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May 13 2022

Problem 1. Show that every polynomial is a tempered distribution.

Proof. Since every polynomial is a linear combination of monomials, it suffices to show that x®,

where x = (21,29, -+ ,2,) € R" and o = (o, -+ , ) is a multi-index so that z* = z{*z5* - -z

If p € S (R"), then

Qn
n -

}<Ia7¢(x)>’ < fRn |x|“"|]gb(x)‘ dr < fRn m|a|<x>—\a|—n—1<x>|a\+n+1W@)! dx

< < <$>_n_1 dﬂ?>p|a|+n+1(¢) < 7Tp|a\+n+1(¢) .
RTL

Therefore,
|<:v°‘,<;$(x)>‘ < i (o) Vk=la+n+1

which shows that the function y = x® is a tempered distribution. =

Problem 2. Let {n.}¢ is the standard mollifiers, and ¢ € .(R"™). Show that {n. * ¢}.~¢ converges
to ¢ in S (R™).

Proof. Since D(n. * ¢) = n. * D¢ and the derivative of a Schwartz function is also a Schwartz
function, W.L.O.G. it suffices to show that
lim sup{z)*|(n. * ¢)(z) — ¢(z)| =0 VkeN.

=0T geRn

Let k € N and x € R™ be given. Then

(3% 0)(@) = 61)| = | [ ) [oe ~ ) = 9(2)]

~|f, ([ e —ma)a = | [ w( [ wore—m)-ya)a
< GJB(O ; ne(y)<f0 (Vo) (z — ty)| dt) dy .

By the fact that
@ < Cel(lo—ty)" + (") Vielo,1]
for some constant Cy (in fact, Cj can be chosen as 2F — 1), we find that
(@)"|(ne % ¢)(w) — d(2)|
1
<G| )| (@)t + @IV )] at) dy
B(0,¢) 0

0 zeR™

<[ a( [ (@ 0a@]+ o s (Do) ar) dy

< Cie( sup@*|(D9) (a)| +(&* sup (D) ()] ) ).



Therefore,
lim sup ()| (1 % ¢)(z) — é(z)] =0

0 zeRn

which shows that {n. * ¢} converges to ¢ in . (R"). D

Problem 3. In this problem we consider the concept of the convergence of sequence of tempered

distribution given by the following

Definition 0.1 (Convergence in .(R")"). A sequence of distributions 7,, € .(R")" is said to
converge to T' € #(R™) in the sense of distribution, or in the distributional sense, if {T,,, v) — (T, p)
as n — o for all p € S (R").

Complete the following.

1. Show that if 7' e #(R")" and {¢,}>, < .(R") is a sequence which converges to ¢ in .#(R"),
then lUm (T, ¢,,) = (T, ¢).
n—ao

2. Given the definition above, show that if 7" e .(R")’, then {n. * T} converges to 7" in the

sense of distribution, where {7}~ is the standard mollifiers.

Proof. 1. By the definition of the tempered distribution, there exists N > 0 such that for all £ > N
there exists C such that

Since {¢n}, converges to ¢ in .(R"), we have lim pg(¢, — ¢) = 0 for k » 1. Therefore,
n—0o0

(T, ¢y — (T, $)| < Cipi(dn — ) Vk=N
which implies that 7}1_1)120 KT, ¢y — (T, ¢p| = 0.
2. By Problem E, for each ¢ € . (R™) the sequence {n}.~o converges to ¢ in ./(R™). Therefore,
for each ¢ € .7(R"),
(T % e, 6) = Tan(T, 7 % 6) = (T, e % 6) = 0
which shows that {n. % T}.~o converges to T in the sense of distribution. o

Problem 4. In this problem we discuss the derivative of tempered distributions. Complete the

following.

1. Show that
<‘9f 6=~/ L) Vhge SR,
This leads to the definition of the derivatives of tempered distributions: Let 7" € . (R™)" be a
tempered distribution. The partial derivative of 7" w.r.t. z;, denoted by 5?, is a tempered

distribution defined by



J n
T ¢>——<T ‘f’> Vée S (RY).
Verify that 66% is indeed a tempered distribution; that is, show that there exists a sequence
J
{Cy}72, such that

l<§f>¢>‘ < Crpr(9) Voe S(R") and k> 1.
J

. Show that for 1 < j <n

%[5;}(5)-2@ ©  and  -—T(E) = —iZ 2 T(2)](€)

or to be more precise,
jévj;’ ¢> - <f(f),i§j¢(§)> Ve SR

and
ag 6(€) ) = (T(x), ~izd(x))  Voe F(R").

In other words, the Fourier transform of derivatives of tempered distributions still obeys Lemma
9.9 and 9.11 in the lectute note.

Proof. 1. Let f,g € .(R™). Then with z; denoting (x1,- -+ ,Zj_1,Zj+1, "+ ,Tn),

o 9) =

Integrating by parts,

lim ! a—f(x)g( )dx; = hm [f(m)g(x) o —JR f(l’)ﬁ(x) dx]}

R-w | _p o zj=—R J_p 0x;

(L gy =~ ff sy =~(f.55)

Suppose that T € . (]R")/ . Then there exists N > 0 and a sequence {Cy}}2, such that

R
_ - of \dz,
. 6:133 r)g(x)dr = J]Rnl }%1_120 <£R 32; (x)g(x) da:]>d1:] .

thus

KT, ¢)| < Crpr(o) Ve . /(R") and k = N.

Therefore, if ¢ € ./ (R") and k > N, by the fact that

w2 = s @0 < sp @D = pal

al‘j zeR" |a|<k zeR™ |a|<k+1
we find that ; ; .
T QS ¢ ‘
‘<axj’¢>) - ’<T’ axj>‘ S O’ﬂpk(a?j) < Crprra(9) 5

T
thus g is a tempered distribution.
Ty



2. Let ¢ € S(R"). Then

<axj’¢> < ,<z5> :c)>.

By Lemma 9.9 in the lecture note, %gg(m) = H@qf)({)] (x); thus
J

) = (. 2 {1e0t0] @) = (T, 1010 :

Problem 5. Complete the following.
1. Show that if ¢ € €°(R"), then the distribution T * ¢ is indeed a smooth function.

2. Show that if 7/ = 0 in .(R)’, where the derivative of tempered distribution is given by Problem
@, then T is a constant; that is, there exists C' € R such that

T0)=(C.y=C | d)ds Vo S®).

Proof. 1. First we claim that if ¢ € €°(R"), then %(T ¥ ¢) =T % a@% for ¢p € Z(R™), by the
fact that 5 o0 ’ o0 ’
s Ox 0 = (5% 0)@ = (0% 5 ) @),
we have

<£<T*¢>,w>=—<w¢,M’>=—<T,5*aw. — - 22 )
—<T *1@ <T9lé ¢>

Therefore, it suffices to show that T % ¢ is a function (for all ¢ € . (R")).
For f,g,h e Z(R"),

{(f*g,h)= Rn(f * g)(x

- (] o

Therefore, it motivates the definition

)h(z) dz = JR ( . fy)g(z —y) dy) h(z) dx
D)) dy ) () dr = | () hia) de
(T * ¢)(z) = (T, 720

whenever the rlght hand side exists. This is the case if ¢ € . (R"™); thus T * ¢ is identical to
the function g(x <T Tz¢>



2. Since T = 0, we find that 7" % ¢ = 0 for all ¢ € S (R). By (1), T’ % ¢ = (T * ¢)’ is a smooth
function, so for each ¢ € #(R) there exists a constant C' = C'(¢) such that

T*¢=0C(9).
In particular, letting ¢ = 1. we find that T' % n. = C, for some constant C,. Therefore, for each
¢ € 7 (R),
T %18y = Co | ola)da.
On the other hand,
(T % 1e, ) = (T 7je % ¢) = (T, % @)

which, using results from Problem E and B, shows that

Ui (T % 1,6 = (T,6).

This implies that
lim Cef o(z)dx =T, ¢) Voe . (R).
R

e—0t

Therefore, lim C. = C exists, and we conclude that

e—07t
C’fqb(x)dx:<T,gz5> Voe S (R). o
R
Problem 6. Let sgn : R — R be the sign function defined by
1 ifx>0,
sgn(z) =< —1 ifz <0,
0 ifz=0.

Then clearly sgn is a tempered distribution since

|Gsen, &) < |l <7 pa(d)  Voe S (R).

Show that disgn(x) = 20 in .(R)’, where the derivative of tempered distributions is defined in
X

Problem @ and ¢ is the Dirac delta function.

Proof. Let ¢ € .(R). Then by definition of the derivatives of tempered distributions,

(AL sgn(o), o)) = ~Gan(). ')y = = [ senta)o' (o) o

:—J?¢x@dx+[m¢%@dx
= o) o] =26(0)=25,0)

which shows that %Sgn(x) =26 in /(R)". o



Problem 7. Compute the Fourier transform of the function f : R" — R given by f(x) = |z|*, where

—n < a < 0, by the following procedure.

—_

. Show that f ¢ L'(R").

Q0
2. Recall that the Gamma function I' : (0,00) — R defined by I'(z) = j t*"le~tdt. Show that
0

1 © a 2
|z = I Q)J sT2 e ds  Va£0.
—2/Jo

3. Find that Fourier transform of f.

=~

. Find the Fourier transform of the function g : R — R given by g(z) = z1|x|%, where x; is the

first component of x and —n — 2 < a < —2.

Hint: 3. Compute {|z|%, (E(:c)> by applying Fubini’s Theorem several times.
0

a+20m

Fourier transform of derivatives of tempered distributions.

4. Note that g(z) = |z|*™2 so that you can apply the results above. See Problem @ for the

Proof. 1. By the change of variables formula,

0 Q0
J |z|* dx = J J ror" tdrdS = wnlf rotnldr = o0
R" sn-1Jo 0

Therefore, f ¢ L'(R™).

2. By the substitution of variable s|z|* =t (for = # 0),

© a 2 ®© a © @ (8%
J s2 lemslel s = J 2|2 e | 2 dt = \:E]O‘J t2 et dt = ]93|0T(—§) :
0 0 0

1 ®© _a_ 1 ‘ |2
Therefore, |z|* = ——x~ | s 2 e ** ds.
I'(-3)

3. For a given Schwartz function ¢ € #(R"), define g(z,s) = s_%_le_‘*'z‘zgg(x) and h(,s) =
o 5

s73 27 tem a4 ¢(€). Then

[ sl = [ ([ i) o)
= JR 2| ()| dx = LM (Loorn+a_1‘$(rw)‘dr>ds




09]

:f (L sTE e ()| ds) dg:fn (L 5735 ds) |o(6)| e

:fn (Jw(4t)’2‘+2+1§| n—a—2 —t|€‘ dt>‘gb ‘dﬁ

. el

_ oyt J n ( L e dt) le[ "o ()] dg

=2 () [ jeeleto)de.

Since
0 ~ o0
f r”+a71|¢ rw |dr W”OOJ e ldr + sup (]x|”‘¢(a:)|)] rodr
0 xeR™ 1
Pl 1 a2
S ta TTaw (lz]"|o(2)]) < 0
and

fRn €720 (e)] de < f (OO0 e < KO o supcOlo(€)] < oo

we find that g and h are integrable on R"™ x (0,00). By the definition of the Fourier transform

of tempered distributions,

9= [ e = pta [ ([ o80e is) ot a
2

and the Fubini Theorem (which can be applied since g is integrable on R™ x (0,00)) implies
that

L(=5) (| &)

r

®© «a 2 -~ *© « 27
= (J s~2 sl ds) o(z)dx = f J s el () d:c) ds
JR? M Jo 0 R™

o0 o0

= | sE ek <>>ds—f s E KT IT)(©), 0(6)) ds

0

- s—%“—l(fw<2s>—3e—4s¢<5>df)ds

By the integrability of h on R™ x (0,00), we can apply the Fubini Theorem to obtain that
Q a D _n * _n_a_q \£I2
P(=9)al =275 | 575571 (| e ole)de) ds
0 n
_n * _n_a_y _le? a + —n—a
=2 J (J sTETET e ds)g(€) dg = 28 ter (0 “)f 7" (€) de
n Rn

0

= 25+ (L20) g7, 6(6)).




r(*5)
r(-3)

4. First we shown that if the partial derivative of tempered distributions is given by

Therefore, .%,[|z|*](¢) = 22 te|g|em,

<§£_,¢> - T, §g> Vée SR,

oT

then ﬁx[a—} (&) =T (5) Let ¢ € #(R"™). Then Lemma 9.11 implies that
Zj
O A
é—x]éﬁ(@") = —iF [€j¢(§)] ()

thus

FEN =GB = T 5=0(0) = ~(T =i F o€

= i(T,&6(€)) = G&T(€), #(€)) -
oT

Therefore, ﬁ[a—x]} (&) = zfjf(f)

0

a+20x;
—n < a+ 2 <0, we conclude that if —n — 2 < a < —2, we have

Now, since g(x) = ——z|*™2, by the fact that |z|*™2 is a tempered distribution for

n+oa+2y ,
36 = —L itz o)) = i 2 s :
g _a+2261 z||T _ZF(_LH> OZ+2 1
2

Problem 8. Let f € L'(R). Show that the function y = f f(t) dt can be written as the convolution
—a0
of f and a function ¢ € L] (R).

Proof. Let ¢ be the characteristic function of the set (0, 0), or

1 ifz>0,
¢<"’3):{ 0 ifz<0.

Then ¢ € L} (R), and

@x 1)) = [ ole =i dy= | sy

which is the anti-derivative of f. O

Problem 9. In this problem we use symbolic computation to find the Fourier transform of the

function _
sin(wz) ifo 0,
fx) = v
w ifx =0,

without knowing that it is the Fourier transform of the function y = \/?X(—w,w) (x) (where x(—ww) is

the characteristic/indicator function of the set (—w,w)). Complete the following.



1. Note that f ¢ L'(R) but f € .(R")". Therefore, fe Z(R). Find the derivative of f, where

the derivatives of tempered distributions is given in Problem @

2. Suppose that you can use the Fundamental Theorem of Calculus so that

~ ~ N
7€) - flo) = f Pty

0

Csin x

Note that in Problem 7 of Exercise 3 you are asked to show that J dxr = g Use this
0

fact and treat 04, as the evaluation operation at +w to find f(&) (for £ # +w).
s

Hint: 1. Recall that we have shown in Example 9.48 that %, [sin(wz)](§) = 5; (0w — O—w)-

Proof. 1. Let ¢ € .(R). By the definition of the derivative of tempered distributions,

(Floo) = —~(f,¢"y = ~(f, 0"y = ~(f(x),iz(x)) = —i{sin(wz), $(x))
= —i(F, [sin(w)](€), $(€));

thus
= . . T
F1(€) = —iFu[sin(wa)](§) = —4 |5 (00 = 0-)
2. Note that ()
~ 1 sin(wzx) .. 1 “ siny T
0 — 120 d — f d _ -
10 V2mJr T © V2T ) Y 4 2

thus the Fundamental Theorem of Calculus implies that

ﬂQZEWWﬁfﬁ@M#=Mgbf:gbAw—éw@ﬂﬁ}

(a) If £ <0, then

¢
‘[ [@u@)-5—w09}dt=:—'J%[@u@>“5—w(ﬂ}1wnﬂt>dt::1@@(—u0;

0

thus

¢ 0 if —w<&<O,
[NOCE OIS B

(b) If £ > 0, then

3
[} et = st = [ 00) =60 o)t = )
thus

fﬁ%@%—&Aﬂ}tz{o if0<¢é<w,

1 iféE>w.



Therefore,

€ 0 if —w<é<w,
j[%m—aamﬁz
1 if [¢] > w,
which shows that f \/7 1w O
Problem 10. Let w be a positive real number, and f : R* — R be defined by
sin(w|x|) o0,
fla) = i
w ifx =0,

where |z| = /a3 + 23 + 22 if * = (21,22, 23). In this problem we are concerned with the Fourier

transform of f. Complete the following.

1. Show that f e .(R3).

2. Show that the Fourier transform of f is given by

~ w1
[ Z\/j—f pdS
o) 2w Japow)

for all ¢ € .#(R?), where J pdS is the surface integral of ¢ on the sphere ¢ B(0,w)
0B(0,w)
defined by

T 2T
J pdS = J f ¢(w cos Bsin ¢, w sin O sin ¢, w cos ¢)w? sin ¢ dfd¢ .
0 B(0w) 0 Jo

Hint of 2: You can show part 2 through the following procedures:

Step 1: By the definition of the Fourier transform of the tempered distributions,

1 —ix-&
Gopy=Cpy=Jim | 1= | etoe=<ac) as

and the Fubini Theorem implies that

Fy=—matim | ([ swetan)elpc,
< > V2 7r m=90 Jrs N\ JB(0,m)
We focus on the inner integral first. Show that for each 3 x 3 orthonormal matrix O,

J f(x)e_“f dr = f —sm(w|y|) o070y Ydy .
B(0,m) B(0,m) |y

Step 2: For each £ € R?, choose a 3 x 3 orthonormal matrix O such that OT¢ = (0,0,|¢|). Using
the spherical coordinate y = (pcosfsin ¢, psin 0 sin ¢, p cos ¢) to show that

J f(l,)e—im-ﬁ dr = Jm QSin(wp) sin(|§|p) dp
B(0,m) 0 I3

so that we conclude that

(fro) =

lim
m—00

) (L’” 2sin(wp) sm(\g\p)w@ dp>d§‘

€]



Step 3: For each r > 0, define ¥ (r) as the surface integral of ¢ on 0 B(0,r); that is,

T 2T
P(r) = J pdS = J J ©(r cos @sin ¢, r sin 0sin ¢, r cos ¢)r* sin ¢ dfd¢ .
2B(0,r) 0 Jo

Using the spherical coordinate £ = (r cos @ sin ¢, r sin 6 sin ¢, r cos ¢) to show that

9> = mf f wm&n(m)wy)

Step 4: Apply the conclusion in Problem 4 of Exercise 11.

dr) dp .

Proof. 1. Since |f]| is bounded by w, by Example 9.38 in the lecture note we immediately obtain
that f e ./ (R3).

2. Let ¢ € /(R3) be a Schwartz function. By the definition of the Fourier transform and the
hint,

Gy =18 = | @
= lim f(m)(

1
m=%0 JB(0,m)

Vor
1 . iz
= 5 lim < flx)p(&)e ””fd§> dzx .
) N s

V2 ™M JB(0m

P(E)e ¢ dg) da

R.?)

| e@ede) as

Since the function g(z,&) = f(x)p(&)e ¢ is integrable on B(0,m) x R3, the Fubini Theorem
implies that

GFoy= i | (] sweei)aerie

Note that if O is a 3 x 3 orthonormal matrix, then |OTz| = |z| for all z € R?; thus for any

orthonormal matrix O and £ € R,

; T
J f(z)e ™ doy = f sin(w|O"z[) o~ g
B(0,m)

B(0,m) |OT$|
0Tz =y) = J M —iOn)€ gy = J sin(wy|) o—i0TE)y dy |
B(0,m) |y‘ B(0,m) |y|

Now, for each £ € R", choose a 3 x 3 orthonormal matrix O such that OT¢ = (0,0, |¢|). Using
the spherical coordinate y = (pcos@sin ¢, psinfsin ¢, p cos ¢), we obtain that

rm
f flz)e ™ do = J J sin(wp) e~ UelPeos? 52 6in ¢ dfdgdp
B(0,m) Jo

_z|§\pcosq5 b= p J~m ' ( )ei|§|P _ e-ﬂﬂpd
p=| sin(wp)—————dp
$=0 0 if¢]

= sm(wp)

Jo 7f|f‘

_ ™ 2sin(wp) sin([¢]p) dp

0 €]

[



so we have

S L[ 2sindep) sinlelo)
Py = tim | (]2 e ap)ac.

For each r > 0, define

T 2T
W(r) = f ¢(x)dS = J f d(r cos 0 sin ¢, r sin O sin ¢, r cos ¢)r? sin ¢ dfde .
2B(0,r) 0o Jo

Using the spherical coordinate £ = (r cos 6 sin ¢, r sin 6 sin ¢, r cos ¢), by the Fubini theorem we
find that

fRB ( Jm 2sm<wp‘>5 |sin<|ap> o€)dp)

0

(O T 2T P .
= F f ( J 2 Sm(wﬂ: sin(rp) (r cos B sin ¢, rsin O sin ¢, r cos ¢) dp) r? sin ¢ dfdgdr
Jo JoJo 0
O rm : . T 2T
= [‘ 2sin(wp) sin(rp) ( f J (r cos B sin ¢, rsin O sin ¢, r cos gb)r2 sin ¢ d0d¢) dpdr
Jo Jo r 0Jo
[ rm m 0
- F sin(wp) sin(rp) 20(r) dpdr = J <J sin(wp) sin(rp) 20(r) d7~> dp:
70 JO " 0 0 r

thus

{foe)= L tim (L 2Sm(wﬁ|)§|sirl(|€Ip)

Tomam | p(£) dp) dg

— \/12? rrlzlgéo Om < LOO sin(wp) Sin(rp)%(r) dr) dp
= \/% J:O < JOOO sin(wp) sin(rp) 21/;(7") d?") dp.

By Problem 4 of Exercise 11,

. F (F sin(wp) Sin(m)@ dr) P CF

™ Jo 0 w

<f7so>=\/§@=\/§£ LB(M é(x) dS . o

thus

Problem 11. 1. Show that the function R : R — R given by

if x>0,
R(x):{w if »

0 otherwise,

is a tempered distribution.

2. Let T be a generalized function defined by

(T,$) = lim ) 1 = lim (J_6+fo)de VoeCO(R).

e—0t R\[—e¢,e] T e—0t x

Show that 7' e . (R)".



3. Let H be the Heaviside function given by

H(x) 0 ifz<0,
€Tr) =
1 ifx>0.

7

Show that H = —T + \/f 0, here 0 is the Dirac delta function.
V2T 2
2

Hint: 3. Let G(x) = exp (—%) For each ¢ € .Z(R), define v = ¢ — ¢(0)G (which belongs to
< (R)). Use the identity

to make the conclusion.

Proof. 1. Let ¢ € #(R™). Then
KR, <;5>‘ = ) JOOO zo(x) dx‘ < (JOOO |z|(x)™? da:) iléﬁ}g<x>3‘¢(a:){
< (fo ! dfc>p3(¢) = gpg(cb);

o 1422

thus
(R.o)| < Sple)  Vh=3.

Therefore, R is a tempered distribution.
2. For ¢ € S (R), define ¢ : R — R by
¢(z) — ¢(0)

U(z) = z
¢'(0)  ifr=0.

ifx#0,

Then clearly 1 is continuous on R, and

sup [¢(z)] < sup |¢(2)] < pi(9).

ze[—1,1] ze[—1,1]
By the fact that
1
Y(z)dr = lim W(zx)de,
1 =0T J_1,1)\(—ee)
we find that
(T, p) = lim _¢(x) dr = J —¢($) dr + lim _¢(:1:) dzx
0% JR\(—¢e) ¥ R\[-1,1] T 0T 11\(—ee) T
— $(0
_ f P(x) dr + lim P(z) — ¢(0) da
R\-1,1] T =0T J-1,1]\(~ee) z

:f @dqu 1¢(m)dm.
R\[-1,1] -1

T



Therefore, (T, ¢) € C for all ¢ € .(R). Moreover,

KT, )| < J ‘¢ ‘d —|—J (2)] dz < f || 7?|z||¢(2)| dz + 2p1 (o)
R\[-1,1 | R\[-1,1]
x 2 _2d == 4 ,
<(2+] |, b)) =m0

thus [(T', ¢)| < 4py(¢) for all k > 1. This implies that T is a tempered distribution.

. Define H,(z) = Xx(on)(z). For a Schwartz function ¢ € #(R), define ) = ¢ — ¢(0)G. Then
e S (R), and

(H, ¢y = (H, ) + ¢(0)(H, Gy = (H, ) + ¢(0)(H, G
= lim (H,,, 0y + $(0)H. G)

where we have used the fact that (H,G) = \/g to conclude the last equality.

¥(x)
LG Ty
Define f by f(z) = $(z) or to be more precise, f(r) = z 7 . Then f is a
. P'(0) ifx=0,
Schwartz function. In fact, we have ¥ (z) = zf(x) for all x € R and the Lebnitz rule implies
that for 5 > 0,

2fO () = () — 30 (2)
which implies that
[ *|fP ()] < [2* [y ()] + Kl U0 (@)
so that the boundedness of |z|¥|f")(z)| can be proved by induction.

By Fubini’s Theorem,

f: (J_iw(@emdx) d¢ = J_O; ( fo " (et i€) s

<ﬁ1,¢>=gggoff e f e dg dx+\f<6¢>

thus

:,}ggoff W(z)— _mdx+\f<6¢>
1 1 * —inT
5 | x)dx + \/><5 o)+ hm Ton J_OO e " f(x)dx

- L[4 st d+\f<5 8+ lim Fn).



Since f € L (R), fe < (R); thus lim f(n) = 0. Therefore, by the fact G is an even function,

n—0o0
we conclude that

<H ¢>_eli()+ \/ﬁ R\(—¢,¢) X d +\/><6 ¢>

=L () ¢z

= lim 27 e @ dr+4/5 (6, ¢)

i x) T B T

i [ s Fao - @560,

~ —1 T
which shows that H = — 1T + \/jé.
\ 2 2 -

Problem 12. The Hilbert transform of a function f : R — R, denoted by J[f], is a function
defined (formally) by

Hf)() = lim /)

T eo0t ly—z|>e T — Y

dy,

1. Show that JZ[f] is well-defined if f € ./(R).

~

2. Show that .# [A[f]](€) = isgn(§) f(§) for all f e S(R).

3. Show that H%”[f]HLQ(R) = | flr2w) for all fe .#(R), where ||g|2®) = (fR |g(gj)‘2 dx)a

Hint: Consider the tempered distribution 7" defined in Problem El by

(T, ¢) = lim 9(x) dx—hrn f f dr  Voe S R).

e—0t R\[—e¢,€] s e—0t
1. Show that JZ[f] = (T, 7.f> for all f € .#(R), where 7, is a translation operator.

2. Show that the tempered distribution S defined by (S, ¢y = (T'(z),z¢(z)) is indeed the same

as the tempered distribution

¢waww=a¢>

Use Problem @ to show that jff’(g) = \/;zjésgn(ﬁ), where sgn is given in Problem B Use

the fact that % = 0 if and only if there exists C' such that (T, ¢) = (C, ¢) for all ¢ € Z(R) to

T(¢) = _\/@sgn@ +C

for some constant C'. Find the constant C' and also show that J[f] = 1 T+ f= \/ET x f
s v

conclude that

3. Use the Plancherel formula.



Proof. 1. Let f € #(R) be given. For each € > 0, the substitution of variable z = x — y implies that

f) o fle—=2) , fe—a) ()
jy—x|>e r—y dy N J|vz>e z e Jz|>e < e JIVR\(—G,G) z dz’

A1f)(z) = L lim () ()

Tt JR\(eq 2

thus

dz = %<T, Tzf>

Since Tz]? is also a Schwartz function for all z € R, by Problem El we conclude that J2[f] :

R — C is a well-defined function.

2. Let S be defined by (S, ¢) = (T'(x),z¢(x)) for all p € L (R). Since T € #(R)’, there exists
{Cr}, such that
KT, )| < Crpr(¢) Ve S (R)and k> 1.

By the fact that

pe(zo(z)) =  sup <x>k‘%[:€¢($)]‘: sup <x>k‘€¢(£*1)(x)+x¢(f)(x)

reR,0</<k zeR,0<l<k

< sup <x>k‘€¢“‘”(w)‘ sup (@)l (2)] < (k + D)prea(9),
zeR,0<l<k zeR,0<0<k

we find that
(S, )| < (k+1)Chprsa(9)  Voe S(R)and k> 1.

Therefore, S is a tempered distribution. Moreover, if ¢ € . (R),

(S, 6) = (T(x), 26(x)) = lim 02) 40 = lim o(z) do f 6(z) da
=0t JR\(—ee) T e—=0F JR\(—¢,¢) R
={1,9);

thus we conclude that S = 1. Therefore, S =27 4. By Problem @,

d ~

AR

thus Problem B shows that
d ~ d

206 = —ivary seoml©) = — i @)

Therefore, there exists a constant C' such that

f(ﬁ) = —\/gisgn(f) +C.

To determine C, let ¢ be a positive even Schwartz function (for example, ¢(x) = e~* ). Then

~

¢ is also an even Schwartz function so that

€)) = —i{ Z[aT(2)](€), (€)) = —i(S, ¢) = —iv/21(3,6) Ve .S (R);

(T, $) = <ng§>—hm —dr =0

0T JR\(—ee) ¥



since the function y = ¢z) is odd. By the fact that (sgn,¢) =0, we find that
X

0=(T,¢) = — | 5ilsen, 6) +(C,¢) = C{L, ).

Therefore, C' = 0 which shows that f(ﬁ) = —\/gisgn(ﬁ).

Finally, if f, ¢ € .7 (R),

~

(F* o)) = fR Fa—y)oly) dy = fR fly — )o(y) dy

so that
(T, f% ¢y = lim J J —f(x —y)e) dy dxr = lim (J flz=y) d:c)<;5(y) dy .
e—07F |z|>e JR r e—0t JR |z|>€ x
Since
|| >e z e<|z|<1 z R—%0 J1<|z|<R o
gf f(?/—f’f)_f<y))d$+ lim (:v—y)J;(y—w)ldx
e<|z|<1 x R—0 Jycjzj<R x
+ lim ‘yf(y — ) ’ dx
RHOO‘J1<|:1:\<R z

< ZSE]E{f’(a:)‘ + 2(3161]11; 2 f ()] + |y|81€1£|f(x)}> L v 2 dw
< 4pi(f) + 2lylpo(f)

the Dominated Convergence Theorem implies that

. Feo)= | 1im ( fl mm‘y)daz)cb(y) dy = fR im (| L8 az)o)ay

R €0+ x e—0t y—z|>e ¥ T F

_ j T A Uf)(W)oy) dy = (xH[f), 6

Therefore, by the definition of the convolution, we conclude that .72[f] = % (T f)= \/Z (T *
f) and this further implies that

F A1) = \g T(€)f(6) = ~isen(©)](€).
. By the Plancherel formula,

H‘%ﬂ[f]Hi?(R) = Hg[%[fu Hf‘ﬁ(R) = Hisgan%?(R) = Hf”%Q(R)

which shows that | (]| 5 = [ flz2) for all f e Z(R). 2



