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Problem 1. Suppose that the Fourier transform of f € .(R) is 1 (€). Find the Fourier transform
of the function y = f(2x + 1) cos x.

Proof. By the Euler identity, cosz = %. Therefore,
f f(2x 4+ 1) cosze ™ dx = | f(2z + ) e dy
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which shows that the Fourier of y = f(22 + 1) cos z is 1 [e 2 f( ) +e f( 5 )} o
Problem 2. A vector-valued function w = (uy,us, -+ ,u,) : R* — R"™ is called a Schwartz function,

still denoted by uw e 7 (R"), if u; € . (R”) for all 1 < j < n. Show the Korn inequality
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) is the symmetric part of Du.
Hint: Use the Plancherel formula.

Proof. By the Plancherel formula,
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Problem 3. 1. Let d, denote the dilation operator defined by d, f(x) = f (%) Show that

F(Af) = r"d, F()) Ve SR (0.1)



2. In some occasions (especially in engineering applications), the Fourier transform and inverse

Fourier transform of a (Schwartz) function f are defined by
F© =] fl@)e ™ e and  f(zx) =] [f(&)e?de.
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Show that under this definition, f = f = f for all f € #(R™). Note that you can use the
Fourier Inversion Formula that we derive in class.

Proof. Let .% denote the Fourier transform operator that we used in class, and =~ be the Fourier

transform operator in this problem.

1. Let d, denote the dilation operator define by (d,f)(xz) = f(rz). By the change of variables

formula,
Z(d, f)(&) = L (df)(x)e ¢ do = 1 f Frn)e € dy
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so that (@) is established.
2. Replacing f by d;/, f in (@) implies that
g;(f):y(drdlf) :Tnd;y(dlf) erY(R"), (<>)

Similarly, #*(d,f) = r"d1.Z*(f) so that
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Note that
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Problem 4. 1. Let f : R — C be a continuous integrable function such that f is also integrable.

Show that .
flo) = o j ( fRﬂy)cos[(x—y)ady) & VreR.

2. If in addition to condition in 1, f is an even function. Show that
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3. If in addition to condition in 1, f is an odd function. Show that

ra) =2 [ ([ rwsinGee)sin(ue) ay) de.
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4. For a function g : [0,0) — C satisfying f |g(x)| dz < o0, the Fourier cosine transform and the
0

Fourier sine transform of g, denoted by F.s[g] and Fn[g] respectively, are functions defined

by
\f f Jeos(y€)dy and  Flg \f J ) sin(yé) d

(a) Show that if Z..s[g] € L*(R), then

9(2) = Foos[Feoslg]] (z) whenever z € [0,00) and ¢ is continuous at x,

or equivalently,
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whenever x € [0,0) and ¢ is continuous at .

(b) Show that if F,lg] € L'(R), then

9(2) = P [ Fanld]] (z) whenever z € [0,00) and ¢ is continuous at z,

or equivalently, S
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whenever z € (0,00) and ¢ is continuous at x.

Hint of 4: Consider the even or odd extension of g, and apply conclusions in 2 and 3.

Proof. 1. Let f be a continuous integrable function such that f is also integrable. Then f is also

integrable; thus the Fourier inversion formula implies that
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whenever f is continuous at x. Therefore, if f is continuous at x, then
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We note that by the sum and difference of angles identities, the identity above implies that

7@) = 5= | (], 70 [cos(ag) cos(y) + sinae) sin(ue)] dy) e 0.2

2. If f is an even function, then J f(y)sin(z€) sin(y§) dy = 0; thus (@) shows that if f is
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Note that the inner integral is an even function of £, so
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3. If f is an odd function, then f f(y) cos(x) cos(y€) dy = 0; thus (@) shows that if f is
R

continuous at ,
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4. Suppose that ¢ : [0,00) — C is integrable.

(a) Let f:R — C be defined by

x) ifz>=0,
f(x)—{g() -

g(—x) ifz<0.



Then f is an even function and is integrable on R. Moreover,
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(00 0
| o costuray = | f@)costurdy + | s costye)
R JO —o0
(O
= ) cos(y€) dy—kj g(—y) cos(y i) dy
JO —0
(00 0
= ) cos(y€) dy—kj g(y) cos( (—y)
Jo @

=2 Loo 9(y) cos(y€) dy = V21 Fes|9](€)

and
[ rwsinteras = [ s dy+ [ 1w sintoe) dy
[ sttty + [ at-wpsintyi) dy
~ [ stwsintuyas-+ [ glsin-y) d(—y) =0

thus f = Feos[g] which implies that f € L'(R). On the other hand, f(¢) = f(—¢) =
Feos|9](€); thus the Fourier inversion formula implies that
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Foos [ Feoslg]] () = f(2) = f(2)

whenever f is continuous at z. In particular, if z € [0,00) and g is continuous at x, then

f is continuous at x and f(z) = g(x) which imply that
Foos [?COS [g]] () = g(z) whenever x € (0,00) and g is continuous at x.
Let f : R — C be defined by
g(x) ifz>0,
flx) =% —g(—z) ifzx<0,
0 iter=0.

Then f is an odd function and is integrable on R. Moreover,
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By the definition of f,
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thus f = —1%sin[g] which implies that fe L*(R). On the other hand, f(f) = f(=¢) =
iZsin|9](€); thus the Fourier inversion formula implies that
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whenever f is continuous at . In particular, if z € (0,0) and ¢ is continuous at x, then

f is continuous at x and f(z) = g(x) which imply that
Fin | Finlg]] (x) = g(z)  whenever z € (0,90) and g is continuous at . o

~ 2 o0
Problem 5. Suppose that f € L'(R) is continuous and f(§) = ln(lé—gg) Find f(0) and J f(z)dx

Solution. First we claim that fe LY(R). To see this, note that f> 0 so that
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Therefore, we can apply the Fourier inversion formula to obtain that
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Moreover, by the definition and the property of the Fourier transform,
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