pi}{n}(k + \frac{1}{2})$ for each $|k| \le n$, while r has at least 3 distinct zeros in (α_s, α_{s+1}) if $0 \in (\alpha_s, \alpha_{s+1})$. On the other hand, the fact that $r \in \mathscr{P}_n(\mathbb{T})$ implies that r has at most 2n distinct zeros in \mathbb{T} unless r is the zero function which leads to a contradiction.

- **Problem 7.** 1. Let $\{a_k\}_{k=1}^{\infty}$ be a sequence, and $\{b_n\}_{n=1}^{\infty}$ be the Cesàro mean of $\{a_k\}_{k=1}^{\infty}$; that is, $b_n = \frac{1}{n} \sum_{k=1}^{n} a_k$. Show that if $\{a_k\}_{k=1}^{\infty}$ converges to a, then $\{b_n\}_{n=1}^{\infty}$ converges to a.
 - 2. Let $\{f_k\}_{k=1}^{\infty}$ be a sequence of bounded real-valued functions defined on A, and $\{g_n\}_{n=1}^{\infty}$ be the Cesàro mean of $\{f_k\}_{k=1}^{\infty}$; that is, $g_n = \frac{1}{n} \sum_{k=1}^{n} f_k$. Show that if $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on $B \subseteq A$ and f is bounded on B, then $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f on B.

Proof. 1. Let $\varepsilon > 0$ be given. Since $\lim_{k \to \infty} a_k = a$, there exists $N_1 > 0$ such that

$$|a_k - a| < \frac{\varepsilon}{2}$$
 whenever $k \geqslant N_1$.

Since $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{N_1}|a_k-a|=0$, there exists $N_2>0$ such that

$$\frac{1}{n} \sum_{k=1}^{N_1} |a_k - a| < \frac{\varepsilon}{2} \quad \text{whenever} \quad n \geqslant N_2.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$,

$$|b_{n} - a| = \left| \frac{1}{n} \sum_{k=1}^{n} a_{k} - a \right| \leq \frac{1}{n} \sum_{k=1}^{n} |a_{k} - a| \leq \frac{1}{n} \sum_{k=1}^{N_{1}} |a_{k} - a| + \frac{1}{n} \sum_{k=N_{1}}^{n} |a_{k} - a|$$
$$< \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=N_{1}}^{n} \frac{\varepsilon}{2} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} \frac{n - N_{1} + 1}{n} < \varepsilon.$$

2. Suppose that $|f_k(x)| \leq M_k$ and $|f(x)| \leq M$ for all $x \in B$. Since $\{f_k\}_{k=1}^{\infty}$ converges uniformly to f on B, there exists $N_1 > 0$ such that

$$|f_k(x) - f(x)| < \frac{\varepsilon}{2}$$
 $\forall k \ge N_1 \text{ and } x \in B.$

If $x \in B$, by the fact that

$$\sum_{k=1}^{N_1} |f_k(x) - f(x)| \le \sum_{k=1}^{N_1} (M_k + M) < \infty,$$

we find that $\lim_{n\to\infty}\frac{1}{n}\sum_{k=1}^{N_1}\|f_k-f\|_{\infty}=0$; thus there exists $N_2>0$ such that

$$\frac{1}{n} \sum_{k=1}^{N_1} |f_k(x) - f(x)| < \frac{\varepsilon}{2} \quad \text{whenever} \quad n \ge N_2 \text{ and } x \in B.$$

Let $N = \max\{N_1, N_2\}$. Then if $n \ge N$ and $x \in B$,

$$|g_{n}(x) - f(x)| = \left| \frac{1}{n} \sum_{k=1}^{n} f_{k}(x) - f(x) \right| \le \frac{1}{n} \sum_{k=1}^{N_{1}} |f_{k}(x) - f(x)| + \frac{1}{n} \sum_{k=N_{1}}^{n} |f_{k}(x) - f(x)|$$

$$< \frac{\varepsilon}{2} + \frac{1}{n} \sum_{k=N_{1}}^{n} \frac{\varepsilon}{2} < \varepsilon;$$

thus $\{g_n\}_{n=1}^{\infty}$ converges uniformly to f on B.

Problem 8. Let $f \in \mathcal{C}(\mathbb{T})$ and $\{\hat{f}_k\}_{k=-\infty}^{\infty}$ be the Fourier coefficients defined in Remark 8.2 in the lecture note. Show that if $\sum_{k=-\infty}^{\infty} |\hat{f}_k| < \infty$, then the Fourier series of f converges uniformly to f on \mathbb{R} .

Proof. Let $M_k = |\widehat{f}_k|$ and $\sum_{k=-\infty}^{\infty} |\widehat{f}_k| = M$. Then $|s_n(f,x)| \leq M$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. Moreover,

$$|\widehat{f}_k e^{ikx}| \le M_k \quad \forall x \in \mathbb{R} \quad \text{and} \quad \sum_{k=-\infty}^{\infty} M_k = M < \infty.$$

Therefore, the Weierstrass M-test implies that the Fourier series converges uniformly on \mathbb{R} . Suppose that the Fourier series converges uniformly to g. Then $|g(x)| \leq M$ for all $x \in \mathbb{R}$; thus Problem 7 implies that the Cesàro mean of $\{s_k(f,\cdot)\}_{k=1}^{\infty}$ converges uniformly to g on \mathbb{R} . Since $f \in \mathscr{C}(\mathbb{T})$, the Cesàro mean of the Fourier series of f converges uniformly to f on \mathbb{R} ; thus f = g.