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Problem 1. Compute the Fourier series of the function f : (—7,7) — R defined by
fa) 0 —rT<x<0,
xTr) =
T—zr 0<z<m,
and show that
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Also use the Fourier series of the function y = 22
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Solution. We compute the Fourier coefficients as follows. For k£ € N,
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Therefore, by the fact that lim f(z) =0 and h%lJr flz) =
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0 if r<x<0,
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We note that the case x = 0 implies that
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e k<2 :
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which shows the identity
1 1 = 1 7
1+ =+ = = = —
+32+52+ Z(2/74;—1)2 8



We also note that the identity above can be obtained by
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Problem 2. The proof of Theorem 8.25 in the lecture note only establishes the validity of the
theorem for the case L = m. Use this fact to show that the theorem also holds for general L > 0.

Proof. Suppose that the theorem holds for the case L = w. Let f : R — R be 2L-periodic piecewise
Holder continuous with exponent a € (0,1]. Define g : R — R by g(x) = f (E) (or equivalently,
T

f(z) = g(%)) Then g is 2m-periodic piecewise Holder continuous exponent « € (0, 1], and

5n<g>x> = Sn(fa %) and 5n(f> x) = Sn(ga

Therefore, by the fact that lim h(cx) = lim h(z) if ¢ > 0,
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Moreover, if x4 is a jump discontinuity of f, then 7%:0 is a jump discontinuity of g so that
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Problem 3. For a given function f : [0, L] — R, the even extension of f is a function f : [-L, L] — R

such that
f(z) = f(—x) Vxe[-L,0).

1. Let f:]0,L] — R be an integrable function. The cosine series of f is the Fourier series of the

even extension of f. Find the cosine series of f.

2. Suppose in addition f : [0, L] — R is piecewise Holder continuous with exponent « € (0, 1].

1) + )

Show that the cosine series of f at x¢ € (0, L) converges to 5



Proof. 1. Let f be the even extension of f, and {c;},, {sx}i°, be the Fourier coefficients of f.
Then by the fact that f is even, s; = 0 for all k € N. Moreover,

J flx coskﬂdx— ff cos—dx J f(— coskﬂdx
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Therefore, the cosine series of f is

k
ff dx—l— ff cos—dy)cosﬂ
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2. If f is piecewise Holder continuous with exponent a € (0,1], then the odd extension f of f is
also piecewise Holder continuous with exponent « € (0, 1]; thus
- fla) + flzg) _ flag) + flag)

s(f, @) = 2 - 2
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which shows that the cosine series of f at zg € (0, L) converges to f(%)_;f(%). a

Problem 4. For a given function f : [0, L] — R, the odd extension of f is a function f : [~L, L] — R
such that

flz) = —f(—x) Vxe[-L,0).

1. Let f:[0,L] — R be an integrable function. The sine series of f is the Fourier series of the

odd extension of f. Find the cosine series of f.

2. Suppose in addition f : [0, L] — R is piecewise Holder continuous with exponent « € (0, 1].

fad) + flag)
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Proof. 1. Let f be the odd extension of f, and {c;}%,, {s1}3°, be the Fourier coefficients of f. Then
by the fact that f is odd, ¢z = 0 for all k € N U {0}. Moreover,

Show that the sine series of f at xy € (0, L) converges to
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Therefore, the sine series of f is

s(f, ) —%i (fo(y)sin%dy> SinkﬁTx.
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. If f is piecewise Holder continuous with exponent a € (0, 1], then the odd extension f of f is
also piecewise Holder continuous with exponent « € (0, 1]; thus
- flag) + flag) _ flag) + flag)

s(f,w0) = 2 - 2

flag) + f(zg)

which shows that the sine series of f at zg € (0, L) converges to — a



