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Chapter 0O

Review of Contents from Basic
Mathematics

0.1 Sets

Definition 0.1. A set is a collection of objects called elements or members of the set.

To denote a set, we make a complete list {z1,xs, -+, 2y} or use the notation

{:L‘ : P(a:)} or {Z"P(I‘)},

where the sentence P(x) describes the property that defines the set. A set A is said to be a
subset of S if every member of A is also a member of S. We write x € A (or A contains )
if x is a member of A, and write A < S (or S includes A) if A is a subset of S. The empty

set, denoted (¥, is the set with no member.

Definition 0.2. Let S be a given set, and A € S, B < S. The set Au B, called the union
of A and B, consists of members belonging to set A or set B, and the set A n B, called the
intersection of A and B, consists of members belonging to both set A and set B.

Let .Z be a collection of subsets in S. The set | J A, called the union of sets in .7, is
AeF
defined by
U A={zeS|3Aec F)(zec A},

AeF

and (| A= {ze S|(VAe F)(xz e A)} is the intersection of sets in .#. When .F =
AeF
{Aa | o€ I}, the union and the intersection of sets in .% can also be written as | J A, and
ael
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() Aa, respectively. When # = {Al, Ay, VA N}, the union and the intersection of sets in

ael

N N
F can also be written as | J A; and () A;, respectively.
i=1 =1

Example 0.3. Let .% be the collection of open intervals with length 2 and mid-point in
[0,1]. Then .# = {(a — 1,a+ 1) |a € [0,1]}. Moreover,
JAa= J@-La+1)=(-1,2) and []A= [ (a=1a+1)=(01).
AeF a€(0,1] AeF a€(0,1]

Definition 0.4. Let S be a given set, and A € S, B < S. The complement of A relative
to B, denoted B\A, is the set consisting of members of B that are not members of A. When
the universal set S under consideration is fixed, the complement of A relative to S or simply
the complement of A, is denoted by A°, or S\A.

Theorem 0.5. (De Morgan’s Law)

LB\UA = N(B\A) or B\ A= (1 (B\A).

ael ael AeF
2. B\ Au=U(B\A.) or B\ () A= | (B\A).
ael ael AeF AeF

Proof. By definition,

xeB\UAa@xeBand:cgéUAa@xeBand:c¢AaforallaeI

ael ael
< reB\A, forallael < x e ﬂ(B\Aa)
ael
The proof of the second identity is similar, and is left as an exercise. =

Definition 0.6. An ordered pair (a,b) is an object formed from two objects a and b,
where a is called the first coordinate and b the second coordinate. Two ordered pairs
are equal whenever their corresponding coordinates are the same. An ordered n-tuples
(a1,aq,--- ,a,) is an object formed from n objects ai,as,- - ,a,, where for each j, a; is
called the j-th coordinate. Two n-tuples (a1, ag, - - ,a,), (c1,¢2,- -+, ¢,) are equal if a; = ¢;

forall je{1,---,n}.

Definition 0.7. Given sets A and B, the Cartesian product A x B of A and B is the
set of all ordered pairs (a,b) with a € Aand be B, Ax B ={(a,b) |a€ A and b€ B}. The

Cartesian of three or more sets are defined similarly.
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0.2 Functions

Definition 0.8. Let S and T be given sets. A function f : S — T consists of two sets
S and T together with a “rule” that assigns to each x € S a special element of T denoted
by f(x). One writes x — f(z) to denote that z is mapped to the element f(x). S is called
the domain (% & 3) of f, and T is called the target or co-domain (¥ /&3) of f. The
range (%) of f or the émage of f, is the subset of T defined by f(5) = {f(x) ‘ z e S}.

f
7N

Definition 0.9. A function f : S — T is called one-to-one (- ¥+ - ), injective or an
injection if x1 # vy = f(x1) # f(x2) (which is equivalent to that f(x1) = f(z2) =
r1 = x2). A function f: S — T is called onto (P =), surjective or an surjection if

VyeT, 3o €S, 3 f(x) = y (that is, f(S) = T). A function f : S — T is called an
bijection if it is one-to-one and onto.

Definition 0.10. For f: S — T, A< S, we call f(A) = {f(x) ’x € A} the image of A
under f. For B< T, we call f~}(B) = {a: €S \ f(x) e B} the pre-image of B under f.

T
B = eags) o

Proposition 0.11. Let f: S — T be a function, Cy ,Co €T and Dy, Dy < S.

(a) f7HCLUCy) = fH(Ch) L fH((C).
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(b) f(D1v Dy) = f(D1) v f(Ds).

(€) [THCL N Ca) = f7HC) N f7HCo).

(d) f(D1n D)< f(D1) N f(D2).

(e) FUf(D1)) 2 Dy (“=7if  is one-to-one).
() fF(f7HC)) € Cr (“="1if C1 < f(9)).

Proof. We only prove (c) and (d), and the proof of the other statements are left as an
exercise.

(c) We first show that f~1(C1nCq) < f71(C1) N f~1(Cy). Suppose that x € f~1(C; N Cy).
Then f(x) € C; nCy. Therefore, f(z) € Cy and f(x) € Cy, or equivalently, z € f~1(C})
and z € f~1(Cy); thus z € f~H(Cy) n f7HCy).

Next, we show that f~1(Cy) n f71(Cy) < f~1(C1 n Cy). Suppose that z € f~1(C1) n
f7HCy). Then z € f~YCy) and z € f~'(Cy) which implies that f(z) € C; and
f(x) € Cy; thus f(x) € C; n Cy or equivalently, x € f~1(Cy n Cy).

(d) Suppose that y € f(D; n Ds). Then there exists © € D; n Dy such that y = f(z). As
a consequence, y € f(Dy) and y € f(Dy) which implies that y € f(D1) n f(D2). o

0.3 Countability of Sets

Definition 0.12. A set S is called denumerable or countably infinite (& % ¥ #ch) if
S can be put into one-to-one correspondence with N; that is, S is denumerable if and only
if there exists f : N — S which is one-to-one and onto. A set is called countable (¥ #c:)

if it is either finite or denumerable, and is called uncountable if it is not countable.

Remark 0.13. If f: N;I>S, then f=1: SLN. Therefore,

1
onto onto

S is denumerable < 3 f : N-LS < 3 g=f1: 5L

onto onto

N.

f can be thought as a rule of counting/labeling elements in S since S = {f(l), f(2),--- }

Example 0.14. N is countable since f : N-—5N with f(z) =z, YneN.

onto
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1 ifz=0
Example 0.15. Z is countable. f:7Z — N with f(x) = 2z ifz>0.
—2rx+1 ifx<0

k -3 -2 -1 0 1 2 3
fky 7 5 3 1 2 4 6
—>
e
_—>

Figure 1: An illustration of how elements in Z are labeled

Example 0.16. The set N x N = {(a,b)‘a,b € N} is countable. In fact, two ways of

mapping are shown in the figures below.

Y Y
5 5 o o o o o
I ®
;l ;l 10111213
- O, O, O]
5 5 9 8 7114
. . 21 3] 6115
: ©
1 4 516 17
1 2 3 4 5 z 1 2 3 4 5 T

Figure 2: The illustration of two ways of labeling elements in N x N

Proposition 0.17. Let S be a non-empty set. The following three statements are equivalent:

(a) S is countable;
(b) there exists a surjection f: N — S;
(c) there exists an injection f : S — N.

Proof. “(a) = (b)” First suppose that S = {z1,--- ,x,} is finite. Define f : N — S by
oy itk <n,
f(k>_{xn ifk>n.

Then f : N — S is a surjection. Now suppose that S is denumerable. Then by

definition of countability, there exists f : Nl—_tl>5.
onto



vi

CuaPTER 0. Introduction - Sets and Functions

“(a) < (b)” W.L.O.G. (without loss of generality, # % - # %) we assume that S is an

infinite set. Let k; = 1. Since #(5) = o, S; = S\{f(k1)} # &; thus N; = f~1(S;)
is a non-empty subset of N. By the well-ordered property of N (that is, non-empty
subset of N has least element), N; has a smallest element denoted by ks. Since
#(S) = w0, Sy = S\{f(k1), f(ko)} # &; thus Ny = f~1(S;) is a non-empty subset
of N and possesses a smallest element denoted by k3. We continue this process and

obtain a set {ki, ks, -} S N, where k; < ky < ---, and k; is the smallest element of
Njfl = f_l(S\{f(k1>7 f(k2)7 T 7f(k“]'*1)})'

Claim: f: {ky,ko,---} — S is one-to-one and onto.

Proof of claim: The injectivity of f is due to that f(k;) ¢ {f(k1), f(k2),- -, f(kj—1)}
for all j > 2. For surjectivity, assume that there is s € S such that s ¢ f({kq, ko, --}).
Since f : N — Sis onto, f~({s}) is a non-empty subset of N; thus possesses a smallest
element k. Since s ¢ f({k, ka, - }), there exists £ € N such that ky < k < ksy1. As a
consequence, there exists k € N, such that & < ky; which contradicts to the fact that

keyq1 is the smallest element of N,.

Define g : N — {ky, ko, --} by g(j) = kj. Then g : N — {ky, ks, -- -} is one-to-one and
onto; thus h = go f: N-+LgS.

onto

“(a) = (¢)” If S = {zy,--- ,x,} is finite, we simply let f : S — N be f(z,) =n. Then f is

clearly an injection. If S is denumerable, by definition there exists ¢ : NI—T>S which

shows that f = ¢! : S — N is an injection.

“(a) <= (c)” Let f: S — N be an injection. If f is also surjective, then f : S—=LN which

onto

implies that S is denumerable. Now suppose that f(S) < N. Since S is non-empty,
there exists s € S. Let g : N — S be defined by

_ fHn) ifne f(S),
g(”)_{ s ifné f(S).

Then clearly g : N — S is surjective; thus the equivalence between (a) and (b) implies
that S is countable. =

Example 0.18. The set N x N is countable since the map f : N x N — N defined by

f((m,n)) =2m3" is an injection.

Theorem 0.19. Any non-empty subset of a countable set is countable.
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Proof. Let S be a countable set, and A be a non-empty subset of S. Since S is countable,
by by Proposition 0.17 there exists a surjection f: N — S. On the other hand, since A is a

non-empty subset of S, there exists a € A. Define
(z) = r ifxeA,
IT=N a ifa ¢ A.
Then h = go f: N — A is a surjection, and Proposition 0.17 implies that A is countable. o

Theorem 0.20. The union of countable countable sets is countable. (¥ #cip ¥ #c f 85 &

¥ #in)

oo
Proof. Let A; be countable, and define A = (J A;. Write A; = {1, %2, T3, - }. Then
i=1

A={zyli =12, j<#(4)+1}, where #(A;) = o if A; is countably infinite. Let
S={(,j)]i=1,2,--,j < #(4) + 1}, and define f : S — A by f((i,j)) = z;;. Then
f: S8 — Ais a surjection. On the other hand, since S is a subset of N x N, Theorem 0.19
implies that S is countable; thus Proposition 0.17 guarantees the existence of a surjection
g:N— S Then h= fog:N — Ais a surjection which, by Proposition 0.17 again, implies
that A is countable. o

Example 0.21. Z x 7Z is countable.

Proof. For i € Z, let A; = {(i,j) ‘j € Z}. By Example 0.15, A; is countable for all i € Z.
Since Z x Z = |J,o;; Ai which is countable union of countable sets, Theorem 0.20 implies

that Z x 7Z is countable. =
Theorem 0.22. Q is countable.
Proof. Define

(p,q), ifx>0, x:%, ged(p,q) =1, p> 0.
flz) = (0,0), ifx=0.
(p,—q), if z <0, x:—%, ged(p,q) =1, p> 0.

Then f : Q — Z x Z is one-to-one; thus f : Q%f((@). Since Z x 7 is countable, its

non-empty subset f(Q) is also countable. As a consequence, there exists g : f (Q)—%;1 N;

thush:g0f:@i>N. o

onto
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Theorem 0.23. The open interval (0,1) is uncountable.

Proof. Assume the contrary that there exists f : N — (0,1) which is one-to-one and onto.

Write f(k) in decimal expansion (- & =& B ); that is,

f(l) = 0.d11d21d31 s
f(?) = 0.d12d22d32 cee

f(k) = 0.dygdapdsy - - -

Here we note that repeated 9’s are chosen by preference over terminating decimals; that is,
for example, we write % =0.249999 - - - instead of % = 0.250000- - - .
Let x € (0,1) be such that = 0.dydy - - -, where

5 if dy # 5,
di, = .

(ZH- B o ™%k mdkd f(k) v BT 5 k 82 4p% ). Thenz # f(k)
for all k£ € N, a contradiction; thus (0, 1) is uncountable. o

Corollary 0.24. The collection of real numbers is uncountable.



Chapter 1

The Real Number System and
Completeness

1.1 Ordered Fields

Definition 1.1. A set F is said to be a field (%#8) if there are two operations + and - such

that

. For every z € F, x # 0, there exists y € F (usually y is denoted by x~

r+yeF, x-yeFifz,yeF. (FFH)

.z+y=y+xforall z,y e F. (commutativity, 4ri* ér< & 4)

(x+y)+z=x+ (y+ 2) for all x,y,z € F. (associativity, 4viz en’ & |4)

. There exists 0 € F, called the additive identity (#ciz ¥ i+~ %), such that z +0 ==z

for all x € F. (the existence of zero)

For every z € F, there exists y € F (usually y is denoted by —z and is called the
additive inverse (#tiz F = %) of z) such that x +y = 0. One writes z —y = x + (—y).

r-y=y-xforall z,yeF. (FiZzh2 )

(x-y)-z=a-(y-z) foral x,y,zeF. (2 &)

. There exists 1 € F, called the multiplicative identity (3 ;* ¥ = =~ %), such that

x-1=ua for all x € F. (the existence of unity)

! and is

1
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called the multiplicative inverse (3 /% ¥ = %) of z) such that z -y = 1. One writes
roy=x-x =1

10. z-(y+2)=a-y+az-zforall z,y,z € F. (distributive law, 4 fie &)

11. 0 # 1.

Remark 1.2. Let z and y be both multiplicative inverse (3 ¥ =% ) of a number a in
(F,+,-). Then

ra=1 = (r-a)-y=1ly=y = zx-l=z (a-y) =y;
thus x = y. In other words, the multiplicative inverse of a number is unique. Similarly, the
additive inverse of a number is also unique.
Remark 1.3. A set [F satisfying properties 1 to 10 with 0 = 1 consists of only one member:
By distributive law, -0 = z-(0+0) = z-0+42z-0; thus —(x-0)4(2-0) = —(2-0)+(z-0)+(x-0)
which implies that - 0 = 0. Therefore, if 0 =1, then z =2 -1 =2-0 =0 for all x € FF.
Hence, the set F consists only one element 0.
Remark 1.4. If z € F, then ((1+ (—1)) - 2 = 0 which implies that z + (=1) -z = 0.
Therefore, (1) -z =—-2z+z+(-1) -2 =—-2+0=—z.
Example 1.5. Let F = {a, b, ¢} with the operations + and - defined by

+‘abc ~‘abc
ala b c ala a a
b|b ¢ a bla b c
clc a b cla ¢ b

Then F is a field because of the following: Properties 1, 2, 3, 6, 7 are obvious.

Property 4: 3 “0” s x + “0” = x for all x € F. In fact, “0” = a.

Property 5: Ve eF, dyeF sx+y =0, here b = —c, c = —b.

Property 8: 3 “1”7 3 x-“1” = z for all z € F. In fact, “1” = b (so Property 11 holds since
a#b).

Property 9: Vx #0, € F, 3z€F a2 -2z =1, here z = x.

The validity of Property 10 is left as an exercise.

Example 1.6. Let (F,+,-) be a field. Consider the set F = F x F = {(a,b) |a,b € F}.
Define

(a,b) ® (¢,d) = (a+c,b+d) and (a,b)O(c,d)=(a-c—b-d,a-d+b-c).

Then (F,®,0) is also a field. The ordered pair (a,b) in F is sometimes denoted by a + bi.
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Example 1.7. Let (F,+,-) be a field. Then (z —y)(z +y) = 2> —y? for all z,y € F. In
fact,

(@—yle+y)=(@-—y) z+(x—y)y (
=z-(z—y)+y (z—y) (by 3% 2 # &)
=z-x+z (Y +y oty (-y) (by #pi)

(by Remark 1.4 and 3/ 2 # &)

(by Property 5)

(

=2’ —z-y+ta-y-—y
=72 — 2 by Property 4).

Definition 1.8. An ordered field (7 7 %) is a field (F,+,-) equipped with a relation <
on F satisfying that

1. z <z for all x € F (reflexivity).

2. If z,y € F satisfies that x < y and y < x, then = = y (anti-symmetry).
3. If z,y € F satisfies that x < y and y < 2, then = < z (transitivity).

4. For each x,y € F, either x < y or y < x.

5. If # <y, then 2 + 2z < y + z for all z € F (compatibility of < and +).
6. If 0 < z and 0 < y, then 0 < x - y (compatibility of < and ).

Remark 1.9. A relation < on a field F satisfying only 1-3 in the definition above is called a
partial order. If in addition < also satisfies 4, it is called a total order or linear order. Note

that > is a relation on Q satisfying 1-5 but not 6.
Remark 1.10. In an ordered field, the multiplicative inverse of x # 0 is sometimes denoted
1
by —.
T
Definition 1.11. In an ordered field (F, +, -, <), the binary relations <, > and < are defined
by:

l.x<yifz<yand z #y.
2. x zyify <.

3. x>yify <.
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From now on, the total order < of an ordered field will be denoted by <, and

the symbols <, > and > will be denoted by <, > and >, respectively.

Adopting the definition above, it is not immediately clear that * < y < x > y. However,

this is indeed the case, and to be more precise we have the following

Proposition 1.12. (Law of Trichotomy, = - &) If x and y are elements of an ordered

field (F,+,-, <), then exactly one of the relations x <y, x =y or y < x holds.

Proof. Since F is a totally ordered field, z and y are comparable. Therefore, either x < y

or y < x. Assume that x < y.
1. If x =y, then x <y and x > y.

2. If x # y, then x < y. If it also holds that x > y, then x > y; thus by the property
of anit-symmetry of an order, we must have x = y, a contradiction. Therefore, it can

only be that z < .
The proof for the case y < x is similar, and is left as an exercise. =
Proposition 1.13. Let (F,+,-, <) be an ordered field, and a,b,x,y,z € F.

1. Ifa+x =a, then x = 0.
Ifa-z=aanda #0, then x = 1.

2. Ifa+x =0, then x = —a.
Ifa-z=1anda# 0, then v = a™>.

3. Ifr-y=0, thenx =0 ory=0.
4. Ifr <y <zorzx<y<z then x < z (the transitivity of <).

5. If a < b, then a4+ x < b+ x (the compatibility of < and +).
If0 <a and 0 < b, then 0 < a-b (the compatibility of < and -).

6. Ifa+x=0b+z, then a="b.
Ifa+z<(<)b+x, thena < (<)b.
Ifa-z=0-x and x # 0, then a = b.
Ifa-x<(<)b-x and x > 0, then a < (<)b.
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10.

11.

12.

13.

14.

15.

16

Ifz #0, thenz™' #0 and (z7')"! = z.
Ifr #0andy #0, thenx -y #0 and (v -y) ' =z~ -y L.

If x
If x

(<)y and (<) z, then x -

(>)

(<)0, then z -y
(>)0, then z -y

NN

0
0

VoA
\

z z
(<)y and z, then x - z

If x
If x

(<)0 and y
(<)0 and y

NN
A\YAR/AN

0<1and—-1<0.

r-rx=x>>=0.

If x>0, then ™! > 0. If x <0, then 27! < 0.

Proof. 1. (—a)+a+z=(—-a)+a=0=2=0.

3.

(@Y -a-r=@(@@) a=1=z=1.

(—a)+a+z=(-a)+0=—-a=2=—a.
T

=@ 1=a'l=z=0al

Assume that  # 0, then 27! -2-y=271-0=0=y = 0.
Assume that y # 0, thenz-y-y 1 =0y ! =0= 2 = 0.

4 and 5 are Left as an exercise.

6.

a+0=a+z+(—z)=b+ax+(—z)=b+0=a=0.
a+0=a+z+(—z) <b+z+ (—z) =b+ 0= a < b (compatibility of < and +).

1 L= aq=0

a-x-x - =b-x-x"
Suppose the contrary that b < a. Then 0 =b+ (—b) < a + (—b). Since z > 0, x > 0;
thus

0<(a+(=b) z=a-z+(-b) x.
As a consequence, b-x =0+b-z<a-x+(=b)-x+b-x=a-x. By assumption, we

must have a-x =b-x or (a—b) -2 = 0. Using 3, z = 0 (since a # b), a contradiction.
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7. See Remark 1.3.
8. (—z) +(=(-2)) =0=(—2)+z =2 =—(-1)
9. See Remark 1.4.

10. Assume 271 =0, 1 =2 -27! = 2-0 = 0, a contradiction. Therefore, =% # 0; thus
(e H)latl=l=z-2!= (a7) =a (by 4).

11. That = - y = 0 cannot be true since it is against Property 3, so x -y # 0. Moreover,

@y e y=1=11=(@a") (yy)="y") (zy);
thus (z-y)™' =271 -y~ (by 4).

12. If x < (<) y, then 0 = z+ (—x) < (<) y+ (—x). Since 0 < (<) z, by the compatibility
of < (<) and - we must have 0 < (<) (y + (—x)) -z =y - 2+ (—z) - 2. Therefore, by
the compatibility of < (<) and +, z- 2 =0+z- 2 < (Q)y -2+ (—z) - z+z- 2=y 2.
The second statement can be proved in a similar fashion.

13. Left as an exercise.

14. If 1 < 0, then compatibility of < and + implies that 0 < —1. By the compatibility of
< and -, using 8 and 9 we find that 0 < (—1) - (—=1) = —(—1) = 1; thus we conclude
that 1 = 0, a contradiction. As a consequence, 0 < 1; thus the compatibility of < and
+ implies that —1 < 0.

15. Left as an exercise.

16. If z >0but 271 <0,then 1 =2 -27! <2 -0=0, a contradiction. =

Proposition 1.14. Let (F,+,-, <) be an ordered field, and x,y € F.

1.

2.

If0 <z <y, then x* < y>.

If0 < z,y and 2% < 2, then x < v.

Proof. 1. By definition of “<”, 0 < x <y and = # y. Using 12 of Proposition 1.13,

m2<y-x<y-y:y2.

By the transitivity of <, we conclude that x? < 3.
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2. Note that x # vy, for if not, then 22> — y*> = 0 which contradicts to the assumption

22 < y?. Assume that y < x, then 1 implies that y? < 22, a contradiction. o

Remark 1.15. Proposition 1.14 can be summarized as follows: if z,y > 0, then
r<ye <y’

Moreover, Example 1.7, Proposition 1.13 and Proposition 1.14 together imply that if x,y > 0,

then = < y if and only if 2% < v2.

Definition 1.16. The magnitude or the absolute value of x, denoted |z, is defined as

2] = xr ifx>=0,
TI=Y -z ifz<o.

Proposition 1.17. Let (F,+,-, <) be an ordered field. Then
L. |z| =0 forallx € F.

2. |z| =0 if and only if x = 0.

3. —|z| <z < x| for all z € F.
4. |z -y|=l|z|- |y| for all z,y € F.
5. |z +y| < |x| + |y| for all x,y € F (triangle inequality, = % 7 % ;%).
6. ||z| —|yl| < |z —y| for all z,y € F.
Proof. Left as an exercise. =

Definition 1.18. Let (F,+,-, <) be an ordered field. The natural number system,
denoted by N; is the collection of all the numbers 1, 1+ 1, 1+1+1,1+1+---+ 1 and etc.
inF. Wewrite2=1+4+1,3=2+1,andn = l141+---+1.In other words, N = {1,2,3,---}.

(n times)

The integer number system, denoted by Z, is theset Z = {--- , -3,-2,—1,0,1,2,3,--- }.

The rational number system, denoted by Q, is the collection of all numbers of the form
94— ¢ p~! with p,qe Z and p # 0; that is,
p

QZ{:BGF‘:L’:i,p,qu,p#O}-
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Theorem 1.19. Let (F,+, -, <) be an ordered field. Then Q is an order field.
e Peano’s Axiom for natural numbers:
1. 1 is a natural number.

2. Every natural number has a unique successor which is a natural number (41 is defined

on natural numbers).
3. No two natural numbers have the same successor (n + 1 = m + 1 implies n = m).
4. 11is not a successor for any natural number (1 is the “smallest” natural number).

5. If a property is possessed by 1 and is possessed by the successor of every natural
number that possesses it, then the property is possessed by all natural numbers. (4r
R B BBl ey DEE > S ARB U IR SR REhT - B ARk
ArHEF 0 PRAEETF enp fﬁﬁtﬁﬁ'ﬁgﬁ‘fﬁ TR

e Principle of Mathematical Induction (PMI): If S < N has the property that

(1) 1e S, and (2) n+ 1€ S whenever n € S,
then S = N.
e Principle of Complete Induction (PCI): If S < N has the property that

VneN, neS whenever {1,2,--- ,n—1} < 5,

then S = N.
e Well-Ordering Principle (WOP): Every nonempty subset of N has a smallest element.
Theorem 1.20. PMI, PCI and WOP are equivalent.

Definition 1.21. An order field (F,+,-, <) is said to satisfy Archimedean Property
(AP) if for all = € F there exists n € Z such that = < n.

Example 1.22. The rational number system Q satisfies Archimedean Property. To see this,
let x € Q be given. If x < 0, we take n = 1. Otherwise if 0 < x = 9 with p, q € N, we take
p

n:q+1anditisobviousthat%<q<q+1:n.
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1.2 Sequences in Ordered Fields

Definition 1.23. A sequence in a set S is a function f : N — S (not necessary one-to-one
or onto). The values of f are called the terms of the sequence, and f(n) is called the n-th

terms of the sequence.

Remark 1.24. A sequence in S is a countable list of elements in S arranged in a particular
order, and is usually denoted by {f(n)}zozl or {z,}>_, with x,, = f(n).

Definition 1.25. Let (F,+,-, <) be an ordered field. An “open” interval in F is a set of
the form (a,b) which consists of all z € F satisfying a < z < b. A “closed” interval in F

is a set of the form [a, b] which consists of all z € F satisfying a < z < b.

Definition 1.26. Let (F, +, -, <) be an ordered field. A sequence {z,} ; < F is said to be

convergent if there exists z € IF such that for every ¢ > 0 (and ¢ € F),
#{neN|z, ¢ (x—e,x+e)} <.
Such an x is called a limit of the sequence. In logic notation,

{z,}i, < Fis convergent < (JzeF)(Ve>0)(#{neN|z, ¢ (z—c,z+¢e)} <n0).
If x is a limit of {z,}*_,, we say {z,}r_, converges to « and write x,, — = as n — 0. If no
such z exists we say that {x,}’°; diverges (or the limit of {x,}*_; does not exist).
Remark 1.27. The number N may depend on ¢, and smaller ¢ usually requires larger V.

In the definition above, it could happen that there are two different limits of a convergent

sequence. In fact, this is never the case because of the following

Proposition 1.28. If {z,}>_, is a sequence in an ordered field F, and x, — x and x, — y

as n — o0, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x # y. W.L.O.G. we may assume that x < y, and let

€= % > 0. Define

Ai={neN|z, ¢ (x—c,x+¢)} and Ay ={neN|z, ¢ y—cy+e)}.

Then by the definition of the convergence of sequences, #A; < o and #A, < 0. Let
N; = max Ay, Ny = max Ay and N = max{Ny, No}. Since A, A, are finite, N < c0. On the
other hand, N +1 ¢ A; U Ay which implies that z,,, € (x —e,2+e)n(y—c,y+¢) = I,

a contradiction. o



10 CHAPTER 1. The Real Number System and Completeness

Notation: Since the limit of a convergent sequence is unique, if {z,}°_; is a convergent

sequence, we use lim x,, where n is a dummy index and can be change to other letters, to
n—aoo

denote the limit of {x,}7 ;.

Example 1.29. A permutation of a non-empty set A is a one-to-one function from A
onto A. Let 7 : N — N be a permutation of N, and {z,})°; be a convergent sequence in
an ordered field F. Then {xﬂ(n)}le is also convergent since if z is the limit of {z,}*_, and

e >0,
#{neN|tmm ¢ (@—c,ot+e)=#{neN|z, ¢ (z—c,x+e)} <.

Proposition 1.30. Let (F,+, -, <) be an ordered field, {x,}>_; < F be a sequence, and x € F.

Then lim x, = x if and only if for every e > 0, there exists N > 0 such that |z, — x| < ¢

n—00

whenever n = N. In logic notation,

lmaz, =2 < NVe>0E3N>0)n=N-=|z,—z<¢e).

n—aoo
Proof. “=7" Let € > 0 be given. Since lim z, = z, #{n € N|xn ¢ (r—e,x+ 6)} < oo. If
n—0oo
#{neN‘xn¢(x—e,a:—l—s)} > 0, deﬁneN:maX{neN‘mngﬂc‘(x—e,x+5)}+1,

otherwise define N = 1. Then if n > N, z,, € (x — &,z + €) or equivalently,

|z, — x| <e whenever n > N.

L

]7—5—>}<—5—>}

7
X1 31‘4.TNU \ Nxf T5T3 X9

T, forn>N= Ny—+1

Figure 1.1: Let Ny be the largest index of those z,’s outside (z — ¢,z 4+ ¢). Then z,, €
(x — e,z +¢) whenever n > N = Ny + 1.

“<” Let ¢ > 0 be given. Then for some N > 0, if n > N, we have |z, — x| < € or

equivalently, if n > N, x,, € (x — ,x + ). This implies that
#{neN|z, ¢ (z—e,z+e)} <N <. o

Remark 1.31. By the proposition above, x,, — x as n — oo if and only if the sequence

{|z, — x\}le converges to 0; that is,

lim z, =« if and only if lim |z, — 2| =0.
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Remark 1.32. A sequence {z,}°_; < F diverges if (and only if)

n=1 S
VeeF,de>0s3#{neN|z, ¢ (r—c,x+e)} =0
which is equivalent to that
VeeF,de>03{neN|z, ¢ (x—c,o+e)}={n <ny<---<mnj <---}.
Therefore, {z,}>_, diverges if (and only if)

VezeF,3e >0V N > 0,3n = N such that |z, — x| > €.

Example 1.33. Now we use the e-N argument as the definition of the convergence of
sequences to re-establish the convergence of the sequence in Example 1.29.
Suppose that {x,}> | is a convergent sequence with limit z, and € > 0 be given. Then

there exists Ny > 0 such that if n > Ny, we have |z, — z| < e. Let
N =max {7 '(1),77'(2), -, 7 (M)} + 1.
Then if n > N, w(n) = N; which implies that
‘.ﬁtﬂ(n) — :1:’ <¢& whenever n>N.

Therefore, lim 2., = .
n—aoo
From the example above, we notice that proving the convergence using the e-N argument
seems more complicated; however, it is a necessary evil so we encourage the readers to major

it.

Lemma 1.34 (Sandwich). If lim z,, = L, lim y, = L, {z,}_, is a sequence such that
n—o0 n—a0

Tp < Zp < Yp, then lim z, = L.
n—0o0

Proof. Let ¢ > 0 be given. Since lim z,, = L and lim y, = L, by definition
n—0o0 n—0o0

AN, >03L —e¢<x, <L+¢ whenever n> N;

and
dNy>03L —ec <y, <L+¢ whenever n> Ns.

Let N = max{Ny, No}. Then forn > N, L —¢ <z, < 2z, <y, < L+¢; thus lim z, = L. o

n—0o0

Proposition 1.35. If x, <y, for allne N and lim x, = x, lim y, =y, then v < y.
n—ao n—ao
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Proof. Assume the contrary that x > y. Let ¢ = % By the fact that z,, — x and

Yn — Y as n — o0, there exists Ny, Ny > 0 such that

r—y

|z, — 2| < 2 "

whenever n > N; and |y, —y| < 5 whenever n = Nj.
Let N = max{Ny, No}. Then for n > N,

r—y r+y r—y
— = =r———<ux
2 2 2 "

a contradiction. o

Yn <y +

Corollary 1.36. 1. Ifa <z, (or x, <b) and lim x,, =z, then a < x (or z < b).
n—o0

2. Ifa <z, (orz, <b) and lim x, = x, then a < x (or x < ).
n—o0

Definition 1.37. Let (F, +,-, <) be an ordered field, and {z,} ; be a sequence in F.

1. {x,}y, is said to be bounded from above (3 * J ) if there exists B € F, called

an upper bound of the sequence, such that x,, < B for all n € N.

2. {z,}, is said to be bounded from below (7 T J ) if there exists A € F, called a

lower bound of the sequence, such that A < x,, for all n € N.
3. {z,}, is said to be bounded (F J ) if it is bounded from above and from below.

Remark 1.38. An equivalent definition of bounded sequences is stated as follows: {z,}>_,
is said to be bounded if there exists M > 0 such that |z,| < M for all n € N.

A

Proposition 1.39. A convergent sequence is bounded (#ic7|jcacsF %) .

Proof. Let {x,}°_; be a convergent sequence with limit z. Then there exists N > 0 such

that
Th€(x—1,x4+1) Vn>=N.

Let M = max {|z1], |22, -, |z, .|, |2[ + 1}. Then |z,| < M for all n € N. o
Theorem 1.40. Suppose that x, — x and y, — y as n — . Then

1.z, £y, x££y asn — .

2. TpYp — XY asN — 0.

3. If yp,y # 0, thenzgj—nﬁg as n — 0.

n
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Proof. 1. Let € > 0 be given. Since x,, — x and ¥y, — y as n — o0, there exist N, Ny € N
such that |z, — z| < g for all n = Ny and |y, — x| < % whenever n = Nj. Define

N = max{Ny;, No}. Then N e Nand if n > N,
(T £ yn) — (@ Y| < |on — 2]+ |yn —y| <e;
thus x, £y, > x £y as n — 0.

2. Since z,, — z and y, — y as n — o0, by Proposition 1.39 there exists M > 0 such
that |z,| < M and |y,| < M. Let ¢ > 0 be given. Then

9
AMeN)(n=N = |z, —z| < 2M)

and

AN eN)(n=No = |y, —y| <
Define N = max{Ny, No}. Then N € N, and if n > N,

2r)

T Yo — Yl = T Yo — T Y+ Ty — oyl < ‘xn<n_ Y|+ ly - (@ — )
3
< M-y, — M -\x, — M- -—+ M- .
Yo —y| + M - |z, — 2] < 2M+ Sl =€

1 1
3. It suffices to show that lim — = — if Yn,y # 0 (because of 2). Since lim y,, = y, there
n—0oo

n—00 Yp
exists Ny € N such that |y, —y| < M whenever n > N;. Therefore, |y| — |yn| < ’Z‘
for all n > N; which further implies that Y| > |g’ for all n > N;.
2
Let € > 0 be given. Since lim Yn =y, there exists Ny € N such that |y, — y| < |y2|

whenever n > N,. Define N max{/Ny, No}. Then N e N and if n > N,

i_}‘: lyn =yl _Jy* 12

ya oyl lwallyl T2 Jyllyl
Theorem 1.41. An ordered field (F,+,-, <) has Archimedean Property if and only if the
0
sequence {E} converges to 0.
n=1

Proof. “=7 Let € > 0 be given. Define x = é Then z > 0 by Proposition 1.13. Moreover,

Archimedean Property of IF implies that there exists N such that z < N. Then N > 0
and if n > N,

1
‘——0‘ <-=c.
x

1
N
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“<" Let x € F be given. If x < 0, we choose n = 1sothat xt < 1. If x > 0, let ¢ = % Then

1
€ > 0 by Proposition 1.13. Since — — 0 as n — o, there exists N > 0 such that
n

1 1 1
—:‘——O‘<€:— whenever n > N.
n n x
. 1 1 Dy .
In particular, i < — which implies that x < N. =
X

Remark 1.42. There are ordered fields that do not have Archimedean Property, and

these fields are called non-Archimedean ordered fields (while an ordered field satisfying
Archimedean Property is called Archimedean ordered fields - AP 3 A 4#). In a non-

o0
Archimedean ordered field, the sequence {f} does not converge to 0.
nJ)n=1

1.3 Monotone Sequence Property

Definition 1.43. Let (F, +,-, <) be an ordered field, and {z,}?_; be a sequence in F.
1. {z,}2, is said to be increasing/non-decreasing if x,, < z,., for all n € N.
2. {x,}2 is said to be decreasing/non-increasing if =, > x, ., for all n € N.
3. {z,}2; is said to be strictly increasing if =, < x,., for all n € N.
4. {z,}°_, is said to be strictly decreasing if x,, > x,, for all n € N.

A sequence is called (strictly) monotone if it is either (strictly) increasing or (strictly)

decreasing.

Definition 1.44. An ordered field F is said to satisfy the monotone sequence property

(MSP) if every bounded monotone sequence converges to a limit in F.

Remark 1.45. An equivalent definition of the monotone sequence property is that every
monotone increasing sequence bounded from above converges; that is, if each sequence

{z,}_, < F satisfying
(i) @, < xpyq for all n e N,
(ii) there exists M € F such that x,, < M for all n e N,

is convergent, then we say [ satisfies the monotone sequence property.
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Example 1.46. Consider the sequence {y,}> ; in Q defined by

1 B 1
y1_§7 yn+1—71

2+
2+ yn

1. {y,}°_, is bounded from below by zero.
2. {y,}°_; is a decreasing sequence in Q (which can be proved by induction).

1
If lim y, =y, then Theorem 1.40 implies that y = — from which we conclude that
n— o0 24+ —
24y
y = —1++/2. Since y ¢ Q, {y,}>, does not converge (to a limit) in Q. In other words, Q

does not satisfy the monotone sequence property.

Proposition 1.47. An ordered field satisfying the monotone sequence property satisfies
Archimedean Property; that is, if F is an ordered field satisfying the monotone sequence

property, then for all x € F, there exists n € N such that x < n.

Proof. Assume the contrary that there exists z € F such that n < z for all n € N. Let

0

x, = n. Then {x,} , is increasing and bounded from above. By the monotone sequence

property of I, there exists Z € IF such that x,, — Z as n — o0; thus there exists N > 0 such
that

~ 1
|z, — | < 1 whenever n > N.

. ~ 1 ~ 1
In particular, |[N — Z| < T IN+1-Z| < e thus

1:]N+1—N|<|N—|—1—x|+|x—N’<Z+Z:§,

a contradiction. o

Example 1.48. Let (F,+, -, <) be an ordered field satisfying the monotone sequence prop-

. o . N, .
erty, and y € F be a given positive number (that is, y > 0). Define z, = 2—:, where N, is

Ny +1
27’L

N, .
the largest integer such that 22 < y; that is, (2—”)2 < y but ( )2 > y (for example, if
) 11

?7(%.3:273’ ) Then

2
y:2,thenx1:§,x2:

1. x, is bounded from above: since 22 < y < 2y+3°+1 = (y+1)?, by the non-negativity
of x,, and y and Remark 1.15 we must have 0 < x,, <y + 1.
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2. x, is increasing: by the definition of N,

N2<22n'y:>4‘N3<22n+2'y=22(n+1)'y3

n

No _ 2Na _ Noga

on = ot S gt = ZTpi1. Oince I satisfies the monotone sequence

Therefore, x, =

property, there exists x € F such that x,, — x as n — . By Theorem 1.40, 22 — z?%

and by Proposition 1.35, 2% < y.

Now we show 22 = y. To this end observe that

Y;

1 Ny, N, +1
) = ( )’

1
(#n + 57 o T o) = (o

1 1
thus 72 < y < (;pn + 27)2, By Archimedean propery of F (Proposition 1.47), lim o = 0;
n—aoo
1

thus Theorem 1.40 implies that 2? = lim 22 = lim (z, + on
n—0o0 n—0o0

1.14 implies that such an x is unique if x > 0.

)2 = 9. Note that Proposition

In general, one can define the n-th root of non-negative number y in an ordered field
satisfying the monotone sequence property. The construction of the n-th root of y € F is

left as an exercise.

Definition 1.49. For n € N, the n-th root of a non-negative number y in an ordered field
satisfying the monotone sequence property is the unique non-negative number x satisfying

2" = y. One writes y*/™ or {/y to denote n-th root of y.

1.4 Least Upper Bound Property

Definition 1.50. Let (I, +, -, <) be an ordered field, and ¢§ # A € F. A number M € F is
called an upper bound (+ %) for A if x < M for all x € A, and a number m € F is called
a lower bound (7 J) for A if x = m for all x € A. If there is an upper bound for A, then
A is said to be bounded from above, while if there is a lower bound for A, then A is said
to be bounded from below. A number b € F is called a least upper bound (-] *+ %)
of A if

1. b is an upper bound for A, and
2. if M is an upper bound for A, then M > b.

A number a is called a greatest lower bound (# + T J ) of A if
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1. a is a lower bound for A, and

2. if m is a lower bound for A, then m < a.

- [ \
T 7 >
m A M

a lower bound for A an upper bound for A

Py >

If A is not bounded from above, the least upper bound of A is set to be oo, while if A is not
bounded from below, the greatest lower bound of A is set to be —oo. The least upper bound
of A is also called the supremum of A and is usually denoted by lubA or sup A, and “the”
greatest lower bound of A is also called the infimum of A, and is usually denoted by glbA
orinfA. If A= ¢, then sup A = —o0, inf A = 0.

We emphasize that “sup A = o0” is purely a notation denoting that A is not bounded

from above; however, co ¢ F and sup A does not exist.
Remark 1.51. Let (FF,+, -, <) be an ordered field.

1. If by, by € F are least upper bounds for a set A < F, then b; = by (since b; < by and
by < by for by, by are also upper bounds for A). Therefore, sup A is a well-defined

concept. Similarly, inf A is a well-defined concept.

2. Since the sentence “x € J = x < M7 is true for all M € F, we conclude that

sup & = —oo. Similarly, inf @ = co.
Example 1.52. In the ordered field R (pretended that you know what R is),
1. sup(0,3) = 3 and inf(0, 3) = 0.
2. sup N does not exist, but infN = 1.
3. Let A={27"|keN}. Then infA =0 and sup A = %
4. Let B = {r e Q|z? < 2}. Then inf B = —/2 and sup B = /2.

How about considering the supremum and infimum for the sets above in the ordered field

Q7

Proposition 1.53. Let (F,+,-, <) be an ordered field, and A be a non-empty subset of F.
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1. b=sup A eF if and only if
(i) b is an upper bound for A. (ii)) (Ve >0)(Fze A)(z>b—¢).
2. a=inf A € F if and only if
(i) a is a lower bound for A. (ii) (Ve>0)(Jze A)(z <a+e).
Proof. 1t suffices to prove 1.

“=7 (i) is part of the definition of being a least upper bound.

(ii) If M is an upper bound for A, then we must have M > b; thus b — € is not an

upper bound for A. Therefore, there exists z € A such that z > b — ¢.

“<” We show that if M is an upper bound of A, then M > b. Assume the contrary that
there exists an upper bound M for A satisfying M < b. Let e =b— M. Then € > 0

and there is no x € A satisfying x > b — ¢, a contradiction. =
Corollary 1.54. Let (F,+,-,<) be an ordered field, and A be a non-empty subset of F.
1. b=sup A € F if and only if
(i) Ve>0)(Vxe A)(x <b+e). (i) Ve >0)Fxz e A)(z > b—¢).
2. a=1inf A € F if and only if
(i) (Ve>0) (Ve A)(z>a—c¢). (ii) (Ve > 0)(Fz e A)(x <a+e).
Proof. By Proposition 1.53, it suffices to show that

condition 1(i) < b is an upper bound for A.

Since the direction “<="” is trivial, we only need to prove the direction “=". Suppose the
contrary that b is not an upper bound for A. Then there exists x € A such that b < x. Let

e =x — . Then € > 0 and we do not have 1(i) since x € A but x < s +«. D

Proposition 1.55. Let (F,+,-, <) be an order field, and & # A < B € F. Then inf B <

inf A < sup A < sup B whenever those numbers exist in F or are +o0.

Proof. We proceed as follows.
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1. supA < sup B: Let b = sup B, then for all x € B, x < b. Since A < B, then for all
x € A, x < b; hence b is also an upper bound for A. Since sup A is the least upper

bound of A and b is an upper bound for A, then sup A < b = sup B.
2. Tt is similar to prove inf B < inf A.

3. It is trivially true that inf A < sup A. o

Definition 1.56 (Least Upper Bound Property). Let (I, +, -, <) be an ordered field. F is
said to satisfy the least upper bound property (LUBP) if every non-empty subset of F
that has an upper bound in F has a supremum that is an element of F (23 3 + % e g
&% ]+ &) . The greatest lower bound property (GLBP) for ordered fields is
defined similarly.

Proposition 1.57. Every ordered field satisfying the least upper bound property satisfies
Archimedean Property; that is, if F is an ordered field satisfying the least upper bound

property, then for all x € F, there exists n € N such that x < n.

Proof. Let (F,+,-,<) be an ordered field with the least upper bound property, and = € F
be given. If x < 1, then the choice n = 1 validates n > x. Suppose x > 1. Define
A= {n eN ’ n < Jc} Then 1 € A and z is an upper bound for A. By the least upper bound
property of F, s = sup A € F exists. Since s is the least upper bound of A, s — 1 is not
an upper bound for A; thus there exists m € A such that m > s—1or s < m+ 1. Then
m + 1 ¢ A which implies that m + 1 < x. The choice n = m + 1 then satisfies n > x. =

1.5 Bolzano-Weierstrass Property

Definition 1.58. A sequence {y;}72, is called a subsequence (+ #7]) of a sequence
{zn ), if there exists a strictly increasing function ¢ : N — N such that y; = x4(;). In this

case, we often write ¢(j) = n; and y; = xy,.

In other words, a subsequence is a sequence that can be derived from another sequence
by deleting some elements without changing the order of remaining elements. Let f : N — F
be a sequence and z,, = f(n). A subsequence {z, }7, of {z,};_, is the image of an infinite

subset {nj,ng, -} of N under the map f (or simply the sequence fo¢: N —F).

7 zows  phxs x6 fo T
£L‘n3

‘(Enl ‘/Enz xn 5 mn

5

4
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Example 1.59. Consider the sequence {z,}> ; defined recursively by

1 1

r1 = < T9 = —— Tpntl — —— .
27 1 ) n+ 2+xn

Then the sequence {y,} ; given in Example 1.46 is a subsequence of {z,}_,. In fact,
Yn = Top—1 VneN (with the choice of ¢p(n) =2n —1).

The following proposition concerns equivalent conditions for the convergence of se-

quences.

Proposition 1.60. Let (F,+,-, <) be an ordered field, {x,};_, be a sequence in F, and
xelF. Then

1. z, = x as n — o if and only if every proper subsequence of {x,}x_, converges to .

2. x, —» x as n — o if and only if every proper subsequence of {x,}>_, has a further

subsequence that converges to x.

Proof. 1. “=" Let {x,,,}72, be a subsequence of a convergent sequence {x,};_, with limit
z, and € > 0 be given. Then there exists N > 0 such that |z, — x| < & whenever

n = N. Since n; > j for all j € N, we find that |z,, — 2| < ¢ whenever j > N.

“<" Let € > 0 be given. Since every proper subsequence of {x,}* , converges to z,

the subsequence {x,1}’2; converges to z. Therefore, there exists N7 > 0 such that
|Tp1 — x| <e whenever n > N;.

Let N = Ny + 1. Then |z, — x| < £ whenever n > N.

2. The direction “=" follows from 1. For the direction “<”, assume the contrary that

T, > x as n — o0. Then
(Fe>0)(#{neN||z, —z| >} =0).

Let {n € N||z, — x| = ¢} = {n; € N|n; < njy; forall j € N}. The subsequence
{n, }30:1 clearly does not have any subsequence {xn‘jk}:):l which converge to z, a

contradiction. o
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Remark 1.61. 1 of Proposition 1.60 indeed can be rephrased as “{z,}r_, converges if and

only if every proper subsequence of {x,}*_; converges”. This fact is left as an exercise.

Recall that sequence {z,}*_; converges to z if and only if
Ve >0, #{neN‘xngé (;E—s,x+€)} < .
The statement above implies that
Ve>0,#{neN|z, e (z—¢c,a+¢)} =00; (1.5.1)

however, if x satisfies (1.5.1),  might not be the limit of the sequence. Nevertheless, a
candidate for the limit of a sequence must satisfy (1.5.1), and we call such a point a cluster

point of {z,}*_;. To be more precise, we have the following
Definition 1.62. A point z is called a cluster point of a sequence {z,}_, if (1.5.1) holds.

We note that (1.5.1) is equivalent to that
Ve>0, #{neN||z, —z| <e} =w.
Example 1.63. Let x, = (—1)". Then 1 and —1 are the only two cluster points of {z,}>_,.

Example 1.64. Let z,, = (—1)" + L
n

Claim: 1 and —1 are cluster points of {z,,}°_;.

Let € > 0 be given. We observe that
1
{neN‘xne (1—5,1+6)} -] {neN‘niseven,— <5};
n

thus #{n € N’xn € (1—¢e1+¢e)} = co. Similarly, —1 is a cluster point. Moreover, if

a # +1, a is not a cluster point of {z,}>_,.

Example 1.65. Let S = Q n [0,1]. Then S is countable since it is a subset of a countable
set Q. Therefore, there exists f : N1—j>5 or equivalently S = {q1,¢2, " ,qn, - }. The

collection of all cluster points of {¢,}>, is [0, 1] since every open interval (with mid-point

in [0,1]) contains infinitely many rational numbers in S.

Definition 1.66 (Bolzano-Weierstrass Property). Let (F,+, -, <) be an ordered field. F is
said to satisfy the Bolzano- Weierstrass property (BWP) if every bounded sequence
in [F has a convergent subsequence; that is, every bounded sequence in F has a subsequence

that converges to a limit in F.
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Remark 1.67. Q does not satisfy the Bolzano-Weierstrass property. Example 1.46 provides

an counterexample of a bounded divergent sequence in Q.

Proposition 1.68. Let (F,+,-, <) be an ordered field satisfying the Bolzano-Weierstrass
Property, {x,}>_, be a sequence in F, and v € F. Then z, — x as n — o if and only if

{x,}2 ) is bounded and x is the only cluster point of {x,}r_,.

Proof. “=7" The boundedness is concluded by Proposition 1.39. For uniqueness, suppose

the contrary that there is another cluster point y # x. Let € = |2 ; y|‘ Then
#{neN||z, —y| <e} = .

Since {n € N||z, — z| > ¢} 2 {n € N||z, — y| < e} (this inclusion is left as an
exercise), we find that

#{neN||z, —z|>¢e} =00,
a contradiction to that z, — x as n — oo.

“«<" Suppose that {x,},=1 is a bounded sequence in F and has x as the only cluster

point but {x,}>; does not converge to x. Then
Je>03#{neN|z, ¢ (z—c,x+¢e)} =w.

Write {n € N‘xn ¢ (x —e,xz+ 6)} = {ni,ng, -+ ,ng,---}. Then we find a subse-
quence {xnk}zozl lying outside (x — e,z 4 ¢). Since {xnk}zozl is bounded, the Bolzano-

Weierstrass Property implies that there exists a convergent subsequence {a:nkj}oo

j=1
with limit y. Since Ly, ¢ (r—ec,x+¢),y¢ (xr—e,x+¢e) by Proposition 1.35; thus

y # x. On the other hand, the limit lim Ty, =Y implies that for every € > 0,
j—®©
(N[, v <} 2 {jeN]j > )

for some J > 0; thus #{j € N‘ ‘xnkj — y| < 5} = oo which shows that y is also a
cluster point of {x,}>,, a contradiction to the assumption that z is the only cluster

point of {x,}%_;. o

Example 1.69. Consider the sequence {z,}>_; defined by
{ n if nis odd,
Ty =

1 ifniseven.

Then 1 is the only cluster point of {z,}*_;, but {z,}>_; does not converge to 1 (since x,, is
not bounded).
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1.6 Cauchy Sequences
If a sequence {z,}>_, in an ordered field F converges, then
JzeFaVe>0,#{neN|z, ¢ (x—c,x+¢)} <.
We note that the statement above implies that if {z,}*_, converges, then
(Ve > 0)(3 an interval I of length 2¢)(#{neN|z, ¢ I} < ©). (%)

The statement above motivates the following

Definition 1.70. A sequence {z,}°_; in an ordered field is said to be Cauchy if

(Ve>0)AN >0)(n,m =N = |z, — x| < ).

Remark 1.71. (x) & sciten? w L B L2 iz- T He N ,Fashg 33 J—- BER I
2o R B B R e, T LB - TR R B E R A P S T R
B 43 #6450 {z,0 P (7 BB T ary SRPRFLpP ) -

Example 1.72. In Q, z; = 3,20 = 3.1,23 = 3.14,24 = 3.141,---. Then {z,}, is a
Cauchy sequence, but is not convergent. Therefore, a Cauchy sequence in an ordered field

may not converge.

Example 1.73. Let (F,+,, <) be an Archimedean ordered field, and {z,}); < F be a

sequence satisfying |z, — z,41| < STt for all n € N.

Claim: {z,}_, is Cauchy. Given ¢ > 0, choose N > 0 such that i < ¢ (such an N exists

because of Theorem 1.41 and the fact that 2 > N for all N € N). Then if N <n <m,

‘xn - xm‘ < ‘xn - anrl‘ + |$n+1 - $m|

< -

< |In_xn+1‘+|xn+1_xn+2|+'”+|xm—1_xm
DR R U

= on+l on+2 om

<t <t oo

Toon TN ’

thus {x,}>_, is Cauchy in F.

Proposition 1.74. Fvery convergent sequence is Cauchy.
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Proof. Let {x,}>_ , be a convergent sequence with limit z, and € > 0 be given. By the

definition of the convergence of sequences, there exists N > 0 such that |z, — z| < %
whenever n > N. Then by triangle inequality, if n,m > N,
e €
|Tp — Tp| < |2 — 2| + |7 — 20| < St =¢
thus {x,}>_, is Cauchy. o

Lemma 1.75. Every Cauchy sequence is bounded.

Proof. Let {x,}°_; be Cauchy. There exists N > 0 such that |z, —z,,| < 1 for all n,m > N.

In particular, |z, — 2| < 1if n > N or equivalently,
T, — 1<z, <z, +1 Vn>=N.
Let M = max {|21], |22, ,|2y_,|, |2y + 1}. Then |z,| < M for all n € N. o

Lemma 1.76. If a subsequence of a Cauchy sequence is convergent, then this Cauchy

sequence also CONVETGES.

Proof. Let {z,},_, be a Cauchy sequence with a convergent subsequence {z, }72, whose

limit is «, and € > 0 be given. Then there exist K, N > 0 such that
€ , £
[Tn, — x| < ) whenever j > K, and |z, —z,|< B whenever n,m > N .
Choose j = max{K, N}. Then n; > N; thus if n > N,
e €
]:cn—x|<\xn—xnj]+|xnj—x|<§+§:5. g

Remark 1.77. Combining Proposition 1.60 and Lemma 1.76, we conclude that a Cauchy

sequence converges if and only if a subsequence converges.

1.7 Completeness

In this section, we establish the equivalency between those properties introduced in the pre-
vious sections. These equivalent properties lead to an important concept, the completeness
of ordered fields. There is exactly one ordered field satisfying all these properties, and this

ordered field will be the real number system R.
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Theorem 1.78. An ordered field satisfies the monotone sequence property if and only if it
satisfies the least upper bound property (3 R %8¢ MSP & LUBP z 2§ {25 ) .

Proof. Let (F,+,-,<) be an ordered field.

“<" Suppose that F satisfies the least upper bound property, and let {z,}°; < F be an
increasing sequence bounded from above. By the least upper bound property of F,
the set {z1,x9, -+ ,x,, -} has a least upper bound = € F. We next show that z is

the limit of {x,}7 ;.

Let ¢ > 0 be given. By Corollary 1.54, there exists x, such that z, > x —¢.
Therefore, the fact that {x,}? , is increasing and bounded from above by = imply

that
r—e<z,<zr<x+c¢ VYn>N.

This shows that |z, — 2| < & whenever n > N; thus z,, — z as n — o0.

= Suppose that [ satisfies the monotone sequence property, and let A be a non-empty

N, .
subset of F bounded from above. Let N, is the largest integer satisfying that on 8

n n

1
not an upper bound for A but is an upper bound for A, and define z,, = —.

2n

If M is an upper bound for A, z,, < M for all n € N; thus {z,}*_, is bounded from
Npt1 .

above. Moreover, by the fact that N, is the largest integer satisfying 2n:11 is not

an upper bound for A, we must have

No _ 2Ny _ Nops

Tp = on — on+1 x on+1 = Tp4+1 ;

thus {z,}’°_; is an increasing sequence. Therefore, the monotone sequence property
implies that {x,} , converges to a limit x € F. Next we show that x is the least

upper bound of A.
Let € > 0 be given. Then x 4+ ¢ must be an upper bound for A for otherwise
1
if ¢ > o" for some k € N, then N is not the largest integer satisfying the required

property. On the other hand, since x,, — x as n — o0, there exists N > 0 such that
|z, — x| < ¢ whenever n > N. Therefore, z,, > x —e which shows that x —e cannot be

an upper bound for A; thus there exists y € A such that y > x — . By Corollary
1.54, we conclude that x = sup A. O

Theorem 1.79. An ordered field satisfying the monotone sequence property satisfies the
Bolzano-Weierstrass property (& MSP 5 A 4735 BWP) .
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Proof. Let (F,+,-, <) be an ordered field satisfying the monotone sequence property, and
{z,}*_, be a bounded sequence satisfying |z,| < M for all n € N. Divide [—-M, M] into
two intervals [—M, 0], [0, M], and denote one of the two intervals containing infinitely many

x, as |ay, by]; that is, #{n € N}xn € [al,bl]} = oo. Divide [ay, ] into two intervals

[CL al—i—bl} [al-i-bl
1, 92 ) 92 )
as [ag, by]. We continue this process, and obtain a sequence of intervals [ay, b] such that

bl] , and denote one of the two intervals containing infinitely many x,,

@kt bi] g, b, b — gl = sy and #{n € N| 2, € [ag, by]} = o0 for all ke N,

Since [ag, bg] 2 [ag+1,br41] for all k € N, we find that {ax}2, is increasing and {bg}
is decreasing. Moreover, ap < M, b, = —M. Therefore, the monotone sequence property
implies that a; converges to a € F and b, converges to b € F. On the other hand,

: .M
b= b = i g =0,

where we have used Proposition 1.47 along with Theorem 1.41 (and Theorem 1.40) to
conclude the limit. Therefore, a = b.

Finally, we construct a convergent subsequence of {z,}*°_ ;. Let x,, be an element be-
longing to [a1,b1]. Since #{n € N|z, € [a1,b1]} = o0, we can choose ny > n; such that
T, € [ag,bs], and for the same reason we can choose ns > ny such that z,, € [as, bs]. We
continue this process and obtain a subsequence x,, € [a, by] with ng > nj_;.

T,
i
L]

<

[ * ¥ ]
-M O M
ay b1
b

a
2 2 I,
Tn,
Since ay < z,, < by for all k € N, by Sandwich Lemma klim T, = a =b. o
—00

Theorem 1.80. Fvery Cauchy sequence in an ordered field satisfying the Bolzano- Weierstrass
property converges (£ BWP 3 RAY o & #| < jgar) .

Proof. Let {x,}>_, be a Cauchy sequence in an ordered field satisfying the Bolzano-Weierstrass
property. By Lemma 1.75, {z,}>, is bounded; thus the Bolzano-Weierstrass property pro-

vides a convergent subsequence {xnj}oo of {z,}>_,. The convergence of {x,}; is then

j=1
guaranteed by Lemma 1.76. =
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Theorem 1.81. An Archimedean ordered field satisfying the property that every Cauchy
sequence converges satisfies the monotone sequence property (% X7 & #c 7| & Jc e AP

4 AAs 4 MSP) .

Proof. Let (F,+,,<) be an Archimedean ordered field. Suppose the contrary that there
is a bounded increasing sequence {x,}> ; that does not converge to a limit in F. By the

assumption that every Cauchy sequence converges, {z,}_; cannot be Cauchy; thus
(Fe>0)(YN >0)(Fn,m = N)(|x, — x| = ¢).

Let N =1, there exists ny > n; > 1 such that |z,, —x,,| = . Let N =ny+ 1, there exists
ny > ng = ng + 1 such that |z,, —z,,| = . We continue this process and obtain a sequence

{wn,; }72, satisfying ‘xn%_l — xn2k| > ¢ for all ke N.

> e > € >e Ze
x"l anxnii .Tn4 x"s ﬁ \ xns
xnﬁ m7l7

Suppose that {z,}> , is bounded from above by M; that is, z, < M for all n € N. Then
for each k e N,
M= Tngp = Tnop — Tng,_y + Lrgk_1 = e+ Lngp_o = € + Lrgg_o — Tngy_s + Lnop_3
ZE+e+ Tngp_g = 2e + Tngk—g — Tngg_s + Lnok_s = 2 (k - 1)5 + Ty 5
thus

E<1+

M — 2, VkeN,
13

a contradiction to Archimedean Property. =
Summary: In an Archimedean ordered field, the following four properties are equivalent:
1. the monotone sequence property (¥ 3# 7 B #c7] < 7 a7),
2. the least upper bound property (#£3 & &35 *+ A< 5 &) F ),
3. the Bolzano-Weierstrass property (7 B #7|% 3 Jcac+ #i7),
4. the property that every Cauchy sequence converges (17 & #c71| ¢ |z at).
Such property is called the completeness ( % # {%+) , and we have the following

Definition 1.82. An ordered field F is said to be complete (% % ) (or have the complete-

ness property, & % = # %) if it satisfies the monotone sequence property.
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Theorem 1.83. There is a complete ordered field. Moreover, if (F,+,-, <) and (F,®,0, <)

are complete ordered fields, there exists a bijection ¢ : F — F such that

L ¢(r+y) = o(x) ®o(y) and ¢(x - y) = ¢(x) © ¢(y) for all z,y € F.

2. The order < and < is consistent under the map ¢; that is, if x <y, then ¢(z) < ¢(y).

In other words, two complete order fields are isomorphic (so that there is one and only one

complete ordered field).

Axiom of the completeness of real number system R: The real number system R is

complete.
Theorem 1.84. Fvery Cauchy sequence in R is convergent.

Remark 1.85. Let f : A — R be a real-valued function. Then the supremum of the image
of A under f is denoted by sup f or sup f(z). In other words,
A €A

sup f =sup f(z) = sup{f(:z:)‘xeA}.
A €A

Similarly, the infimum of the image of A under f is denoted by igf for in£ f(z).
e

1.8 Limit Inferior and Limit Superior

Definition 1.86. A sequence {z,}*_; is said to diverge to infinity if for all M > 0, there
exists N > 0 such that x, > M whenever n > N. It is said to diverge to negative
infinity if {—x,}> | diverge to infinity. We use lim xz, = oo or —oo to denote that {z,}>_,

n—ao0
diverges to infinity or negative infinity.

Remark 1.87. By Definition 1.26, the limit of a sequence {x,,}:°_; does not exist if lim z, =
n—0oo

o or —o0; however, we sometimes also call o0 or —oo the limit of {x,}’;.

Definition 1.88. The extended real number system, denoted by R*, is the number

system R U {00, —o0}, where oo and —oo are two symbols satisfying —o0 < z < oo for all

z € R.

Remark 1.89. 1. R* is not a field since o0 and —oo do not have multiplicative inverse.
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2. The definition of the least upper bound of a set can be simplified as follows: Let
S < R* be a set (not necessary non-empty set). A number b € R* is said to be the

least upper bound of S if

(a) bis an upper bound for S (that is, s < b for all s € S);
(b) If M € R* is an upper bound for S, then b < M.

No further discussion (such as S = ¢ or S is not bounded from above) has to be

made. The greatest lower bound can be defined in a similar fashion.

3. Any sets in R* has a least upper bound and a greatest lower bound in R*, even the

empty set and unbounded set.

4. Proposition 1.53 for the case F = R can be rephrased as follows: Let S < R*. Then
b=sup S € R if and only if

(a) bis an upper bound for S;

(b) for all € > 0, there exists s € S such that s > b —¢.

Note that b € R is crucial since there is no s € R* such that s > o0 — ¢ = 0. The

greatest lower bound counterpart can be made in a similar fashion.

5. In light of Definition 1.86, we can redefine cluster points of a real sequence as follows:
A number z € R* is said to be a cluster point of a sequence {x,}*_; < R if there exists
a subsequence {w,,}7, such that }LH;) T, = x. Note that now we can talk about if o
or —o is a cluster points of a real sequence.

In the rest of the section, one is allowed to find the least upper bound and the greatest

lower bound of a subset in R*.
Definition 1.90. Let {z,}> ; be a sequence in R.

1. The limit superior of {x,}*_,, denoted by limsupz, or lim x,, is the infimum of
n—00 n—w

the set {sup{xdn}k‘}‘keN}.

2. The limit inferior of {x,}>_,, denoted by liminfx, or lim z,, is the supremum of
n—a0 n—oo

the set {inf{mn|n>k}‘keN}.
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Remark 1.91. Let sup x,, denote the number sup {xn | n= k} and mf z,, denote the number
n=k

inf {xn ‘ n = k} Then the limit superior and the limit inferior can be written as

limsupx, = infsupz, and liminfz, = sup inf z,, .
n—00 k21 p>k n—0 k=1 n=k

Remark 1.92. Let {x,}?; be a sequence in R, and y, = supz, and z, = 1nf Z,. Then
n=k nzk

{yr}72, is a decreasing sequence, and {zx};2, is an increasing sequence. Therefore, the limit
of {yx}7, and the limit of {z;}{; both “exist” in the sense of Definition 1.26 and Remark
1.87. In fact, the limit of {y;}{, is the infimum of {y;};~,, and the limit of {2z}, is the
supremum of {zx}72 ;. In other words,

lim supx, = infsupzr, and lim infx, = sup inf z,,;
k—0 > k=21 >k k—oon=k E>1 n=k

thus

limsupx, = lim supx,, and liminfz, = lim inf z,, .
N—>00 k—o0 p>p n—00 k—oo n=k

Example 1.93. Let {z,,}*_; be the sequence given by z,, = (—1)". Then

yr =supx, =1 and 2z = infzx,=—1.
n=k nzk
Therefore, limsup x,, = limg_,, yx = 1 and liminfzx, = hm z, = —1.
n—00 n—aoo k—0o0

1
Example 1.94. Let {z,,}*_, be a real sequence given by z,, = o Then

Yy =supx, =~ and 2z =infx,=0.
n=>k k n=k

Therefore, lim sup z,, = hm yr = 0 and liminfz, = hm 2z, = 0.
n—00 n—0o0 k—o0

0 if nis even

) i w == DY
n lf n is Odd ! that 18, {xn}n:l - {1’073707 5a } Then

Example 1.95. Let z,, = {

yr =supx, and zp=infx,=0.
n=k nzk

Therefore, limsup x,, = hm yr = o0 and liminfx, = lim 2z, = 0.
n—00 n—00 k—00

Example 1.96. Let {z,}*_; be a real sequence defined by x, = (—1)" + % or

1 1 1
{xn}nl_{_1+1,1+ —1+ 14— _1+5’1+6""}'
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Then for each k € N,

1 .
ili;k)xn =1+ m and legixn =—1.
Therefore, limsup z,, = 1 and liminfz, = —1.
n—0o0

n—00

Proposition 1.97. Let {z,}*_, be a sequence in R. Then

limsup —z, = —liminfx,, and liminf—z, = —limsupz, .
n—00 n—0on n—00 n—00

Proof. By the fact that sup —z,, = — inf z,,,

n=k nzk
fimsup — = iy sup(—e) = firg (= fnfza) = = i Infr, = ~lim nf.
The second identity holds simply by replacing x,, by —x,, in the first identity. O

Proposition 1.98. Let {z,}*_, be a sequence in R. Then
1. a =liminfz, € R if and only if the following two statements hold

n—00

(a) for all e > 0, there exists N > 0 such that a — ¢ < x,, whenever n = N; that is,
Ve>0, #{neN|z, <a-c} <m;

(b) for alle >0 and N > 0, there exists n = N such that x,, < a + ¢; that is,
Ve>0, #{neN|z, <a+e}=m.

2. b=limsupz, € R if and only if the following two statements hold

n—0o0

(a) for alle > 0, there exists N > 0 such that b+ ¢ > x, whenever n > N; that is,
Ve >0, #{neN|xn 21)—1—5} < w0;
(b) for alle >0 and N > 0, there exists n = N such that x,, > b — ¢; that is,

Ve >0, #{neN|xn > b—g} = .
Proof. We only prove 1 since the proof of 2 is similar. Let z; = inf x,,, and

nz=

sup z, = lim z, = a € R*.
k=1 k—o0

We show that a € R if and only if 1-(a) and 1-(b) both hold. Nevertheless, by Proposition
1.53 (or Remark 1.89), a € R if and only if
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(i) a is an upper bound for {z;}72 ;.
(ii) Ve >0,3INeN3zy >a—e.

We justify the equivalency between 1-(a) and (ii), as well as the equivalency between 1-(b)

and (i) as follows:

(i) a is an upper bound for {z;}{, < a >z, forall ke N < Ve > 0,a + ¢ > 2 for all

k€N®V€>Oandk‘eN,a+5>ingxn®V5>0andk:eN,a+eisnotalower
nz

bound for {z,};>, < Ve>0and ke N, dn>ksa+¢e >z, = 1-(b).

(ii) Ve >0, INeNszy >a—ec < Ve>0,IN >05 infz, >a—¢c < Ve >0,

n=N

Ty, Ty, y,-} <= Ve>0,3IN >0 such
that a —e <z, foralln > N < Ve>0,dN > 0suchthat a —e <z, foralln > N
< 1-(a). o

3N > 0 such that a — € is a lower bound for {

Remark 1.99. By Proposition 1.98, if ¢ = liminfx,, € R, then

n—o0

Ve>0,#{neN|z,e(a—e,a+e)} =x

which implies that a is a cluster point of {z,}°_;. Moreover, 1-(a) of Proposition 1.98 implies

that no other cluster points can be smaller than a. In other words, if a = liminfz, € R,
n—00

then a is the smallest cluster point of {x,}> ;. Similarly, b is the largest cluster point of

{zp}2 ) if b=limsupzx, € R.
n—o0

Theorem 1.100. Let {z,}>_, be a sequence in R. Then

1. liminfz, < limsupz,.
n—a n—0

2. If {x,}2, is bounded from above by M, then limsupx, < M.

n—o0

3. If {x,}°_, is bounded from below by m, then liminfx, > m.
n—ao0

4. limsup z,, = 0 if and only if {x,}r_, is not bounded from above.

n—0o0

5. liminfz, = —w if and only if {z,}r_, is not bounded from below.
n—aoo

6. If x is a cluster point of {x,}r_ |, then liminfz, <z <limsupz,.
n—00 n—00

7. If a = liminfx, is finite, then a is a cluster point.
o0

n—
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8. If b = limsup z,, is finite, then b is a cluster point.
n—aoo

9. If {x,})°_; converges to x in R if and only if liminfx, = limsupz, = x € R.
n—ao n—00

Proof. Left as an exercise. O

Remark 1.101. Using the definition of cluster points of a sequence in Remark 1.89, Remark
1.99 and Theorem 1.100 together imply that the limit superior/inferior of a sequence is the

largest /smallest cluster point of that sequence.

Example 1.102. Let Qn[0,1] = {q1, 92, - , qn, - - }. Then {g,}°_; does not converge since
lim sup g, = 1 while lim inf¢, = 0 by Example 1.65.
n—o0

n—0o0



Chapter 2

Normed Vector Spaces and Metric
Spaces

2.1 Euclidean Spaces and Vector Spaces

Definition 2.1. Fuclidean n-space, denoted by R", consists of all ordered n-tuples of

real numbers. Symbolically,
R" = {w’w: (T1, T2, ,Tp), T; G]R}.

Elements of R™ are generally denoted by single letters that stand for n-tuples such as

x = (r1,22, -+ ,x,), and speak of  as a “point” in R".

Remark 2.2. Let C denote the collection of ordered pairs C = {(a, b) ‘ a,be R} on which
+ and - are given by Example 1.6. Then C is a field, and is called the complex number
system. The ordered pair (a,b) in C is usually denoted by a + bi, where 72 = —1 according
to the definition of the multiplication. The space C" can be defined similarly by

C" = {z’z:(zl,22,~~ ,Zn), 2 € C}.

Definition 2.3. A wvector space V over a scalar field F is a set of elements called vectors,
with given operations of vector addition 4+ : )V xV — V and scalar multiplication - : FxV —

V such that
1. v+ w=w+ v forall v,we V.
2. (v+w) +u=v+ (u+w) for all u,v,we V.

3. there exists 0, the zero vector, such that v+ 0 = v for all ve V.

34
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W

. for each v € V there exists w € V such that v+ w = 0.

5. A-(v+w)=A-v+A-wiorall \eFand v,we V.

(=)

(A +p)v=XNv+p-viorall \,peF and ve V.

\]

CAp)rv=A-(p-v)forall \,peFand ve V.
8. 1-v=wvforall ve V.

Remark 2.4. In general the scalar field F can be the rational number system Q, the real
number system R, or even the complex number system C. In this lecture note, [ is taken
as either the real number system R or the complex number system C (and mostly R if not

specified).

Example 2.5. Let the vector addition and scalar multiplication on F”, where F = R or C,
be defined by

w+y:(x1+y1, 7xn+yn) if -’13:(1'1,"' 7xn)7y:(y17"' 7yn)

and
Ax=(Ary, -, Awy,) if AeF,z= (v, - ,2,) e F".

Then F™ is a vector space over F if F = R or C. Moreover, C" is a vector space over R;

however, R" is not a vector space over C.

Example 2.6. Let M, ., be the collection of all n x m real matrices; that is, My, =

{n x m matrix with entries in ]R}. Define
A+BE[CLij+bij], )\AE[)\CLU] if )\ER,A:[CLij],B:[bU]EM.
Then M,,»,, is a vector space over R.

Definition 2.7. W is called a subspace of a vector space V over a scalar field F if
1. W is a subset of V.

2. (W, +,-), with vector addition and scalar multiplication in V, is a vector space over
F.

Example 2.8. V =R?* W =R? x {0} = {(z,9,0) |2,y € R}. W is a subspace of V.

Lemma 2.9. If W is a subset of a vector space V over a scalar field F, then W is a subspace
if and only if \-v+p-weW forall\,uelF, vywe V.
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Remark 2.10. “n” is called the dimension of R™.

There are n linearly independent vectors e; = (1,0,---,0),e; = (0,1,0,---,0),--- ,e, =
(0,0,---,0,1), but if vy, v9, -+, v,41 are (n+1) vectors in R", there exists A\, -, A\,y1 € R
such that (A1, -+, Apq1) # (0,---,0) and Moy + -+ + Apy10p01 = 0.

On the other hand, the dimension of C" depends on the scalar field F.

1. If F =R, then the dimension of C" is 2n since e, --- ,e,,iey, - ,ie, are 2n linearly
independent vectors in C", and any (2n + 1) non-zeros vectors in C" are not linearly
independent; thus the dimension of C" over R is 2n. When F = R, we usually identify
C" as R?".

2. fF=C, ey, ,e, are linearly independent in C" and any (n + 1) non-zeros vectors

in C" are not linearly independent; thus the dimension of C" over C is n.

Definition 2.11. Let V be a vector space (over a scalar field F), and A, B be subsets of V.
The sum of A and B, denoted by A + B, is the set {a + b|a € A,be B}. If A consists of
only one single vector a, A+ B is usually denoted by a + B instead of {a} + B.

The following theorem should be clear to the readers, and is left as an exercise.

Theorem 2.12. Let V be a vector space (over a field F), and A, B be subsets of V. Then
A+B=J(a+B) =[] (b+4).
acA beB
Definition 2.13. A subset H € R" is called a hyperplane or hyperspace if H is (n — 1)-

dimensional subspace of R™. An affine hyperplane is a set © + H for some x € R"” and

hyperplane H.

Example 2.14. A straight line on the plane is a hyperplane, and a plane on the (3-
dimensional) space is also a hyperplane. However, a straight line on the (3-dimensional)

space is not a hyperplane.

2.2 Normed Vector Spaces, Inner Product Spaces and
Metric Spaces

Definition 2.15. A normed vector space (or simply normed space) (V, | -||) is a vector
space V over a scalar field F, where F = R or C, associated with a function || - || : V — R
such that
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(a) |z| =0 for all ze V.

(b) ||| = 0 if and only if z = 0.

() [N-x| =" |x| forall \e F and z e V.
(@) |2+ yl < ] + y] for all 2,y € V.

A function | - | satisfying (a)-(d) is called a norm on V.

Remark 2.16. Let (V, | - ||) be a normed vector space. Treating a vector in V as a point
in V, the number ||z — y|| can be viewed as the distance (induced by the norm) between x

and y, and (d) implies that
lz—yl <lz—z[+]z-y|] VzyzeV.

The inequality above states that the distance between x and y is not greater than the sum
of the distance between & and z and the distance between y and z; thus the inequality in

(d) is called the triangle inequality.

Example 2.17. Let V = R", and define

n 1
(Z]xi|p>p if 1 <p < oo,
i=1

max{]xl\,--- ,]xn\} if p= o0,

”meE for all = (331,-@2,"' ,xn) e R".

Then | - ||, is a norm, called p-norm, on R™. Property (d) in Definition 2.15; that is,

lz+ y|, <|lz|, + |yl, (so-called the Minkowski inequality), is left as an exercise.

Example 2.18. Let V = C and the norm ||-|| is the usual absolute value of complex numbers;
that is, ||a + ib| = |a + ib| = v/a® + b?. Then (C,| - |) is a normed vector space.

Example 2.19. Let M,,.,, = {n x m matrix with entries in ]R}, and {e;, e, - ,e,} be
standard basis of R™. For A = [ai]} € M, xm and © = r1€1 + T9€y + - - - + x,,€,,, We use Ax
to denote the n-vector

11 Q2 - Aim x
Q21 Q22 -+ QAgm T2

Ap1 Qp2 - Apm Tm
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Define
A
1Al = sup JAa], = sup 2y ae M

Ja]p=1 220 ||z,

| Az,

||
the triangle inequality for the following reason: Suppose that A, B € M. If ||z|, = 1,

that is, | Al|, is the least upper bound of the set {

x#0,xe Rm}. Then ||- |, satisfies

|(A+ B)zl|, = [Az + Bz|, < [Az|, + | Bz,
< sup |Az|, + sup |Bz|, = [Al, + [ Bly;

lz]p=1 [z]p=1

thus
|A+ Bl, = sup [(A+ B)z|, < [Al, + B,

[z]p=1

Since property (a), (b), (c¢) in Definition 2.15 are obvious, we conclude that | - ||, is a norm
| Az,

[,

on M, .. Moreover, by the definition of the p-norm we have

thus

< |A], for all  # 0;

|Az|, < [Alplal, — VzeR™.

Consider the case p = 1,p = 2 and p = oo respectively.
1. p=2: Let (-, )gs denote the inner product in Euclidean space R¥. Then
|Az|3 = (Az, Az)pn = (2, AT Ax)gm = (2, PAPT2)gm = (P @, AP T 2)gn

in which we use the fact that AT A is symmetric; thus diagonalizable by an orthonormal
matrix P (that is, ATA = PAPT, PTP = I, A is a diagonal matrix with non-negative
entries since AT A is positive semi-definite). Let y = PTz. Since P is orthonormal,

|x|s = 1 if and only if |y[s = 1; thus

sup |Az|3 = sup (PTz, AP z) = sup (y,Ay)

[=]2=1 [=]2=1 lyl2=1
= sup (Agf + Aags + -+ Amii)
[yl2=1
= max {)\1, e ,/\m} = maximum eigenvalue of ATA

which implies that |A[, = 4/maximum eigenvalue of ATA.
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2. p =o00: In this case we will show that

m m
| Al = sup [[Az[e = max 2 |ayl, 2 Jagsl, -+ ) lang| ¢ = max > as|.
) 1<z<nj:1

l]oo=1 j=1 j=1

Reason: Let & = (-fEl,.TQ, ce ,.Tn)T and A = [aij}nxm (WLOG we can assume that

A is not zero matrix). Then

a1y + -+ G T,

a21T1 + - + Q2T
Az =

Ap1T7 +---+ ApmTm

If |z = 1, then for each 1 <i < n,

m
@@y + aits + - - Gimm| < ) la;] < max Z Jaiil ;
=1

I<isn

thus the absolute value of each component of Az, under the constraint ||, = 1, has

an upper bound max Z |a;;|. Therefore,
=1

1<i<n

|Allo = sup |Az|o = sup max |anzi+apra+- - QimTy,| < max Z |lai;| . (2.2.1)
[zlloo=1 [z]o=1 LSisR 1<i<n

m m
On the other hand, assume max E la;;| = E |ay;| for some 1 < k < n. Let
1<i<n 4 €

x = (sgn(ar), sgn(ag), - ,sgn(ak,)) .

m
Then ||, =1 (since A is not zero matrix), and |Az|s, = Y] |ak;|; thus
];1
m

| Alloo = H sHupl | Az, = > larg| = EE?E;Z |aij] - (2.2.2)
T|oo= i—1

The combination of (2.2.1) and (2.2.2) implies that

1Aleo = max{z |ay], Z |az], - Z |@nj|} : (2.2.3)

7j=1

In other words, |Al|s is the largest sum of the absolute value of row entries.
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n

n n
3. p=1: |A|; = max {Z |aﬂ|,2 lal, - ,Z \aim|}. This result is left as an exercise.
1 i=1

= ) =1

In general, we can also define

A
HAprq = Ssup ||Aw||q = sup H m”q )
Jellp=1 vz,

Then ”AHp = HAHp,p'

Example 2.20. For 1 < p < o, let (7 denote the collection of all sequences {z,}~; in R

0
satisfying > |x,|P < co; that is

n=1

o0]
P = {{l’n}le cR ‘ the series Z |z, [P converges} )

n=1
Then (7 is a vector space over R. The function |- | : # — R defined by |{z,}r,| =

0 1
( > |xn|p> " is a norm on /7.
n=1

Example 2.21. Let €([a, b];R) be the collection of all continuous real-valued functions on
the interval [a, b]; that is,

€ ([a,b;R) = {f : [a,b] - R| [ is continuous on [a,b]} .

For each f € €([a,b];R), we define

1

”byf(x)\pdx}p ifl1<p<o,

max |f(z)| if p=o0.

z€[a,b]

I £l =

The function | - |, : €([a, b]; R) — R is a norm on % ([a, b]; R) (Minkowski’s inequality).

Definition 2.22. An inner product space (V,{-,-)) is a vector space V over a scalar field
F, where F = R or C, associated with a function {(-,-) : V x V — F such that

(1) (w,x) >0, Ve ).
(2) (x,x) =0 if and only if z = 0.

(3) (m,y+ 2)={x,y) +(x, z) for all x,y, ze V.
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(4) Az, yy = Nz, y) forall \e F and z, y e V.
(5) (x,y) =y, x) for all , y € V, where ¢ denotes the complex conjugate of c.

A function (-, -) satisfying (1)-(5) is called an inner product on V.

Example 2.23. Let (+,-) : R” x R" — R be defined by

(may)zleyz vm:<x17"'an)vy:(ylv"'ayTL)’

i=1

Then (-,-) is an inner product on R™. Moreover, {-,-) : C" — C defined by

<il?,y>:2.l’zE vw:(xla"'uxn)uy:(ylv'”7yn)
i=1

is an inner product on C".

Example 2.24. Let €(]a,b];R) be defined as in Example 2.21. Define

b
{f,9)= J f(x)g(x)dx.

Then (-,-) : €([a,b]; R) x €([a,b]; R) — R satisfies all the properties that an inner product
has. Note that {f, f> = | f]5.

Similar to the inner product given above, one can also consider an inner product on
% (|a, b]; C), where € ([a, b]; C) denotes the collection of continuous complex-valued functions

defined on [a, b]. Note that € ([a,b]; C) is a vector space over R and over C, and we always
viewed % ([a,b], C) as a vector space over C. On €([a, b]; C), define

b
g :J f(iE)de

Then (-,-) : €([a,b]; C) x €([a,b]; C) — C satisfies all the properties that an inner product
has.

Proposition 2.25. Let {-,-) be an inner product on a vector space V over a scalar field F.
L. Qv+ pw, uy = Xv, uy + plw, wy for all u,v,weV and \,p e F.
2. {u, \v+ pw) = Xu, v) + ilu, wy for all u,v,weV and \,peF.

3. (0, w) =<{w,0) =0 for all we V.
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Theorem 2.26. The inner product {-,-) on a vector space V induces a norm | - | given by
|z| = A/{x, x) and satisfies the Cauchy-Schwarz inequality

Kz, p| <z]|-|y| VayeV. (2.2.4)

Moreover, for non-zero vectors x,y, the equality holds if and only if there exists v € F such

that ¢ = vy.

Proof. Let ,y € V. Define a = (x, y). W.L.O.G. we can assume that o # 0 (for otherwise
(2.2.4) holds trivially). Then there exists 8 € F such that a- 8 = |o| (so |5| = 1). For any
Ae R,
0 <Az +y Az +y) = N|BP|2]” + Asw, y) + (y, \bz) + |y
= N’||? + A8z, y) + MNPz, y) + [y’
= N|® + 2[(z, )| + y)*- (2.2.5)

Since the right-hand side in the inequality above is always non-negative for all real A\, we

must have
[ " = |2l -yl < 0
which implies (2.2.4).
It should be clear that (a)-(c) in Definition 2.15 are satisfied. To show that | - | satisfies
the triangle inequality, by (2.2.4) we find that

2
(ll + Tyl)” = =+ yl* = |=]* + 2|2l y] + |y]* — =+ y.z+y)
=2(|l 2l |yl — Redz, 9) = 2(|||y] — <z, y)[) = 0;
thus the triangle inequality is also valid.

Finally, suppose that @,y # 0 and [(z,y)| = |z||y|. Then with A € R given by
Ll

=k (2.2.5) shows that

0 < |8z + y|” = N[a? + 22| |y] + |¥]* = (A|a] + |y])* = 0;
thus Az + y = 0. ]

Corollary 2.27. Let f,g: [a,b] = R be continuous. Then

< (j Lf(ac)\%zac)é ([ b \g<x>12dx)é |

)  fla)g(a)da
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Example 2.28. Let V be a finite dimensional vector space over IF, where F = R or C, and

{e1, - ,e,} be a basis of V; that is, every @ € V can be uniquely expressed as

n
a::ijej:xle1+-~~+xnen

j=1
o
for some n-tuple (z1,--- ,x,) € F*. Define |z|, = ( > ]xj\z) . Then | - |2 is a norm on V.
j=1
In fact, || - ||2 is induced by the inner product

(x,y) = Z Ti; if x= Z z;e; and y = Z yje;.
j=1

J=1 J=1

It is also possible to talk about the notion of distance between points in a general set.

A set with a distance function is called a metric space.

Definition 2.29. A metric space (M,d) is a set M associated with a function d : M x M —
R such that

(i) d(x,y) = 0 for all x,y € M.
(ii) d(x,y) =0 if and only if z = y.
(ili) d(x,y) = d(y,x) for all x,y € M.
(iv) d(x,y) < d(x,z) + d(z,y) for all z,y,z € M.
A function d satisfying (i)-(iv) is called a metric on M.
Example 2.30 (Discrete metric). Let M be a non-empty set. Define a function dy by

0 ife=y,
d°($’y):{1 ifx;ézy/.

Then dy : M x M — R is a metric on M, and we call dy the discrete metric.

Example 2.31 (Bounded metric). Let (M, d) be a metric space. Define a function p by

d(z,y)

P(ﬂf,y):Hd—w-

Then p: M x M — R is also a metric on M.
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Proposition 2.32. Let (M, d) be a metric space, and A be a non-empty subset of M. Then

(A, d) is a metric space.

Proposition 2.33. If (V,| -||) is a normed vector space, then the function d:V xV — R
defined by d(z,y) = |z — y| is a metric on V. In other words, (V,d) is a metric space, and

we usually write (V, | - ||) as the metric space.
Definition 2.34. Let (M, d) be a metric space. For each z € M and r > 0, the set
B(z,r)={ye M|d(z,y) <r}

is called the r-ball about z or the ball centered at x with radius r.

Figure 2.1: The r-ball about z in a metric space
Example 2.35. In R, B(z,r) = (x —r,z+ 7).

Example 2.36. Consider the 1-ball about the origin in (R?, | - ||,) for p = 1,2, o0, respec-
tively.

Lop=1 |z = |oa] + |22f, |2 =yl = |z1 —pa] + |22 — 32,
2. p=2: |zl = /2] + 23, |z — ylo = /(21— 1)? + (22 — 1)

3. p =0t |2 = max {|z1], ]}, |z — yloo = max {|21 —pl, |22 — 10}

Figure 2.2: The 1-ball about 0 in R? with different p
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Definition 2.37. Let V be a vector space. Two norms | - |1, || - |2 on V are said to be

equivalent if there exist two positive constant C, ¢ such that
dah <zl < Clzf,  VeeV.
Note that the constant ¢ and C' must be independent of .

Example 2.38. For 1 < p,q < o, the p-norm | - |, and ¢g-norm | - |, on R™ are equivalent;
however, the p-norm || - |, and the g-norm || - |, on €([a,b];R) are NOT equivalent. The

result is left as an exercise.

Theorem 2.39. Let V be a vector space (over field F), and |- |1, |- |2 are equivalent norms
onV. Then every ball in (V, | -|1) contains some balls in (V, | - |2) and is contained in some
balls in (V, | - |2)-

Proof. Since |- |; and | - |2 are equivalent, there exist positive constants ¢ and C' such that
clzf < |z < Oz Vee).

Let Bi(z,7) ={yeV||y— | <r} beaballin (V,|- ). Let § = cr and R = Cr. Then
with Bs(,7) denoting the set {y € V| |y — |2 < r}, we have

1
ly -zl < —ly—zl: <r Vye By(z,0) and |y—af, <Cly—zli <R

In other words, Ba(z,d) € Bi(z,r) and By(z,r) € By(z, R). o

2.3 Sequences in Metric Spaces

2.3.1 Sequences

Recall that a sequence in a set S is a function f : N — S, and f(n) is called the n-th

terms of the sequence. A sequence in S is usually denoted by {f (n)}:j:1 or {x,}°, with

Definition 2.40. Let (M,d) be a metric space. A sequence {z,}, < M is said to be

convergent if there exists x € M such that for every € > 0, there exists N > 0 such that

d(x,,x) <e whenever n > N.
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Such an x is called a limit of the sequence. In notation,

{z,}i_, © M is convergent < (Jze M)(Ve>0)(AN >0)(n =N = d(z,,z) <e¢).

n=1 =

If  is a limit of {z,}_,, we say {z,}r_, converges to « and write x,, — = as n — oo. If no

such z exists we say that {z,})°; diverges or lim x, does not exist.
n—ao0

Remark 2.41. Similar to Definition 1.26, the convergence of a sequence {z,}°_; in a metric
space can be stated as follows: a sequence {z,}°; < M is said to be convergent if there

exists x € M such that for every € > 0, there exists N > 0 such that
#{neN|z, ¢ B(z,e)} <.
Similar to Proposition 1.28, we have the following

Proposition 2.42. Let (M, d) be a metric space. If {x,}_, is a sequence in M, and x,, — x

and x, — y as n — o, then x = y. (The uniqueness of the limit).

Proof. Assume the contrary that x # y. Then ¢ = (i(:);’y) > (. Then there exist Ny, Ny > 0

such that d(z,,z) < e for all n = Ny and d(x,,,y) < e for all n = N,. Let N = max{Ny, Ny}.
Then if n > N,
d(,y) < d(x, n) + d(zn, y) < 26 = d(z,y),

a contradiction. o

Notation: Similar to the notation used to denote the unique limit of a convergent sequence

in an ordered field, we also use lim z,, to denote the limit of a convergent sequence {z,}>_, <
n—00
M.

Remark 2.43. Similar to Remark 1.31, the proposition above implies that =, — z as

n — oo if and only if lim d(z,,z) = 0.
n—0o0

Remark 2.44. Let (M,d) be a metric space. A sequence {x,}> ; < M diverges if (and
only if)
VeeM,3e¢>03VN >0,3n = N such that d(z,,z) > €.

Definition 2.45. Let (M,d) be a metric space. A sequence {z,} , < M is said to be
bounded (7 # ) if there exist y € M and r > 0 such that d(z,,y) <r for all n e N. In

other words, sequence {z,}°_; is bounded if it is contained in some r-ball.
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Remark 2.46. In a normed vector space (V, | - ), the boundedness of a sequence {z,}>_,
is equivalent to that there exists r > 0 such that |z,| < r for all n € N. In other words, the

point y in the definition above is the zero vector.
Proposition 2.47. A convergent sequence is bounded ({zac#cs| %3 %) .

Proof. Let {x,}°_; be a convergent sequence with limit z. Then there exists N > 0 such

that x, € B(z,1) whenever n = N, or equivalently,
d(x,,x) <1 whenever n > N.
Let r = max {d(xl,x),d(acg,x), e ,d(xN,l,x)} + 1. Then d(z,,z) < r for all n € N. =

Theorem 2.48. Let (V,| -|) be a normed vector space over a scalar field F (F =R or C),
{1, {y, )2, be sequences inV, and {\,}>_, be a sequence in F. Suppose that x, — x,

Y, > yand N\, > X asn — . Then
l.z,ty, > xtyasn— w©.
2. \yx,, — Ax asn — .

3. If Ay, N # 0, then%a% as n — oo.

n

If in addition that 'V is an inner product space equipped with inner product {-, -y which induces

the norm | - ||, then
4. {xp,y,) — {x, Yy asn — o©.
Proof. We only prove 3 and 4. The proof of 1 and 2 are left as an exercise.

3. It suffices to show that lim . % if A, A # 0 (because of 2). Since lim A,, = A, there

n—m Ay n—00
exists N7 > 0 such that [\, — \| < |;| whenever n > Nj. Therefore, |\ — |\,| < |;\|
for all n > N; which further implies that |\,| > |2/\| for all n = Nj.

Let ¢ > 0 be given. Since lim A, = A, there exists Ny > 0 such that |\, — \| <

n—00
2
)\26 whenever n = Ny. Define N = max{Ny, No}. Then if n > N,

A=A R 12

]
- < £-m =€
AL Al 2 AT

L
An
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4. Let € > 0 be given. Since z, — x and y,, — y as n — 0, by Proposition 2.47 and
Remark 2.46 there exists M > 0 such that |z,| < M and ||y, || < M. Moreover,

9

whenever n > N
oM !

AN >03 |z, — x| <

and

3
AN, > 03 |y, — vyl < BN whenever n > N,.

Define N = max{Nj, No}. Then if n > N,

|<3’Jn, yn> - <2'l:, y>’ = ’<xn7 yn> - <w’m y> + <$TL= y> - <.’II, y>|
< ‘<wna Y — y>| + }<y7 Ln — $>‘

€ €
<My, —y|+ M|z, —z| <M - —+M —

oM om0 °

Proposition 2.49. In R", a sequence of vectors converges if and only if every component

of the vectors converges. In other words, in R™
Componentwise convergence < Convergence.

Proof. Let {vg}i2,, v = (v,gl), v,f), . ,v,i”)), be a sequence of vectors in R”.

“«<” Suppose that v, — v = (v(V),--. v™) as k — co. Let € > 0 be given. There exists
N > 0 such that

|[vp — v|2 <€ whenever k= N;

thus if k = N,

o — 0| < \/(v;(gl) — )2 4 (o — )2 = |y, — v < e

“=" Suppose that v,(:) — 0@ as k — oo for each 1 < i < n. Let € > 0 be given. For each

1 < i < n, there exist N; > 0 such that

‘v,(:) - v(i)‘ < \/iﬁ whenever k > N;.

Let v = (v®,v® ... ™) and N = max{Ny, Ny, -, N,,}. Then if k > N,

o — ol = /) — o b ) v <[ T T
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Example 2.50. Let v, = (% 132) € R?. Then v, — (0,0) as k — o0 since
1 2, (L 2
(E_O)—{—(E_O) 2\/k +1—>0ask —> w.

1 1
On the other hand, since " 0 and 2 0 as k — oo, Proposition 2.49 implies that
v, — (0,0) as k — oo.

Theorem 2.51 (Bolzano-Weierstrass). Fvery bounded sequence in (R, | - |2) has a conver-

gent subsequence.

Proof. We prove by induction. Let
S = {n eN ‘ every bounded sequence in (R™, | - [|2) has a convergent subsequence} :

Then 1 € S because of the Bolzano-Weierstrass Property of R.
Suppose that n € S. Let {®};2, be a bounded sequence in R™™'. Write x;, =
(x,g),x,EZ), . x,(c ),xfgnﬂ ), and let y,, = ($,(€1),$§C), : ,x,in)). Since {z;};2, is bounded,

there exists M > 0 such that |zl < M for all k£ € N; thus
lyelo <M ¥keN and  |o""V|<M  VkeN.

that is, {y,}72, is bounded in R™ and {xk H)}k , is bounded in R. By the assumption
that n € S, {yx};Z; has a convergent subsequence {y, }}2; of {y,};Z; which converges
toy = (yM,y@,--- ,y™). Applying the Bolzano-Weierstrass Property to the sequence

{x,(gﬂ)}] we obtain a subsequence {xk +1)}£ , of { (n+1) }k | so that :c,(€ mH (0D ag

¢ — . Let z, = . Then {z,}}2, is a subsequence of {xr}72, and {zg}lv,:1 converges to
z= (y(l), y@ gyl ”“ ) by Proposition 2.49. Therefore, n + 1€ S.
By induction, S = N; thus the theorem is proved. O

Remark 2.52. By identifying C" as R?*", Theorem 2.51 also implies that every bounded

sequence in C" has a convergent subsequence.

Definition 2.53. Let (M, d) be a metric space, and {z,}>_, be a sequence in M. A point

x € M is called a cluster point of {z,}r_, if
Ve>0, #{neN’xneB(ﬁ,e)} = .

Example 2.54. Let z,, = (—1)". Then 1 and —1 are the only two cluster points of {x,}*_;.
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Example 2.55. Let z,, = (—1)" +
€ > 0 be given. We observe that

. Then 1 and —1 are cluster points of {z,}° ;: Let

SRS

{neN‘xne(1—5,1+z—:)}Q{neN‘niseven,%<5};

thus #{n eN ! rne(l—g 1+ 5)} = oo0. Similarly, —1 is a cluster point.
On the other hand, each a # +1 is not a cluster point of {z,}_;.

Let {x,};_, be a sequence. Recall that a subsequence of {x,};_, is a sequence {y;}72,
satisfying that y; = xy(;) for some strictly increasing function f : N — N. In other words,
each strictly increasing function f : N — N corresponds to a subsequence of {x,}7 , and
vice versa.

Similar to Proposition 1.68, we have the following

Proposition 2.56. Let (M,d) be a metric space, {x,}> ", be a sequence in M, and x € M.

1. z is a cluster point of {x,}> | if and only if for each ¢ > 0 and N > 0, there exists
n = N such that d(x,,x) < ¢.

2. x is a cluster point of {x,};_y if and only if there exists a subsequence {xn;}7, of

{x,}>_ | converges to x.
3. &, = x as n — oo if and only if every proper subsequence of {x,}°_; converges to x.

4. x, — x as n — © if and only if every proper subsequence of {x,}> ", has a further

subsequence that converges to x.

Proof. We only prove 1 and 2 since the proof of 3 and 4 are similar to the one given in

Proposition 1.60.

1. “=” Let £ > 0 and N > 0 be given. Since #{n € N |z, € B(z,£)} = o0, there exist

natural numbers n; < ny < n3 < --- such that
{neN‘xne B(x,e)} = {nl,ng,ng,-'}.

Note that n; > j; thus ny > V.

“<" Let ¢ > 0 be given. Pick ny > 1 such that d(x,,,z) < ¢, then pick ny > n; + 1
such that d(z,,,z) < e. We continue this process and obtain a subsequence {z,;}72,
satisfying d(z,,, ) < e forall j € N. Then {n € N|z, € B(z,¢)} 2 {ni,ns, - - } which
implies that #{n eN ‘ X, € B(x,g)} = 0.
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2. “=7 By 1, we can pick ny > 1 such that d(z,,,z) < 1 and then pick ny = ny + 1 such

1
that d(x,,,r) < 3 In general, we can pick ngy = ng + 1 so that
1
d(xnk,x)<E VkeN.
Therefore, lim z,, = .
k—00

“<" Let ¢ > 0 be given. By assumption there exists J > 0 such that d(z,,,z) < ¢

whenever j > J. Then {n€ N|z, € B(z,e)} 2 {n;,ny41, -} which implies that

#{neN|z, € B(z,e)} = . o

2.3.2 Cauchy sequences, Banach spaces and Hilbert spaces

Definition 2.57. A sequence {z,}_; in a metric space (M,d) is said to be Cauchy if
(Ve>0)3N > 0)(n,m = N = d(z,,z,,) < ¢).
Similar to Proposition 1.74, Lemma 1.75 and 1.76, we have the following

Proposition 2.58. 1. Every convergent sequence (in a metric space (M,d)) is Cauchy.
2. Every Cauchy sequence (in a metric space (M,d)) is bounded.

3. If a subsequence of Cauchy sequence (in a metric space (M,d)) converges, then this

Cauchy sequence also converges.

Proof. See the proof of Proposition 1.74 and Lemma 1.76 by changing |z —y| to d(z,y) with

appropriate x and y. o

Remark 2.59. By 2 of Proposition 2.56 and 3 of Proposition 2.58, we find that if {x;}7

is a Cauchy sequence but {z;}{; does not converge, then

(Vy)3r > 0)(#{neN|z, € By,r)} < x©).

Theorem 2.60. A sequence in R™ converges if and only if the sequence is Cauchy (because
; ; (4) (@) (%) (@)
of the inequality max oy =0 | < oe — il < \/ﬁlrglaél o — "))
Now we would like to define the completeness of a normed vector space. Recall that in

an Archimedean ordered field, the following four properties are equivalent:

1. the Bolzano-Weierstrass property (7 & #c7] < 3 jcac+ # 7)),
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2. the monotone sequence property (¥ 3% 3 & #7] % JTak),
3. the least upper bound property (27 # &35 + K5 &)+ ),
4. the property that every Cauchy sequence converges (1 & #c 71 & JT &%).

Since in general a normed vector space cannot be an ordered field, we cannot define the
completeness through the monotone sequence property or the least upper bound property.

For the completeness of normed vector spaces, we use the Cauchy completeness.

Definition 2.61. A metric space (M, d) is said to be complete if every Cauchy sequence in
M converges. A Banach space is a complete normed vector space, and a Hilbert space
is a complete inner product space (that is, a Banach space whose norm is induced by the

inner product).

Example 2.62. The Euclidean n-space R", equipped with p-norm, is a Banach space for
all 1 < p < 0. To see this, let {xx};>; be a Cauchy sequence in R™. Then the sequence

{x,(j)}zo:l, consisting of the i-th components of {x;}}>, is Cauchy for all 1 < i < n since

[0 =2l < loe -, Vi<i<nandl<p<on.

By the completeness of R, the real sequence {x,ﬁ”}f:l converges for all 1 < i < n; thus each

component of {x;}{; converges. Proposition 2.49 implies that {z;}; converges.

2.4 Series of Real Numbers and Vectors

e¢]
Definition 2.63. Let (V.| - |) be a normed space. A series >, xy, where {z;}2, € V, is
n k=1

said to converge to S € V if the partial sum S,, = > @ converges to S, and one writes
0 k=1

S = > x if this is the case. A series in V is said to converge or be convergent if it converges
k=1
to some element in V.

The following proposition is a direct consequence of the monotone sequence property of

the real number system R.

Proposition 2.64. Let {x;}}2, be a sequence of real numbers, and xy = 0 for all k € N.
0 n

Then Y xy converges if and only if the sequence of partial sums {S,}>_,, where S, = >, xy,
k=1 k=1

is bounded (from above).
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Q0
Theorem 2.65 (Cauchy’s criterion). Let (V.|| - |) be a Banach space. A series Y, @y

k=1
converges if and only if

Ve>0,3N >053 |x, + Tpr1 + -+ Tpyp| <& whenever k= N,p=0.
n ©
Proof. Let S, = IEI x;, be partial sum of 2 ;. Then
{S,}, converges in V < {S,,}»_, is Cauchy
<Ve>0,3N >053|S, — S| <& whenever n,m > N
<Ve>0,3N>053 |xp41 + Tpio+ -+ x| <c whenever m>n = N

< Ve>0,3N >0 |zp + Tpy1 + - + Xyt <& whenever k= N+1,p=>0. o

0
Corollary 2.66 (n-th term test). If > @ converges, then ||zx| — 0 as k — o, and if
" k=1
|zx|| > 0 as k — oo, then >, xy diverges.
k=1
Proof. Take p =0 in Theorem 2.65. O
0 Q0
Definition 2.67. A series ), xy is said to converge absolutely if > ||zx| converges in
k=1 k=1

R. A series that is convergent but not absolutely convergent is said to be conditionally

convergent.

0 (_1\k
Example 2.68. > ( ]i ) is conditionally convergent. See Theorem 2.70 for the reason.
k=1

a0
Theorem 2.69. Let (V,| -|) be a Banach space, and {x,}>_; be a sequence in V. If >
o k=1

converges absolutely, then >, xy converges.
k=1

o0 n
Proof. If Y. x;, converges absolutely, then S,, = Y ||z|| converges in R. Then
k=1 k=1

Ve>0,3N > 05 ||m]| + |zea] + -+ |®rp|| <&  whenever k> N,p=>0.
Therefore, if K > N,p = 0,

|2k + ®r + - T < @kl + - @04y <2,

Q0
and the convergence of Y| @ is guaranteed by the Cauchy criterion. =
k=1
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Theorem 2.70. 1. Geomelric series:

o0
(a) If |r| < 1, then Y. r* converges absolutely to : i
k=1 -
Q0
(b) If |r] = 1, then >, r* does not converge (diverge).
k=1
2. Comparison test: Let {a;};, and {by}}>, be sequences of real numbers.

Q0
(a) If Z ar converges, and 0 < by < ay, then ), by converges.
k=1 k=1

0 0
(b) If > ax diverges, and 0 < aj, < by, then Y by diverges.

k=1 k=1
3. Integral test: If f is continuous, non-negative, and monotone decreasing on [1,0),

[oe} 0
then >, f(k) converges if and only if the improper integral f f(z)dz < oo.
k=1 1

4. Root test: Let {x)}], be a sequence of real numbers.

(a) If limsup {/|zx| < 1, then Z xy, converges absolutely.

k—o0
(b) If limsup «/|xx| > 1, then Z xy, diverges.
k—o0

5. Ratio and comparison test: Let {a;}y; and {by};2, be sequences of real numbers,
and by, > 0 for all k € N.

(a) lim sup| d < o0, Z by is convergent, then Z ay, converges absolutely.
k—00 k k=1 k=1

(b) liminf— LN 0, Z b is divergent, then Z ay diverges.
k—oo O k=1 k=1

6. Dirichlet test: Let {ai}r_, {pr}r, be sequences of real numbers such that
o0
(a) the sequence of partial sums of the series Y, ay is bounded; that is, there exists
k=1

M € R such that | Y] ak‘ < M for alln e N.
k=1

(b) {pk}iL, is a decreasing sequence, and ]}im pr = 0.
—00

o0
Then . agpy converges.
k=1
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Proof. Note that 1 follows from the fact that > r* =

n+1

rer if » # 1, the comparison test

=1 1—r

follows from Proposition 2.64, and the integral test follows from the fact that

[ o< si= 3 s < s+ [ sy

k=1

with an application of the comparison test, we only prove 4, 5 and 6.

4. Let r = limsup /| x|

d.

(a)

k—o0

Suppose that 0 < r < 1. By Proposition 1.98, there exists N > 0 such that
k] < r —; ! <: r—+ %) for all kK = N. This implies that

r+ 1\
< (=) k=N,
1 L 1
Since ‘T + ‘ < 1, the geometric series (%)k converges; thus the compari-
k=1

Q0
son test implies that the series Y] |z)| converges.
k=1

Suppose that » > 1. By Proposition 1.98 there exist n; <ng < --- <n; < ---
such that

r+1
k] > 5 Vk=ny,ng, -,

The statement above then implies that klim Ty, if exists, cannot be zero; thus the
—00

0
n-th term test shows that > x; diverges.
k=1

|ag|

(a) Suppose that lim sup - = = ¢ < . By Proposition 1.98 there exists N > 0

k—00 k

such that |Zk| < c¢+ 1 forall K > N. This implies that |ax| < (¢ + 1)by for all

k

e}
k = N; thus the convergence of > by and the comparison test imply that the
k=1

0
series Y. |ax| converges.
k=1

Suppose that li;n ian—k = ¢ > 0. By Proposition 1.98 there exists N > 0 such
—00 k

that CbL’f > g for all k¥ > N. This implies that aj, > gbk for all k > N; thus
k
Q0 0
the divergence of Y] b, and the comparison test imply that the series > |ax]
k=1 k=1
diverges.
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6. Let € > 0 be given. Since {p,}>_, is decreasing and lim p, = 0, there exists N > 0
n—0oo

such that
€

YV whenever n > N.

0<p, <

Define S,, = Z ag. Then if n > N and ¢ >

nte
‘ Z akpk‘ = [@nPn + @ni1Pat1 + GnyaPrya + -+ Qg1 Dngeo1 + Ao Pt
. = |(Sn = Sn-1)Pn + (Sn1 = Su)Pnt1 + (Sniz = Sni1)Pnya + -+

+ (Snie—1 — Snie—2)Pnye—1 + (Snie — Sn+€—1>pn+€|

= | =Sn-1Pn + Su(Pn — Put1) + Sn1(Pnsr — Pny2) + -+
+ Snt—1 (Pre—1 — Pnte) + SntePnse]

< |Sn-1Pn| + |Sn(Pn = Pat1) | + [Snt1 (Pt — Prs2)| + -+
+ [Snte—1(Pnte—1 — Prte)| + [Snsepnsel

< Mpyp + M(pn = pot1) + M (Pt = Pag2) + -
+ M(pnse—1 = Prte) + Mppie

=2Mp, < 2;4Mf1 <e.

The convergence of ki aipy, follows from the Cauchy criterion (Theorem 2.65). o
=1

Q0
Corollary 2.71. 1. The p-series Y, % converges if and only if p > 1.
k=1

2. The alternating series Y, (—1)Fay, converges if {ai}°, is a decreasing convergent se-
k=1
quence with limit 0.

Remark 2.72. It can be shown (and the proof is left as an exercise) that

i 222 < i ] < timsup 4/ < s 2222

koo fa ! ekl

As a consequence, by the root test we obtain

Q0
1 .
. if limsup k4] < 1, the series > z}, converges absolutely, and
k—o0 ‘ﬂ?k‘ k=1
Q0

2. if lim inf k1] > 1, the series ), xj diverges.
koo [y k=1
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This is called the ratio test.

©
Example 2.73. The series ) Slk%k converges for p > 0 since
k=1

1 2k+1
COS 5 — COS =5

1
2sm§

; (thus

n n 1
1. Y sink = D sink| < — 1).
k=1 k=1 S 5

1yo . . . 1
2. {ﬁ}nﬂ is decreasing and 7}1_{130 i 0.

0 o 1 0 o
We remark here that )] Slzk =I 5 In fact, ), sm(kk:c) is the “Fourier series” of the
k=1

k=1

. om—
function

Example 2.74. Let {z;}{_; be a real sequence defined by

[ 27F if kis odd,
TE=Y 4k i ks even ,

or 7 = (3+ (—1)%)7%. Then {/|zx| = (3 + (—=1)¥)~! which shows that

. 1 . 1
liminf A/ |z = = and limsup v/|zx| = =
k—o0 4 k—00 2
0
Therefore, the root test implies that the series ] zj converges absolutely.
k=1

We can also compute the limit superior and limit inferior of |$k+1|. Define

||
Jmenl _ B (DDA (= (—1>k)k
|z, (B3+ (=1)k)—* 3—(—1)F\3+ (—1)

and observe that klim Yor, = 00 and klim Yar+1 = 0. Since yy, € [0, 0), we conclude that 0 is
—00 —00

the smallest cluster point of {yx};2; and oo is the largest “cluster point” of {y};>,. This
shows that

x x
lim inf 2ol =0 and lim sup = 0.
k—o x| koo |Tk]

o0

We note that in this case even if the series > xp converges absolutely, lim sup ‘:Tk+|l | > 1.
k=1 k- |Tk

Therefore, the condition lim sup |g|ﬁk+|1 | > 1 cannot be used to guarantee the divergence of

k—o0 Tk

0

the series )] xy.
k=1



Chapter 3

Elementary Point-Set Topology

3.1 Limit Points and Interior Points of Sets

Definition 3.1. Let (M, d) be a metric space, and A be a subset of M.

1. A point x € M is called a limit point of A if there exists a sequence {z,}°; in A

such that {x,}> ; converges to x.
2. The closure of A is the collection of all limit points of A is denoted by A or cl(A).

3. A point z € M is called an interior point of A if there exists » > 0 such that the
r-ball about z is contained in A; that is, B(x,r) < A.

4. The interior of A is the collection of all interior points of A and is denoted by A or
int(A).

5. A point € M is called an exterior point of A if x is an interior point of A%, and

the collection of all exterior points of A is called the exterior of A.

Example 3.2. For a,b € R and a < b, consider the interval I in (R, |- |) with end-points a
and b. Then I = [a,b] and I = (a, b).

Remark 3.3. By the definition of the convergence of sequences in metric spaces, we have
the following equivalent definition: A point z € M is called a limit point of A if for every
e > 0, B(z,¢) contains points in A; that is, Ve > 0, B(z,e) n A # .

Remark 3.4. 1. If x € A, then x is a limit point of A. In other words, A < A.

2. Ifa:efl,thenxeA;thusAgA.

o8
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Theorem 3.5. Let (M,d) be a metric space, and A, B be subsets of M. If A < B, then
Ac Band Ac B.
Proof. 1. Let x € A. Then there exists a sequence {z,,}*_, in A with limit 2. Since A < B,

{z,}%_, is a sequence in B with limit z; thus x € B.

2. Let x € A. Then there exists r > 0 such that B(z,r) € A. Since A < B, B(z,r) € B;
thus z € B. =

Proposition 3.6. Let (M,d) be a metric space, and A be a subset of M. Then
reA if and only if  d(z, A) = inf {d(z, y) {y €A} =0.

Proof. “=" Suppose that x € A. Then there exists a sequence {x,}*_, in A with limit z.
By the definition of d(z, A),

Oéd(:ﬂ,A):inf{d(x,y)|yeA}<d(x,xn) VneN;
thus the Sandwich lemma (Lemma 1.34) and Remark 2.43 imply that d(z, A) = 0.

“<” Suppose d(x, A) = 0. By the definition of d(x, A), for all n € N there exists x, € A
such that d(x,z,) < d(z,A) + 11 Therefore, we obtain a sequence {z,} ; in A
n n

such that lim x, = x; thus z € A. O
n—aoo

Remark 3.7. Let (M, d) be a metric space. The function d(z, A) defined in the example

above does not satisfy that
d(z,y) < d(z,A) +d(y, A) Vo,ye M, A< M.
However, if d(A, B) = inf{d(a, b) ‘ acAbe B}, then
d(A,B) <d(z,A) +d(z, B) VeeM.
The proof of the inequality above is left as an exercise.

Definition 3.8. Let (M, d) be a metric space. A subset A of M is said to be dense (f#
%) in another subset B if A < B < A.

Remark 3.9. When A is dense in B, it means that every point in B can be the limit of a

sequence in A.
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Example 3.10. The rational numbers Q is dense in the real number system R.

Definition 3.11. Let (M, d) be a metric space, and A be a subset of M. The boundary
of A, denoted by bd(A) or A4, is the intersection of A and A® (0A = A n AL).

Remark 3.12. 1. By the definition of limit points of sets, we find that

redAde 3w}, c Aand {y,}, < A" > 2, »rand y, —> v asn — ©

< Ve>0,B(z,e)nA#Zand B(x,e)n A  # .
2. 0A = 0(A%).
Proposition 3.13. Let (M, d) be a metric space, and A be a subset of M. Then 0A = A\A

Proof. If z € 0A, then = € A n A°; thus for all € > 0, B(x,e) n A® # . Therefore, z ¢ A
which implies that 0A < A\A.

On the other hand, if z € A\A, then z ¢ A; thus for all ¢ > 0, B(z,e) £ A. As a
consequence, for all e > 0, B(z,e) n A # &; thus z € AC and this further implies that
reAn Al =0A. o

Remark 3.14. 1. If A € B, then in general 0A & dB. For example, let A =Q [0, 1] and
B =10,1]. Then A < B but A =[0,1], ¢B = {0, 1}.

2. It is not always true that A = d(int(A)). For example, take A = [0,1] U {2}. Then
0A =1{0,1,2},int(A) = (0,1), (int(A)) = {0, 1}, so A # d(int(A)).

3.2 Closed Sets and Open Sets

3.2.1 Closed sets

Definition 3.15. Let (M, d) be a metric space. A subset F' of M is said to be closed (in
M) if F contains all its limit points; that is, F 2 F. In other words, F is closed if every

convergent sequence {z};°, < F' converges to a limit in F.
Remark 3.16. Let (M, d) be a metric space, and A be a subset of M.
1. By the definition of the closure of sets, A < A; thus A is closed if and only if A = A.

2. By Remark 3.3, A is closed if and only if for all 2 € A® there exists » > 0 such that
B(z,r) < A
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3. By the definition of the exterior points and 2 above, A is closed if and only if every

point of A’ is an interior point of A® (or equivalently, A® = int(A°%)).
4. If B is a closed set and A < B, then Theorem 3.5 implies that A < B.

Example 3.17. Let a,b € R. The interval [a,b], (—o0,al, [b,0) in R are closed. This is
why [a, b], (—o0,a] and [b, c0) are called “closed” intervals in R.

The set (0,1] < R is not closed because it does not contain 0, a limit point of (0, 1].
In general, we have the following
Proposition 3.18. Let (M,d) be a metric space, x € M and r = 0.
1. The set B(x,7)° is closed.
2. The set {y € M |d(x,y) <r} is closed.

Proof. 1. Suppose the contrary that there exists a sequence {y,}; < B(z,r)" which

converges to some y € B(x,r). Note that d(x,y) < r; thus there exists N > 0 such
that

d(Yn,y) <e=r—d(z,y) whenever n > N.
By the triangle inequality, for n = N we have
Ad(Yn, 1) < d(Yn,y) +d(y,z) <r—d(z,y) +d(z,y) =r
which implies that y,, € B(x,r) for n = N, a contradiction.

2. Let A = {y e M | d(z,y) < r}. Suppose the contrary that there exists a sequence
{y,}*_, < A which converges to some y € A". Since d(x,y) > r, there exists N > 0
such that

d(yn,y) <e=d(z,y) —r whenever n > N.
By the triangle inequality, for n > N we have
d(yn, x) = d(z,y) — d(y,yn) > d(z,y) — (d(z,y) —7) =7
which implies that y, ¢ A for n > N, a contradiction. =

Remark 3.19. When r = 0, the set {y eM | d(z,y) < 7’} contains only one point x; thus

every set consisting of one single point in M is closed.



62 CHAPTER 3. Elementary Point-Set Topology

Definition 3.20. Let (M, d) be a metric space. For each z € M and r > 0, the set
Blz,r] = {ye M|d(z,y) <r}
is called the closed r-ball about x or the closed ball centered at x with radius r.

Proposition 3.21. Let (M,d) be a metric space.
1. The union of finitely many closed sets is closed.
2. The intersection of arbitrary family of closed sets is closed.

3. The universal set M and the emptly set & are closed.

k
Proof. 1. Let Fy,--- , F}), be closed sets in M, F' = | J F}, and {z,,};°; < F be a convergent
j=1

sequence with limit x € M. Then there exists 1 < jy < k such that
#{neN|z, e F;,} = w0;

thus {n € N!xn € FJO} = {nl,n2,~-- ,nk,~--}, where n; < ngyq for all £ € N. By
Proposition 2.56, the sequence {xnk}zo:l converges to x. Since Fj, is closed, z € Fj;
thus x € F'. Therefore, every convergent sequence in F' converges to a limit in F' which
shows that F' is closed.

2. Let ¥ = {Fa ‘ F, closed in M, o € I} be a family of closed sets, F' = () F,, and

ael
{x,}2, < F be a convergent sequence with limit # € M. Then for each a € I,

{x,}2_; in F,; thus the closedness of F, implies that x € F,, for each a € I. Therefore,
x € F which shows that F' is closed.

3. Since every consequence in M converges to a limit in M, M must be closed. Since
there is no sequence in ¢, it holds that ¥ is closed. o

k
Alternative proof of 1 and 2. 1. Let Fy,--- , Fy be closed sets, F' = | J F};, and x € Ft. By
j=1

De Morgan’s law,
k

F' = M\F = M\OFj — ﬁ(M\Fj) = F".

j=1
so x € Fy for all 1 < j < k. By Remark 3.16, for each 1 < j < k there exists r; > 0

such that
B(z,r;) S F; .
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Define r = min{ry,ro,---,7;}. Then r > 0 and B(z,r) < B(z,r;) < Fj for all
1 <j < k; thus

k k
B(ar)c(Fre (|JF) =F"
j=1 j=1

2. Let # = {Fa ’ F, closed in M, « € I} be a family of closed sets, F' = (] F,, and

ael

x € F. By De Morgan’s law,

F = M\()Fa = JM\F.) = | FS

ael ael ael

SO T € F[g for some 8 € I. By Remark 3.16, there exists » > 0 such that

B(w,r)c Fyc | JFL = ([ Fa) = F". o

ael ael

Corollary 3.22. Every set consisting of finitely many points of a metric space is closed.

Example 3.23. Let (V.| - ||) be a normed vector space, A < V be closed, and B < V be
finite (#(B) < ). Then A + B is closed.

Proof. Let {x,}>_; be a convergent sequence in A+ B with limit . Then x, = a,, + b, for

some a, € A and b, € B. Since #(B) < w0, there exists a point b € B such that
#{neN|b,=b} =w0.

Let {n € N| b, = b} = {ny,ng, -+ ,ng, -}, where ny < ng4; for all k € N. Then {z,, }¥,
is a subsequence of {x,}. By Proposition 2.56, {z,, };>, converges to ; thus the fact that
a,

= x,, — b shows that {a,, }}°; converges to a limit @ and = a+ b. The closedness of

k k

A further implies that a € A; thus € A+ B.
In fact, A+ B = [J (b+ A). It should be clear that b+ A is closed if A is closed; thus

beB
we conclude that A + B is open by Proposition 3.21. O

Theorem 3.24. Let (M,d) be a metric space, and A be a subset of M. Then A is closed.

Proof. Let z € A® be given. Remark 3.3 implies that there exists ¢ > 0 such that B (z,e) N
A = J or equivalently, A € B(xz,¢)'. By Proposition 3.18, B(x,¢)" is closed; thus 4 of
Remark 3.16 implies that A € B(x,¢)". Therefore, B(z,¢) < A°; thus we established that

every point in A’ is an interior point of A®. 4 of Remark 3.16 then shows that A is closed. o
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Remark 3.25. Let (M, d) be a metric space, and A be a subset of M.

1. By the definition of the boundary of sets, Proposition 3.21 and Theorem 3.24 imply
that dA is closed.

2. By 4 of Remark 3.16, every closed set containing A contains A; thus the closure of A
is the smallest closed set containing A; that is, A= () F.

ACF
F closed

Definition 3.26. Let (M, d) be a metric space. A subset A of M is said to be complete if
the metric space (A4, d) is complete. In other words, A is complete if every Cauchy sequence

in A converges to a limit in A.

Theorem 3.27. Let (M,d) be a complete metric space, and A be a subset of M. Then A
is complete if and only if A is closed in M.

Proof. “=" Let {x}}72, be a convergent sequence in A with limit . Then Proposition 2.58
implies that {x};”; is a Cauchy sequence in (M, d). Since {zx};, € A, we find that
{x}72, is a Cauchy sequence in (A, d); thus the completeness of (A, d) implies that
{zy}{2, converges to y € A. By Proposition 2.42, the limit is unique; thus = y which
implies that € A. Therefore, A is closed.

“<” Let {x}{_, be a Cauchy sequence in A. Then
Ve>0,3N >03d(x,,x,) <e whenever n,m = N.

Therefore, {zx}, is a Cauchy in (M, d). Since (M, d) is complete, there exists z € M
such that xy — x as k — o0. By the closedness of A, we must have x € A; thus every

Cauchy sequence in A converges to a limit in A. O

3.2.2 Open sets

Definition 3.28. Let (M, d) be a metric space. A set U < M is said to be open (in M) if

every point in U is an interior point of U; that is, U < U. In other words,
Uisopen (in M) < VzeU Ir>03B(x,r)<U.

Remark 3.29. Let (M, d) be a metric space, and A be a subset of M.

1. By the definition of the interior of sets, A c A; thus A is open if and only if A = A.
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2. By 3 of Remark 3.16, A is open if and only if A® is closed and A is closed if and only
if A®is open.

3. The statement above does NOT implies that a set in a metric space is either open or

closed. There are still sets which is neither open nor closed.
4. If B is an open set and B < A, then Theorem 3.5 implies that B < A.

Example 3.30. The interval (a,b) in R is open since int((a,b)) = (a,b). This is why (a, b)

is called an open interval in Calculus.

Example 3.31. The set A = {(a,b) € R?|0 < a < 1} is open: given z = (a,b) € A, take
r = min{l — a,a}, then B(z,r) < A.

On the other hand, the set A = {(a,b) € R? |0 < a < 1} is not open: let z = (1,0), then
for each r > 0, B(z,r) &€ A since the point (1 + g,()) € B(x,r) but (1 + 5,0) ¢ A

The following proposition is a direct consequence of Proposition 3.18 and Remark 3.29.
Proposition 3.32. Fvery r-ball in a metric space is open.

Alternative proof. Let (M, d) be a metric space, and B(z,r) be an r-ball in M. We would
like to show that for each y € B(z,r), there exists § > 0 such that B(y,0) < B(z,r). Let
d =r—d(z,y). Then § > 0 and if z € B(y, d), we have

d(z,x) < d(z,y) +d(y,x) <6 +d(y,x) =r;
thus z € B(x,r). o

Proposition 3.33. Let (M,d) be a metric space.
1. The intersection of finitely many open sets is open.
2. The union of arbitrary family of open sets is open.

3. The empty set & and the universal set M are open.

k
Proof. 1. Let Uy, -+, Uy be open sets, and U = () U;. Then by De Morgan’s law,
j=1
k k
Ut =M\U=M\[U;=| J\U;) =
=1

Jj=1 J

||C?r

Since U, is open, ch is closed. By Proposition 3.21, U ch is closed.
j=1
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2. Let F = {Ua ‘ U, openin M, a € I} be a family of open sets, and U = | J U,. Then
ael

by De Morgan’s law,

Ut = M\| U = (Y (M\U) = | JUE

ael ael ael
which implies that U is the intersection of a family of closed sets {Ug}ael. By
Proposition 3.21 we conclude that U° is closed or equivalently, U is open. =

Alternative proof of 1 and 2.

k
1. Let Uy, Us,--- ,U; be open sets in M, and U = (U;. If y € U, then y € U; for

i=1
all 1 < i < k. Since U; is open, there exist d; > 0 such that B(y,d;) < U;. Let
d = min{dy, -+ ,0}. Next we show that B(y,d) < U to conclude that U is open.

Let z € B(y,0). Then d(y,z) < 6 < ¢; for all 1 < i < k. Therefore, z € B(y, ;) for all

k
1 <@ < k which shows that z € U; for all 1 < i < k; thus z e (U; = U.
i=1

2. Let F = {Ua } U, openin M, a € ]} be a family of open sets, and U = (J U,. If

ael
y € U, then y e Ug for some e I. Since Up is open, there exists § > 0 such that
B(y,d) < Ug; thus B(y,0) < |J U, =U. o
ael
Remark 3.34. Infinite intersection of open sets need not be open:
11 =X o
1. Take Ay = (—%, %), then [ Ax = {0} which is not open.
k=1
1 1 @ .
2. Let Uy = (—2 — E,2 + E) c R. Then A = (| Ux 2 [-2,2]. Moreover, if x ¢ [—2,2],
k=1
1 T — 1 —x —2
then 4k e N> z ¢ Uy (Ifa:>2, z < 5 If r < =2, P < ) Therefore,

AU =[-2,2.

Example 3.35. Let (V,| - |
open, the set A+ B is open.

) be a normed vector space. If A, B are subsets of V and A is

Proof. Let ye A+ B. Then y = a+ b for some a€ A, be B. Since A is open, there exists
d > 0 such that B(a,d) < A.
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We next show that B(y,0) < A+ B. Let z € B(y,0). Then |z — y| < . Since
z=>b+ (z—b), if we can show that z— be A, then z€ A + B. Nevertheless, we have

[(z=b)—a| =]z-a-b]|=]z-y| <
which implies that z — b e B(a,d) < A. o

Since A+ B = J (b+ A) and it should be clear that b+ A is open if A is open, we
beB
conclude by Proposition 3.33 that A + B is open.

Theorem 3.36. Let (M,d) be a metric space, and A be a subset of M. Then A is open.

Proof. For each x € A, let &, > 0 denote a number such that B (x,e,) € A. We would like

to show that A = | B(z,¢e.), and the theorem is then a direct consequence of Proposition

r€eA
3.33.

1. “<”: trivial.
2. “O” Let y € |J B(w,&;). By the definition of the union of family of sets, there exists

zeA

z € A such that y € B(z,e,). Let § = ¢, — d(z,y). Then 6 > 0 and if z € B(y, d),
d(z,2) < d(z,y) +d(y,z) < +d(y,z) =&,
which implies that B(y,d) < B(x,e,) < A. Therefore, y € A. o

Remark 3.37. Let (M, d) be a metric space, and A be a subset of M. By 4 of Remark
3.29, every open set contained inside A is contained inside fi; thus the interior of A is the
largest open set contained inside A; that is, A= U U.

AU
U open

Remark 3.38. In a metric space (M, d), it is NOT always true that int(B[z, R]) = B(z, R)

or cl(B(z, R)) = Blx, R]. For example, we consider the discrete metric

1 ifx#y,

d(’(x’y):{ 0 ifz=0

Let R=1, and fix x € M # &. Then Blx,1] = M and B(x,1) = {z}. Since every set in
(M, dy) is both closed and open, we find that
int(B[z,1]) =M and cl(B(z,1)) = {z};

thus as long as M has more than one point, we have int(B[z, 1]) # B(z,1) and cl(B(z,1)) #
Blz,1]. We also note that in (M, dy) the boundary of every set is empty.
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BX ¢
3.3 Compactness ( 7 =)
In this section, we investigate a property similar to the Bolzaon-Weierstrass Property.

Definition 3.39. Let (M, d) be a metric space. A subset K < M is called sequentially

compact if every sequence in K has a subsequence that converges to a point in K.

Definition 3.40. Let (M, d) be a metric space. A subset A of M is said to be bounded if
A is contained in some r-ball. In other words, A is bounded if there exists z € M and r > 0
such that A < B(z,1).

Example 3.41. Each closed and bounded set in (R™, |- |2) is sequentially compact. This is
a direct consequence of the Bolzano-Weierstrass Theorem (Theorem 2.51) and the definition

of the closedness of sets.

Theorem 3.42. Let (M, d) be a metric space, and K < M be sequentially compact. Then
K is closed and bounded.

Proof. For closedness, assume that {z;}}"; € K and x;, — z as k — 0. By the definition of
sequential compactness, there exists {xkj};il converging to a point y € K. By Proposition
2.56, x = y; thus r € K.

For boundedness, assume the contrary that for all zo € M and R > 0, there exists y € K
such that d(zo,y) = R. Fix g € M. There exists x; € K such that d(zg,z;) = 1. Having
x1, there exists x5 € K such that d(za,x¢) = 1+ d(x1,20). Continuing this process, we

obtain a sequence {xj}7~; in K such that

d(xg,x9) = 1+ d(zk_1,70) VkeN.

Then any subsequence of {4}, cannot be Cauchy since d(xy, zy) = |k — | for all k,¢ e N;

thus {x};2, has no convergent subsequence, a contradiction. o
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Remark 3.43. Example 3.41 and Theorem 3.42 together imply that in (R™, | - [|2),
sequentially compact < closed and bounded .
This result is called the Heine-Borel Theorem.

In fact, if V is a finite dimensional vector space over F, where F = R or C, and

{e1,e2, -+ ,e,} €V is a basis for V; that is, every @ € V can be uniquely expressed as

z=1We, + 2Pey + -+ + 2Me,,, t®eFforl<k<n.

n 1

Define x|, = (Z |x(i)|2> * (which is a norm by Example 2.28). Then a subset K of V
=1

is sequentially compact in (V, | - ||2) if and only if K is closed and bounded. Note that by

Theorem 3.42 it suffices to show the “if” direction. Let {z;};>, be a sequence in K. Write

T = Y, x,(j)ei, and define v, = (xlgl), xl(f), e ,xé")). Then {v}7>; is a sequence in F”. Since
i=1

{x}7>, is bounded, there exists M > 0 such that

H:BkH2<M V/{EN;

thus |vglls < M (here |wvg|2 is the usual norm of v, on F") for all k£ € N. By the Bolzano-
Weierstrass Theorem (Theorem 2.51 and Remark 2.52), there exists a subsequence {vy,; }52,
such that {vy, };?Ozl converges to some v € F". Let v = (:L*(l), z@? ... ,x(”)) and ¢ = z(Me; +
-4 z(Me,. Then

n

1
2, = al, = (X Jok) =29) " = o, = vz =~ 0 as j— 0.
=1

and the closedness of K implies that & € K, so we establish that K is sequentially compact
in (V,| - |l2) if K is closed and bounded.

Example 3.44. Let A =1[0,1]u(2,3] < (R,|-|). Since A is not closed, A is not sequentially

compact.
Corollary 3.45. If K < R s sequentially compact, then inf K € K and sup K € K.
Proof. By Theorem 3.42, K must be closed and bounded. Therefore, inf K € R. Then

. . : 1 & .
for each n € N, there exists x,, € K such that inf X' < z, < inf K + —. Since {z,}°_; is
n

a bounded sequence in R, the Bolzano-Weierstrass property of R implies that there is a

subsequence {z,, }72; and x € R such that klim Zn, = v. Note that x = inf K, and by the
—00

closedness of K, x € K. The proof of sup K € K is similar. O
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Definition 3.46. Let (M, d) be a metric space. A subset A € M is called totally bounded

if for each r > 0, there exists {x1,--- ,x,} S M such that

N
Ac UB(LUZ,T’) .
=1

Remark 3.47. In a general metric space (M, d), a bounded set might not be totally bounded.
For example, consider the metric space (M, d) with the discrete metric, and A < M be a
set having infinitely many points. Then A is bounded since A < B(x,2) for any = € M;
howeveli, A is not totally bounded since A cannot be covered by finitely many balls with
radius 5

Proposition 3.48. Let (M, d) be a metric space, and A = M be totally bounded. Then A
s bounded. In other words, totally bounded sets are bounded.

N
Proof. By total boundedness, there exists {y1,---,y,} S M such that A < |J B(y;, 1). Let
i=1

zo = y1 and R = max {d(zo,y2), - ,d(z0,yy)} + 1. Then if z € A, z € B(y;, 1) for some
j=1,--- N, and

d(z,x0) < d(z,y;) + d(yj,x0) <1+ d(zo,y;) < R
which implies that A € B(x, R). Therefore, A is bounded. o
Example 3.49. Every bounded set in (R", |-[|2) is totally bounded (Check!). In particular,
the set {1} x [1,2] in (R?,| - |2) is totally bounded.
On the other hand, let d : R? x R? — R be defined by
|71 — w1 if 2o =12,
d(z,y) = . where = = (z1,22) and y = (y1, 2).
w1 =yl + 2 — o[+ 1 if oz #ys,
Then (R2, d) is also a metric space (exercise). The set {1} x [1,2] is bounded (Check!) but

not totally bounded. In fact, consider open ball with radius 3"
1 1 1
yEB(Li) < |lz—y| < 3 lzy — 1| < 3 and xy = 1o

1 1
<y € (:1:1—5,3:1+§) and zo = ¥ .

In other words,
1 1 1
B(m, 5) = (xl —5h + 5) x {xa};

1
thus one cannot cover {1} x [1,2] by the union of finitely many balls with radius 3
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Example 3.50. Let (* denote the collection of all bounded real sequences (cf. Example
2.20); that is,

0* = {2y = R|for some M > 0, |z;| < M for all k}.

The number sup |xgx| = sup{|z1],|za], -, |zk], -} < o0 is denoted by H{xk}leww (for
k>1

. (—1)*
example, if z;, = o then H{xk},;'oleoo = 1>. Then (£~, | -

») is a Banach space (left as

an exercise). Define

A= {mi e |l < 3}

B = {{z}iz, € (7 |z, —> 0 as k — o},

C = {{x}zy € *]the sequence {z}}7_; converges},
D = {{xk},zo:l € 600‘ sup |zg| = 1} (the unit sphere in (£, -)).
k=1

The closedness of A (which implies the completeness of (A, | -||«)) is left as an exercise. We
show that A is totally bounded.
Let r > 0 be given. Then there exists N > 0 such that % < r. Define

i 19 IN—1
E:{ OO_‘ = g = ——— = for some
Welicy |1 = @2 = g v = oy forsom
i, i = —N,—~N+1,--- N—1,N, andxkzoifk>N+1}.
Then

1. #F < o0. In fact, #F = (2N + 1)V ! < o0,
2. Ac U B({z}, %) < U B({z,r).
{zrlil,€E {zp}p €l
Therefore, A is totally bounded.
On the other hand, B and C' are not bounded; thus not totally bounded by Proposition
3.48. D is bounded but not totally bounded. In fact, D cannot be covered by the union of

1 . .1 .
finitely many balls with radius B since each ball with radius 3 contains at most one of the

0
points from the subset {{xgk) };Oﬂ} c D, where for each k
=1 k=1

(k)yo )
{Ij }jzl_{oﬂ"'yoa 1a07"'}7
(k—1) terms

that is, :cg-k) = Oy;, the kronecker delta.
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Proposition 3.51. Let (M,d) be a metric space, and T' < M be totally bounded. If S < T,
then S is totally bounded. In other words, subsets of totally bounded sets are totally bounded.

Proof. Let r > 0 be given. By the total boundedness of T', there exists {z1,--- ,z,} € M
such that

N
S_TQUB(xi7r). o
i=1

Proposition 3.52. Let (M,d) be a metric space, and A < M. Then A is totally bounded
N

if and only if for all v > 0, there exists {y1, -+ ,yy} S A such that A < | B(y;, ).
i=1

Proof. Tt suffices to show the “only if” part. Let » > 0 be given. Since A is totally bounded,
N T
Iy, Yy} S M3AC uB(yi,2).

W.L.O.G., we may assume that for each i = 1,--- | N, B(yi, g) N A # . Then for each
1=1,---, N, there exists z; € B(yz-, g) N A which implies that

N N
AcC UB(yi, g) c UB(mi,r)
i=1 i=1
since B(yi,g) < B(zg,r) foralli=1,---  N. o

Theorem 3.53. Let (M,d) be a metric space, and K be a subset of M. Then K is
sequentially compact if and only if K is totally bounded and complete.

Proof. “=7" Assume that K is sequentially compact. For the total boundedness, suppose

the contrary that there is an r > 0 such that any finite set {y1, -+ ,y.} € K, K &

| B(yi, 7). This implies that we can choose a sequence {z;};~; € K such that
i=1

k
Tr4+1 € K\UB(.%“T)

=1
Then {zx}}2; is a sequence in K without convergent subsequence since d(zy,x¢) > r

for all k,/ e N and k # (.

Next we show that K is complete. Let {z;};2, < K be a Cauchy sequence. By

. . 0
sequential compactness of K, there is a subsequence {xkj }j:1

z € K. By Proposition 2.58, {x}};2; also converges to x; thus every Cauchy sequence

converging to a point

in K converges to a point in K.
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<" The proof of this direction is similar to the proof of Theorem 1.79 and we proceed as
follows. Let {z}}{, be a sequence in T = K. Since K is totally bound, there exists
{y(l) ~yN1} € K such that

N1
Tv=Kc<| B, 1).

One of these B(y, (1) ,1)’s must contain infinitely many xz;’s; that is, there exists 1 <
¢; < N; such that #{k: € N]mk € B y( ) 1) } 0. Define T} = K n B(y(l) 1). Then
T} is also totally bounded by Proposition 3.51, so there exists {yl ,o 73/N2} c T
such that

T1CUB yzz),1 .

Suppose that #{k € N‘xk € B(yg),%) = oo for some 1 < ly < N,. Define Ty, =

1
T n B(y@), 7). We continue this process, and obtain that for all n € N,
65

(1) there exists {y%n),- ,yN } < T,—1 such that
() 1
T S i:LJlB(yi )

n) 1 :
(2) T, =T, 1N B(yén), ﬁ)’ where 1 < ¢,, < N, is chosen so that

#{keN‘xkeB(y§:>,l)} = . (3.3.1)

n

Pick an kle{k‘eN‘xkeB(ye , } and k; e{keN)xkeB(yg),l)}suchthat

ki1 > k; for all j € N. We note such k; always exists because of (3.3.1). Then

{xk } is a subsequence of {x;};2,, and 7y, € T; € K for all j € N.

Claim: {xkj }]Oil is a Cauchy sequence.

Proof of claim: Let € > 0 be given, and N > 0 be large enough so that % < % Then

. 1 .
if j = N, we must have z;, € B(ygj), N); thus we conclude that if n,m > N, the
triangle inequality implies that
1 1
d(xkn,ka) < d(a:kn,ygj)) + d(:vkm,ygj)) < N + N <e.

Since (K, d) is complete, the Cauchy sequence {xkj };D:l converges to a point in K. ©
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Finally we introduce the concept of compact sets in a metric space in the remaining part

of the section. First we need to talk about open cover of sets.

Definition 3.54. Let (M, d) be a metric space, and A be a subset of M. A cover of A is
a collection of sets {U,}aer satisfying that A < |J U,. It is an open cover of A if U, is

a€el
open for all a € I. A subcover of a given cover {U,}aes is a sub-collection {U,}aes, where

J < I, satisfying that A < | J U,. It is a finite subcover if #.J < .

ael

Example 3.55. The collection {(—k, k) ‘ ke N} is an open cover of R, and {(—Qk, 2k) ‘ ke
N} is a subcover of {(—k, k)| k € N}.

The so-called compact sets is defined in the following

Definition 3.56. Let (M,d) be a metric space. A subset K < M is called compact if

every open cover of K possesses a finite subcover; that is, K < M is compact if

(Vopen cover {U,}aer of K) (3 JSIA#J< oo) (K c U Ua> )

aeJ

Example 3.57. Let A = {0} U {1, %, e ,l, e }, and {U,}aer be a given open cover of
n
A. Then 0 € Ug for all 8 € I. By the fact that Us is open, there exists € > 0 such that

B(0,e) < Us. Let N € N satisfy % < e. Then

(i} = {hles o)

On the other hand, for each 1 < k£ < N —1 there exists ay, € I such that % € U,,. Therefore,

11 1 1 =l
A:({O}U{NWH’“‘})U{l’z’“"zv_l}QUHUHU“’”

thus we obtain a finite subcover for a given open cover. Therefore, A is compact.
In general, if {z;};2, is a convergent sequence in a metric space with limit z, then the

set A = {1, 29,---} U {x} is compact.

Theorem 3.58. Let (M, d) be a metric space, and A be a subset of M. Then A is compact

if and only if A is sequentially compact.
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Proof. “=" Since a compact set must be totally bounded (a finite sub-cover of {B (x,r) ‘ X €

K } suffices the purpose), it suffices to show the completeness of K. Let {zx},

be a Cauchy sequence in K. Suppose that {z;};>; does not converge in K. Then
Proposition 2.56 and 2.58 imply that every point of K is not a cluster point of {x)}7° ;;
thus

Vye K,36,> 03 #{keN|z,e B(y,d,)} < 0. (3.3.2)
The collection {B (v, 5y)}y€ , then is an open cover of K’; thus possesses a finite sub-

N
cover {B(yi,(Syi)}i]il. In particular, {z;}>; < | B(yi,éxi) or
i=1

N
#{keN|me B} ==
i=1
which contradicts to (3.3.2).

Let {Ua}ael be an open cover of K.
Claim: there exists r > 0 such that for each x € K, B(z,r) < U, for some « € I.

Proof of claim: Suppose the contrary that for each k € N, there exists z; € K such
that B(:L‘k, %) & U, for all @ € I. Then {4}, is a sequence in K; thus by the

assumption of sequential compactness, there exists a convergent subsequence {xy, };-Ozl

with limit « € K. Since {U,}aer is an open cover of K, x € Ug for some € I. Then

(1) there is r > 0 such that B(z,r) < Us since U is open.

(2) there exists N > 0 such that d(z,,r) < g for all j > N.

Choose j = N such that klj < g Then B(mk‘j, kt) < B(z,r) < Ugs, a contradiction.
Having established the claim, by the fact that K is totally bounded (Theorem 3.53)
there exists {y1,---,yy} € K such that K < C[J B(y;,r). For each 1 < i < N,
the claim above implies that there exists a; € ZIleuch that B(y;,7) € U,,. Then
QB(%, r) S QU% which implies that

)

N
KQUUQZ.. o
i=1
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Remark 3.59. For a given open cover {U,}.es of a compact set K, the positive number r
appearing in the claim above is called a Lebesgue number for the open cover. It has the

property that for each x € K there exists o € I such that B(x,r) € U,.

Definition 3.60. Let (M, d) be a metric space. A subset A of M is called pre-compact
if A is compact. Let U < M be an open set, a subset A of U is said to be compactly
embedded in U, denoted by Acc U, if A is pre-compact and A < U.

Remark 3.61. Suppose that A is a pre-compact set in (M,d). If {xx}}>; be a sequence
in A, then {z,,}%_, is a sequence in A; thus the (sequential) compactness of A implies that
there exists convergent subsequence {zy,}72, (with limit in A). Therefore, every sequence

in a pre-compact set has a convergent subsequence.

Example 3.62. Let (M,d) be a complete metric space, and A € M be totally bounded.
Then A is totally bounded (by enlarging the radius of the balls); thus Theorem 3.27 and 3.53
imply that A is sequentially compact. In other words, in a complete metric space, totally

bounded sets are pre-compact.

Remark 3.63. A generalized version of the Bolzano-Weierstrass property in a general
metric space is the following: a metric space is said to satisfy the Bolzano-Weierstrass
property if every totally bounded sequence has a convergent subsequence. Then a metric

space is complete if and only if it satisfies the Bolzano-Weierstrass property.

3.4 Connectedness (:#:if 4 )

Definition 3.64. Let (M, d) be a metric space, and A be a subset of M. Two non-empty

open sets U and V are said to separate A if
1. AnUnNV =g; 2. AnU # J; 3. ANV # &, 4. AcUUV.
We say that A is disconnected or separated if such separation exists, and A is connected

if no such separation exists.

Proposition 3.65. Let (M,d) be a metric space. A subset A < M is disconnected if and
only if A=Ay U Ay with Ay n Ay = Ay 0 Ay = & for some non-empty Ay and As.

Proof. “=" Suppose that there exist U, V non-empty open sets such that 1-4 in Definition
3.64 hold. Let Ay = AnU and Ay = AnV. By 1, A; < V¢ thus Theorem 3.5 implies
that A; < VC. This shows that A; N Ay = . Similarly, 4, N A1 = &.
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“<="Let U = cl(A43)" and V = cl(A;)" be two open sets. Then V nA; = U n Ay = ; thus
AnUnV=AvA)nUnV=A4n0)nV=UnAnV)=&.

Moreover, since Ay N Ay = Ay n A} = &, Ay S cl(Ay)" = U and A; < cl(A))' =V so
that Property 2 and 3 in Definition 3.64 hold. Finally, since A; € AS and A, < A¢,

we have
(UUV)C:UC(\VC:AQGAIgA[i‘mAg:(AluAQ)C:AC
which implies that A € U u V. Therefore, A is disconnected. =

Proposition 3.65 implies the following alternative definition of connected sets (without

defining disconnected sets first):

Definition 3.66. Let (M, d) be a metric space. A subset A of M is said to be connected
if A cannot be represented as the union of two non-empty disjoint sets neither of which

contains a limit point of the other.

Corollary 3.67. Let (M,d) be a metric space. Suppose that a subset A = M is connected,
and A= A; U Ay, where Ay n Ay = Ay n Ay = 5. Then A; or As is empty.

Theorem 3.68. A subset A of the Fuclidean space (R, |- |) is connected if and only if it
has the property that if x,y € A and v < z <y, then z € A.

Proof. “=" Suppose that there exist z,y € A, z <z <y but z¢ A. Then A = A; U A,
where
Ay =An(—00,z) and Ay =An(z,0).
Since x € Ay and y € Ay, A; and A, are non-empty. Moreover, AjnAy = AinAy = ;s

thus by Proposition 3.65, A is disconnected, a contradiction.

“<"” Suppose the contrary that A is not connected (disconnected). Then there exist non-
empty sets A; and A, such that A = A, U Ay with A; N Ay = A n A, = . Pick
r € Ay and y € Ay. W.L.O.G., we may assume that z < y. Define z = sup(A4; n|z,y]) .
Claim: z € A;.
Proof of claim: By definition, for any n > 0 there exists z,, € A; N [z, y] such that
1 _
z — ~ < x, < z. Therefore, x,, — z as n — o0 which implies that z € A;.
n

Since z € Ay, z ¢ Ay. In particular, z < z < y.
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(a) If 2 ¢ Ay, then x < z <y and z ¢ A, a contradiction.

(b) If z € Ay, then z ¢ Ay; thus there exists 0 < r < y — z such that (z —r,z +7) <
cl(Ay)". Then for all 21 € (2,2 +7), 2 <2 <yand 2 ¢ Ay. Thenx < 2z, <y

and z; ¢ A, a contradiction. O

Corollary 3.69. Connected sets in (R,|-|) are intervals.

3.5 Subspace Topology

Let (M, d) be a metric space, and N © M be a subset. Then (N, d) is a metric space, and
the topology of (N, d) is called the subspace topology of (N, d).

Remark 3.70. The topology of a metric space is the collection of all open sets of that

metric space.

Proposition 3.71. Let (M, d) be a metric space, and N be a subset of M. A subsetV < N
is open in (N,d) if and only if V. =U n N for some open set U in (M,d).

Proof. Let By(x,r) denote the r-ball about x in (N, d); that is,
By(z,r)={ye N|d(z,y)<r} V.

Note that By(x,r) = B(x,r) n N, where B(x,r) is the r-ball about z in the metric space
(M, d).

“=” Let V < N be open in (N,d). Then for all z € M, there exists r, > 0 such that
By (z,r,) € V. In particular,
V= U By (z,1;) = U B(xz,r)n N.
zeV zeV

Define U = | J B(z,7,). Then U is open in (M, d) (by Proposition 3.33), and
zeV

V={JB@r)nN=UnN.

zeV

“«<" Suppose that V = U n N for some open set U in (M,d). Let x € V. Then x € U; thus
there exists r > 0 such that B(z,r) € U. Therefore,

By(z,r)=B(z,1)nNcUnN=V

which implies that z is an interior point of V. This shows that V' is open in (V,d). o
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Corollary 3.72. Let (M,d) be a metric space, and N be a subset of M. A subset E € N
is closed in (N,d) if and only if E = F n N for some closed set F in (M,d).

Proof. Note that if A, B are subsets of N, then A = B if and only if N n A = N n B°,
where A® denote the set M\A. Then for a subset E of N,

E is closed in (N,d) < N\FE is open in (N,d) < N n E* is open in (M, d)
< N n E'= N n U for some open set U in (M, d)
< Nn(NnEYY =Nn(NnU) for some open set U in (M, d)
< Nn E =N nU" for some open set U in (M, d)
< N n E =N n F for some closed set F'in (M, d)

< FE = F n N for some closed set F' in (M, d). o

Remark 3.73. Let (M, d) be a metric space, N be a subset of M, and {x,,}:°_; be a sequence

in N. We note that the convergence of {z,},>_; in (N, d) implies the convergence of {z,}>_,

. . 1 . .

in (M, d), but not vice versa. For example, the sequence {f}f_l is convergent in (R, |-|) but
=

is not convergent in ((0, ), d), where d is the metric induced from the norm | -|. Since the
concept of convergence is different in a subspace, we expect that in a subspace the concept
of closed will be different. In other words, the concept of closedness (and openness as well)

of sets highly depends on the background metric space.

Definition 3.74. Let (M, d) be a metric space, and N be a subset of M. A subset A is

open open
said to be closed relative to N if An N is closed in the metric space (N, d).
compact compact

Note that base on the definition above, Proposition 3.71 and Corollary 3.72 imply that
if A is closed/open in (M,d), then A is relative closed/open in (N, d). However, we note
that if A < N is closed/open in (N, d), A is not necessary closed/open in (M, d).

Example 3.75. Let (M,d) be (R,|-|), and N = Q. Consider the set F' = [0,1] n Q. By
Corollary 3.72 F' is closed in (Q,| - |); however, F' is not closed in (R, |- |) since it is not

complete (a Cauchy sequence in F' might not converge).

Theorem 3.76. Let (M,d) be a metric space, and N be a subset of M. A subset A of M

is closed relative to N if and only if A® is open relative to N.
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Proof. Note that if A, B are subsets of N, then A = B if and only if N n A® = N n B°,
where A’ denote the set M\A. Then for a subset A of M,

A is closed relative to N < A n N is closed in (N, d)
< An N =F n N for some closed set F' in (M, d)
s Nn(AnN)E=Nn(FnN) for some closed set F in (M, d)
< Nn A" = N n F* for some closed set F in (M, d)
< Nn A" = N AU for some open set U in (M, d)

which, by Proposition 3.71, implies that A" is open relative to V. O

Theorem 3.77. Let (M,d) be a metric space, and K =€ N < M. Then K is compact in
(M, d) if and only if K is compact in (N,d).

Proof. “=" Let {V,}aer be an open cover of K in (N, d). By Proposition 3.71 there exists
a collection of open sets {U,}aer in (M, d) such that V,, = U, n N for all a € I. Since
{Va}aer is an open cover of K in (N, d), {Ua}aer is a cover of K in (M, d); thus by the

compactness of K in (M, d), there exists aq,--- ,ay such that

N
Kc UU%'
j=1

N
Since K <€ N and V, = U, n N, we must have K < | Vo, which shows that there is
j=1

a finite subcover of K for the open cover {V,}aer. Therefore, K is compact in (N, d).

“<=" Let {Uy}aer be an open cover of K in (M,d). Define V,, = U, n N. Since K <
N, Proposition 3.71 implies that {V,}.cr is an open cover of K in (N,d); thus the

compactness of K in (N, d) implies that there exists oy, -+, ay such that

N
Kc UV%.
j=1

N
Since V, < U, forall ae I, K < | J U,, which shows that there is a finite subcover
j=1

of K for the open cover {U,}aer. Therefore, K is compact in (M, d). =

Alternative proof - sketch. Let {zx}; € K be a sequence. By sequential compactness of
K in either (M,d) or (N,d), there exists {zy,}52, and x € K such that x;,, — x as j — oo.
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As long as the metric d used in different space are identical, the concept of convergence of

a sequence are the same; thus (sequential) compactness in (M, d) or (N, d) are the same. o

Example 3.78. Let (M,d) be (R,|-]|), and N = Q. Then F' = [0, 1] n Q is not compact in
(Q, | - |) since F' is not complete. We can also apply Theorem 3.77 to see this: if FF < Q is
compact in (Q,|-|), then F is compact in (R, |- |) which is clearly not the case since F is

not even closed in (R, |- ).

Remark 3.79. Let (M,d) be a metric space. By Proposition 3.65 a subset A < M is
disconnected if and only if there exist two subsets Uy, Us of A, open relative to A, such that
A=U,uUyand Uy n Uy = I (one choice of (Uy,Us) is U; = A\A; and Uy = A\ A,, where
Ay and A, are given by Proposition 3.65). Note that U; and U, are also closed relative to
A.

Given the observation above, if A is a connected set and F is a subset of A such that E
is closed and open relative to A, then ' = ¢§ or E = A.

3.6 Exercises

In the exercise section of this chapter, we first introduce the concepts of accumulation points,

isolated points and derived set of a set as follows.
Definition 3.80. Let (M, d) be a normed vector space, and A be a subset of M.

1. A point z € M is called an accumulation point of A if there exists a sequence

{x,}2  in A\{z} such that {z,}_; converges to .

2. A point x € A is called an isolated point (% = B) (of A) if there exists no sequence

in A\{x} that converges to x.

3. The derived set of A is the collection of all accumulation points of A, and is denoted
by A’

§3.1 Limit Points and Interior Points of Sets
Problem 3.1. Let (M, d) be a metric space, and A be a subset of M.

1. Show that the collection of all isolated points of A is A\A'.
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2. Show that A’ = A\(A\A’). In other words, the derived set consists of all limit points
that are not isolated points. Also show that A\A’ = A\ A’

Problem 3.2. Let A and B be subsets of a metric space (M, d). Show that

L. cl(cl(A)) = cl(A).

2. cl(Au B) =cl(A) ucl(B).

3. cl(An B) < cl(A) ncl(B). Find examples of that cl(A n B) < cl(A) n cl(B).
Problem 3.3. Let A and B be subsets of a metric space (M, d). Show that

1. int(int(A)) = int(A).

2. int(A n B) = int(A) n int(B).

3. int(A v B) 2 int(A) u int(B). Find examples of that int(A u B) 2 int(A) U int(B).
Problem 3.4. Let (M, d) be a metric space, and A be a subset of M. Show that

0A = (Anc(M\A)) U (cl(A)\A).

Problem 3.5. Recall that in a metric space (M, d), a subset A is said to be dense in S if
subsets satisfy A € S < cl(A). For example, Q is dense in R.

1. Show that if A is dense in S and if S is dense in T', then A is dense in T
2. Show that if A is dense in S and B < S is open, then B < cl(A n B).
Problem 3.6. Let A and B be subsets of a metric space (M, d). Show that

1. 0(0A) < d(A). Find examples of that d(0A) < dA. Also show that 0(0A) = dA if A

is closed.

2. )(AuB)< dAudB < d(Au B)u Au B. Find examples of that equalities do not
hold.

3. If cl(A) ncl(B) = &, then 0(Au B) = 0A U dB.
4. 0(An B) < 0A v dB. Find examples of the equalities do not hold.

5. 0(0(0A)) = 0(0A).
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§3.2 Closed Sets and Open Sets

Problem 3.7. Let (M, d) be a metric space, and A be a subset of M. Show that A 2 A’
if and only if A is closed.

Problem 3.8. Show that the derived set of a set (in a metric space) is closed.

Problem 3.9. Let A < R”. Define the sequence of sets A as follows: A©® = A and
A1) — the derived set of A for m € N. Complete the following.

1.

d.

Prove that each A for m € N is a closed set; thus AN 2 A®) o ...

Show that if there exists some m € N such that A™ is a countable set, then A is

countable.
For any given m € N, is there a set A such that A" %« ¢&f but A™+D = &?
Let A be uncountable. Then each A is an uncountable set. Is it possible that

o0
N A™ = g7
m=1

Lot A = {% + %)m s k(k—1),m ke N}. Find AD, A® and A®.

Problem 3.10. Recall that a cluster point x of a sequence {x,}°_, satisfies that

Ve>0,#{neN|z, e B(z,e)} =o.

Show that the collection of cluster points of a sequence (in a metric space) is closed.

Problem 3.11. Determine whether the following sets are open or not.

*© 1 1

ngl[—2+ﬁ,2+ 5}.
nfjl[—z — %,2 — %} .
nﬁl[—2+i,2— %}.
fj [—2 — %,2 + %}
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Problem 3.12. Let (V,| - |) ba a normed vector space, and C' be a non-empty convex set
in V.

1. Show that C is convex.

2. Show that if € C and y € C, then (1 —A)z+ Ay e C for all A € (0,1). This result is

sometimes called the line segment principle.

3. Show that C' is convex (you may need the conclusion in 2 to prove this).

o

4. Show that cl(C') = cl(C).

5. Show that int(C') = int(C).

Hint: 2. Prove by contradiction.
3 and 4. Use the line segment principle.
5. Show that @ € int(C) can be written as (1 —\)y+ Az for some y € C and z € B(z, ) < C.

Problem 3.13. Let (V,| -||) be a normed vector space. Show that for all x € V and r > 0,
int(Blz,r]) = B(z, 7).
Is the identity above true in general metric space?

Problem 3.14. Let M,,,,, denote the collection of all n x n square real matrices, and

(Mascns || - ) be @ normed space with norm | - |, given in Problem ??. Show that the set
GL(n) = {A € My, | det(A) # 0}
is an open set in M,,,,. The set GL(n) is called the general linear group.

Problem 3.15. Show that every open set in R is the union of at most countable collection

of disjoint open intervals; that is, if U < R is open, then

U= J(ax, br),

kel

where Z is countable, and (ax, bx) N (ag, b)) = & if k # £.

Hint: For each point € U, define L, = {y € R|(y,z) < U} and R, = {y € R| (z,y) = U}.
Define I, = (infL,,sup R,). Show that I, = I, if (z,y) € U and if (z,y) € U then
Inly=
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Problem 3.16. Let (M,d) be a metric space. A set A < M is said to be perfect if
A = A’ (so that there is no isolated points). The Cantor set is constructed by the following

1

procedure: let Ey = [0,1]. Remove the segment (f%), and let E; be the union of the

3
intervals

0,51 1,1

Remove the middle thirds of these intervals, and let 5 be the union of the intervals

1 2 37 6 77 8
0,51 [5:5) 5 5] [5: 1)
Continuing in this way, we obtain a sequence of closed set E} such that
(a) E1 QEQQEQQ,

(b) E, is the union of 2" intervals, each of length 37",

0
The set C' = () E, is called the Cantor set.
n=1

1. Show that C is a perfect set.
2. Show that C' is uncountable.
3. Find int(C).

§3.3 Compactness

Problem 3.17. Let V be a vector fields over F, where F = R or C, and {e;, e, - - -

is a basis for V; that is, every & € V can be uniquely expressed as

i=1

Define ||z|» = (z ‘x(i)‘2>§.
=1

1. Show that | - |2 is a norm on V.

etV

2. Show that K is compact in (V, | - |2) if and only if K is closed and bounded.

Problem 3.18. Let (M, d) be a metric space.
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1. Show that a closed subset of a compact set is compact.

2. Show that the union of a finite number of sequentially compact subsets of M is com-

pact.

3. Show that the intersection of an arbitrary collection of sequentially compact subsets

of M is sequentially compact.

Problem 3.19. A metric space (M, d) is said to be separable if there is a countable subset

A which is dense in M. Show that every sequentially compact set is separable.

Hint: Consider the total boundedness using balls with radius % for n e N.
Problem 3.20. Given {a;}2; < R a bounded sequence, define

A= {x eR ‘ there exists a subsequence {akj };O_l such that lim ay, = :zc} .
- e

Show that A is a non-empty sequentially compact set in R. Furthermore , lim sup ay = sup A
k—0o0

and liminfa;, = inf A.
k—o0

Problem 3.21. Let (M, d) be a metric space.

1. Show that if M is complete and A is a totally bounded subset of M, then cl(A) is

sequentially compact.

2. Show that M is complete if and only if every totally bounded sequence has a convergent

subsequence.
Problem 3.22. Let d : R? x R? - R be defined by

1 —Y it zo = ys,
d(z,y) = o ! . where x = (x1,22) and y = (y1,2).
|21 — | + |22 — gl +1 if 2o # yo.

Problem ?? shows that d is a metric on R?. Consider the metric space (R?, d).
1. Find B(z,r) withr <1, r=1and r > 1.
2. Show that the set {c} x [a,b] = (R? d) is closed and bounded.

3. Examine whether the set {c} x [a,b] = (R?,d) is sequentially compact or not.
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Problem 3.23. Let {z;}; be a convergent sequence in a metric space, and zp — = as

k — oo. Show that the set A = {x,xq, - ,} U {} is sequentially compact.

Problem 3.24. 1. Show the so-called “ Finite Intersection Property”:

Let (M,d) be a metric space, and K be a subset of M. Then K is compact if
and if for any family of closed subsets {F,}.cr, we have

KmﬂFa;é@

ael

whenever K N ﬂ F, # & for all J < [ satistying #J < .

aed

2. Show the so-called “Nested Set Properpty”:

Let (M,d) be a metric space. If {K,}> | is a sequence of non-empty compact

sets in M such that K; 2 Kj;, for all j € N, then there exists at least one point
0
in [ K;; that is,
J=1 )
K #@.

Jj=1

Problem 3.25. Let (M, d) be a metric space, and M itself is a sequentially compact set.
o0

Show that if {F}}}° , is a sequence of closed sets such that int(Fy) = &, then M\ | J F), # .
k=1

o0
Problem 3.26. Let ¢2 be the collection of all sequences {z;};2, = R such that Y] |zx|> < oo.

k=1
In other words,
0
0* = {{zi}j2, | zr € R for all k € N, Z |zk|* < o0}
k=1
Define |- |2 : /2 — R by
0 1
[edil, = (3 )
k=1
1. Show that | - |2 is a norm on ¢2. The normed space (€2, ]| - ||) usually is denoted by ¢2.

2. Show that | - ||z is induced by an inner product.
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3. Show that (¢2| - |2) is complete.
4. Let A= {z e ||z, < 1}. Is A sequentially compact or not?

Problem 3.27. Let A, B be two non-empty subsets in R". Define
d(A,B) =inf{|z —y|2 |z € A,y € B}

to be the distance between A and B. When A = {x} is a point, we write d(A, B) as d(x, B)

(which is consistent with the one given in Proposition 3.6).
(1) Prove that d(A, B) = inf{d(z, B) |z € A}.
(2) Show that |d(zy, B) — d(z2, B)| < |#1 — 2|2 for all 21,2, € R™.

(3) Define B. = {z € R"|d(z, B) < €} be the collection of all points whose distance from
B is less than €. Show that B. is open and () B. = cl(B).

e>0

(4) If A is sequentially compact, show that there exists x € A such that d(A, B) = d(z, B).

(5) If Ais closed and B is sequentially compact, show that there exists z € A and y € B
such that d(A, B) = d(z,y).

(6) If A and B are both closed, does the conclusion of (5) hold?

Problem 3.28. Let K£(n) denote the collection of all non-empty sequentially compact sets
in R™. Define the Hausdorff distance of K, K5 € K(n) by

dH(Kl, K,) = max{ sup d(z, K1), sup d(z, Kg)} ,

IEKQ mEKl

in which d(x, K) is the distance between x and K given in Problem 3.27. Show that

(K(n),d™) is a metric space.

Problem 3.29. Let M = {(z,y) € R?|z* + y* < 1} with the standard metric | - |. Show
that A € M is sequentially compact if and only if A is closed.

Problem 3.30. 1. Let {zx};>; < R be a sequence in (R, | -|) that converges to = and let

o
Ap = {xy, 141, - }. Show that {z} = [ Ag. Is this true in any metric space?
k=1
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2. Suppose that {K;}72, is a sequence of comapct non-empty sets satisfying the nested
set property; that is, K; 2 K;11, and diam(K;) — 0 as j — oo, where
diam(K;) = sup {d(z,y) ‘ z,y € K;}.
e}
Show that there is exactly one point in [ Kj.
j=1
Problem 3.31. Let (M, d) be a metric space, and A be a subset of M satisfying that every
sequence in A has a convergent subsequence (with limit in M). Show that A is pre-compact.

Remark: Together with Remark 3.61, we conclude that a subset A is pre-compact if and

only if A has the property that “every sequence in A has a convergent subsequence”.
§3.4 Connectedness

Problem 3.32. Let (M, d) be a metric space, and A < M. Show that A is disconnected

(not connected) if and only if there exist non-empty closed set I} and F; such that
1.AﬂFlﬁF2:@; 2A0F17é®, ?)A(\FQ?E@, 4.A§F1UF2.

Problem 3.33. Prove that if A is connected in a metric space (M, d) and A € B € A, then

B is connected.

Problem 3.34. Let (M, d) be a metric space, and A € M be a subset. Suppose that A is

connected and contain more than one point. Show that A < A’.

Problem 3.35. Show that the Cantor set C' defined in Problem 3.16 is totally disconnected;
that is, if x,y € C', and x # y, then x € U and y € V' for some open sets U, V separate C'.

Problem 3.36. Let F) be a nest of connected compact sets (that is, Fy,1 S Fy and Fj

a0

is connected for all k£ € N). Show that [ Fj is connected. Give an example to show that
k=1

compactness is an essential condition and we cannot just assume that F}, is a nest of closed

connected sets.

Problem 3.37. Let {A}}2, be a family of connected subsets of M, and suppose that A
is a connected subset of M such that Ay " A # ¢ for all £ € N. Show that the union
( U Ak) u A is also connected.

keN

Problem 3.38. Let A, B < M and A is connected. Suppose that AnB # ¢ and An B® #
f. Show that A n 0B # .
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Problem 3.39. Let (M,d) be a metric space and A be a non-empty subset of M. A

maximal connected subset of A is called a connected component of A.
1. Let a € A. Show that there is a unique connected components of A containing a.

2. Show that any two distinct connected components of A are disjoint. Therefore, A is

the disjoint union of its connected components.
3. Show that every connected component of A is a closed subset of A.

4. If A is open, prove that every connected component of A is also open. Therefore,

when M = R", show that A has at most countable infinite connected components.

5. Find the connected components of the set of rational numbers or the set of irrational

numbers in R.

Problem 3.40 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.
1. Every open set in a metric space is a countable union of closed sets.
2. Let A < R be bounded from above, then sup A € A’.
3. An infinite union of distinct closed sets cannot be closed.

4. An interior point of a subset A of a metric space (M, d) is an accumulation point of
that set.

5. Let (M,d) be a metric space, and A < M. Then (A') = A'.
6. There exists a metric space in which some unbounded Cauchy sequence exists.
7. Every metric defined in R™ is induced from some “norm” in R".

8. There exists a non-zero dimensional normed vector space in which some compact non-

zero dimensional linear subspace exists.

9. There exists a set A < (0,1] which is compact in (0,1] (in the sense of subspace

topology), but A is not compact in R.
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10. Let A < R”™ be a non-empty set. Then a subset B of A is compact in A if and only if
B is closed and bounded in A.

Problem 3.41. Let (M, d) be a metric space, and A € M be a subset. Determine which

of the following statements are true.
1. intA = A\JA.
2. cl(A) = M\int(M\A).
3. int(cl(A)) = int(A).
4. cl(int(A)) = A.
5. d(cl(A)) = 0A.
6. If A is open, then 0A <€ M\ A.

7. If A is open, then A = cl(A)\0A. How about if A is not open?
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Continuous Maps

4.1 Continuity

Definition 4.1. Let (M, d) be a metric space, and A be a subset of M.
1. A point x € M is called an accumulation point of A if there exists a sequence
{x,}2; in A\{z} such that {z,}*_; converges to .
2. The derived set of A is the collection of all accumulation points of A, and is denoted
by A’
Remark 4.2. 1. A point z € A" if and only if (Ve > 0)(B(z,¢) n (A\{z}) # &). Therefore,
x ¢ A if and only if (3¢ > 0)(B(z,¢) n A < {z}).
2. A point z € M is an accumulation point z of A if and only if
(Ve >0)(#{ye M|ye B(z,e) n A} = ).
Therefore, accumulation points of a set can be viewed as a generalization of cluster
points of a sequence.
3. A subset A of M is closed if and only if A 2 A’. In fact, A=A U A"
4. The derived set A" of a subset A of M is closed.
5. A point x € A\A’ satisfies that there exists ¢ > 0 such that B(z,¢) n A = {z}. Such

kind of points are called isolated points of A.

Definition 4.3. Let (M, d) and (N, p) be metric spaces, A be a subset of M, and f: A —> N
be a map. For a given ¢ € A’, we say that the limit of f at ¢ exists if for every sequence
{zi}, < A\{c} converging to ¢, the sequence {f(xk)}zo:l converges (#7F T &K B¢ B

B3 Hc RyeacP| ¢ e 0 B Sl et X chil TR

92
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Similar to Proposition 2.42, the limit of f at xg, if it exists, is unique.

Proposition 4.4. Let (M,d) and (N,p) be metric spaces, A be a subset of M, ¢ € A,
and f : A — N be a map. If the limit of f at ¢ exists, then the limit is unique in the
sense that if {x,}> 2 and {y,}°, are sequences in A\{c} and lim z, = 1

n—0o0 n

lim f(z,) = lim £(3,).

im vy, = ¢, then
—00

Proof. Let {x,}>_; and {y,}>_; be sequences in A\{c} so that lim z,, = lim y, = ¢. Then
n—o0 n—0o0

lim f(z,) =a and lim f(y,) = b both exist. Define a new sequence
n—a0 n—o0

{ Tne if nis odd,
J— 2
Zn =

yz it nis even,

or {z,}2, = {x1,y1,22,Y2, -+ }. Then z, — ¢ as n — oo; thus lim f(z,) exists. Since
n—o0

{f(a:n)}le and {f(yn)}:):l are both subsequences of {f(zn)}le, by Proposition 2.56 we

conclude that a = . =

Notation: When the limit of f at ¢ exists, we use lim f(z) to denote the common limit of

r—C

klim fzg) if {xp}72, A\{c} converges to c.
—00

Proposition 4.5. Let (M,d) and (N, p) be metric spaces, A be a subset of M, ce A’, and
f:A— N be a map. Then lim f(z) = b if and only if

(Ve>0)30>0)(0<d(z,c) <6 andxze A= p(f(z),b) <e).

Proof. “=" Assume the contrary that there exists € > 0 such that for all 6 > 0, there exists
Xs € A with
0 <d(zs,c) <d and p(f(zs),b) = €.

In particular, for each k € N, we can find 5 € A\{c} such that
1
0 <d(xg,c) < z and  p(f(zx),b) = €.
Then z;, — c as k — o but f(xy) » b as k — o0, a contradiction.

“<” Let {z}, < A\{c} be such that z; — c as k — o, and € > 0 be given. By

assumption,

36> 03p(f(x),b) <e whenever 0 <d(z,c)<dandze A.
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Since zp — c as k — o0, there exists N > 0 such that d(zg,c) < d if K = N. Therefore,
p(f(zg),b) <e Vk=N
which implies that klim f(zg) = 0. o
—00

Remark 4.6. The positive number ¢ in the proposition above usually depends on ¢, as well

as the point ¢. Therefore, we also write § = 0(c, ) to emphasize the dependence of ¢ and ¢.

Remark 4.7. Let (M,d) = (N,p) = (R,|-|), A = (a,b), and f : A — N. We write

lim+ f(z) and hril— f(z) for the limit lim f(z) and lirrll7 f(x), respectively, if the later exist.

Definition 4.8. Let (M, d) and (N, p) be metric spaces, A be a subset of M, and f: A — N

be a map. For a given ¢ € A, f is said to be continuous at c if either c € A\A’ or lim f(z) =
r—C

f(c).

Proposition 4.9. Let (M,d) and (N, p) be metric spaces, A be a subset of M, c € A and

f:A— N be a map. Then the following three statements are equivalent.
1. f is continuous at c.
2. For every convergent sequence {x,}*_; < A with limit c, nll_{rolo (xn) = f(c).
3. For each € > 0, there exists § = 0(c,e) > 0 such that
p(f(z), f(c)) <e whenever xe€ By(c,d)nA.
In logical notation,
(Ve >0)(3d > 0)(z € Buyl(c,0) n A= f(z) € Bn(f(c),e)),
where By(+, ) and By (-, -) denote balls in (M,d) and (N, p), respectively.
Proof. “1 = 3" Note that A= (An A") u (A\A).
Case 1: If ce An A’, then f is continuous at ¢ if and only if

Ve> 0,30 =d(c,e) > 03 p(f(x), f(c)) <e whenever z € By(e,d) n A\{c}.

Since p(f(c), f(c)) = 0 < g, we find that the statement above is equivalent to
that

Ve>0,30 =6(c,e) > 03 p(f(x), f(c)) <e whenever xe€ By(c,d)nA.
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Case 2: Let ¢ € A\A’. Then there exists 6 > 0 such that By (c,d) n A = {c}.

Therefore,

x € By(c,0) n A= p(f(x), f(c)) <e
no matter what € > 0 is given.
“3 = 27 The proof of this direction is almost identical as the proof of the direction “<” of

Proposition 4.5. Let {zx}72; < A\ be such that z;, — c as k — o0, and £ > 0 be given.

By assumption,
36 >03p(f(x),b) <e whenever d(x,c)<dandxzeA.
Since xy — c as k — o0, there exists N > 0 such that d(zy,c) < § if k = N. Therefore,
p(f(xg),b) <e Yk=N
which implies that leH(}o flzr) = f(c).

“2=171If ce A\A’, f is continuous at ¢; thus it suffices to show that f is continuous at ¢
(or equivalently, lim f(z) = f(c)) for ce A n A’ when 2 is true.
Let {zx}2, < A\{c} be a sequence with limit ¢. By assumption, klim flxy) = f(o);
—00
thus we establish that for every convergent sequence {z;}7; < A\{c} with limit ¢,

the sequence {f(zy)}r, converges to f(c); thus lim f(z) = f(c). o

Remark 4.10. We remark here that Proposition 4.9 implies that f is continuous at c € A

if and only if
Ve>0,90 >053 f(B(c,0) n A) < B(f(c),e).

Example 4.11. Let X = %([a, b];R), the collection of all real-valued continuous functions
defined on [a,b], and || - | x be the norm given by | f|x = m[a%} | f(z)|- Note that (X, || -|x)
z€la,

is a normed vector space (Example 2.21). Define I : X — R by

1(f) = j @) de

In the following we show that I is continuous at any points on X. Let f € X and ¢ > 0

€
. Then 0 < ¢ < € and if g € X satisfies
20— a) 21 flx +g)} g

be given. Choose § = min {5,
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|f — gllx <, we must have

(b a)[217x + 17— glx]1f — glx < (b — ) (20 f1x + )3
£
<=0l +e) gy — 5 <o

Therefore, if g € X and ||g — f||x <,

b b
o)~ 10| = | No@P = @] do] < [ lo(o) = F@)ata) + fo)] do

< (b =a)(Iflx + lglx)If = glx < 0= a)2If|x + 1 — glx)|f — glx <e:

thus I is continuous on X.

Definition 4.12. Let (M, d) and (N, p) be metric spaces, and A be a subset of M. A map

f:+A— N is said to be continuous on the set B € A if f is continuous at each point of B.

Remark 4.13. The Dirichlet function f : [0,1] — R defined by

(0 ifze(0,1]nQ,
f(x>_{1 ifzef0,1] N Q.

is not continuous at any point of [0, 1]; however, the restriction of f to B = [0,1] n Q (or
B = [0,1] n Q"), denoted by f|p, is continuous on B. Therefore, f is continuous on B is

different from that f[p is continuous on B.

Theorem 4.14. Let (M,d) and (N, p) be metric spaces, A< M, and f: A — N be a map.

Then the following assertions are equivalent:
1. f is continuous on A.

2. For each open set V. N, f~1(V) < A is open relative to A; that is, 72 (V) =Un A

for some U open in M.

3. For each closed set E = N, f~Y(E) < A is closed relative to A; that is, f~Y(E) = FnA

for some F closed in M.

Proof. Tt should be clear that 2 <> 3 (left as an exercise); thus we show that 1 < 2. Before
proceeding, we recall that B < f~'(f(B)) for all B< A and f(f~(B)) < B for all B< N.
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“l = 2" Let ae f~1(V). Then f(a) € V. Since V is open in (N, p), there exists (4 > 0
such that By(f(a),e¢@)) S V. By continuity of f (and Remark 4.10), there exists
0q > 0 such that

f(Bu(a,6.) 0 A) < By(f(a), e5w) -
Therefore, by Proposition 0.11, for each a € f~1(V), there exists d, > 0 such that
By(a,6,) n A< fH(f(Bu(a,6.) 0 A)) = fH(Bn(f(a),e40)) = fH (V). (4.1.1)
Let U= |J Bul(a,d,). Then U is open (since it is the union of arbitrarily many
agf~1(V)

open balls), and

(a) U 2 f~YV) since U contains every center of balls whose union forms U;

(b) UnAc f~4(V) by (4.1.1).
Therefore, U n A = f~1(V).

“2= 1" Let a € A and ¢ > 0 be given. Define V= By(f(a),e). By assumption there
exists an open set U in (M, d) such that f~'(V)=Un A. Since a € f~1(V), a € U;
thus by the openness of U, there exists 6 > 0 such that Bys(a,0) < U. Therefore, by

Proposition 0.11 we have

f(Bu(a,8) n A) < f(UnA) = f(f7(V)) €V = Bx(f(a),e)

which implies that f is continuous at a. Therefore, f is continuous at a for all a € A;

thus f is continuous on A. =

Example 4.15. Let f : R" — R™ be continuous. Then {z € R"| | f(z)[> < 1} is open since
{zeR"||f(z)]2 <1} = f1(B(0,1)).
Example 4.16. Let f : M,,, — R be defined by f(A) = det(A). Then the set
GL(n) = {A € My, | det(A) # 0}

is open in (My,xn, | - [|p,q) for all 1 < p, ¢ < oo (if one can show that the determinant function

is continuous).
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Remark 4.17. For a function f of two variables or more, it is important to distinguish the
continuity of f and the continuity in each variable (by holding all other variables fixed). For

example, let f : R?> — R be defined by
1 if either z =0 or y =0,
0 ifz+#0andy#D0.

f(x,y)z{

Observe that f(0,0) = 1, but f is not continuous at (0,0). In fact, for any 6 > 0, f(z,y) =0
for infinitely many values of (z,y) € B((0,0),9); that is, |f(x,y) — f(0,0)] = 1 for such
values. However if we consider the function g(z) = f(z,0) = 1 or the function h(y) =

f(0,y) = 1, then g, h are continuous. Note also that ( l)m% )f(:c,y) does not exists but
z,y)—(0,0
lim(lim f(x,y)) = ling)O = 0.

z—0 y—0

4.2 Operations on Continuous Maps

Definition 4.18. Let (M, d) be a metric space, (V, | -|) be a normed vector space over field
F, A be a subset of M, and f,g : A — V be maps, h : A — F be a function. The maps
f+g, f—gand hf, mapping from A to V, are defined by

(f+9)(x)=f(z) +g(r) VreA,
(f—9)(x) = f(x) —g(xr) VzeA,
(hf)(z) = h(z)f() VreA.

The map % . A\{z € A|h(z) = 0} — V is defined by

(%)(z):% Ve A\{re Alh(z) =0}.

Proposition 4.19. Let (M,d) be a metric space, (V,| - |) be a normed vector space over

field F (F =R or C), A be a subset of M, and f,g: A — V be maps, h : A — F be a

function. Suppose that zo € A’, and lim f(x) =a, lim g(x) =b, lim h(x) =c. Then
T—T( T—T0

T—T0

mli_)rgg(f +g)(x)=a+0,
lim (f —g)(x) =a—b,
lim (hf)(x) = ca.
lm () =% Fes0
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Corollary 4.20. Let (M,d) be a metric space, (V,||-||) be a normed vector space over field
F (F=R orC), A be a subset of M, and f,g: A —V be maps, h : A — F be a function.
Suppose that f,g,h are continuous at vo € A. Then the maps f + g, f — g and hf are

continuous at To, and % is continuous at xo if h(xg) # 0.

Corollary 4.21. Let (M,d) be a metric space, (V,||-||) be a normed vector space over field
F(F=RorC), Ac M, and f,g: A —V be continuous maps, h : A — F be a continuous

function. Then the maps f+ g, f — g and hf are continuous on A, and S is continuous on

h
A\{z € A|h(z) = 0}.

Definition 4.22. Let (M,d), (N, p) and (P, ) be metric spaces, A be a subset of M, B be
a subset of N, and f: A — N, g: B — P be maps such that f(A) € B. The composite
function go f : A — P is the map defined by

Figure 4.1: The composition of functions

Theorem 4.23. Let (M,d), (N,p) and (P,§) be metric spaces, A be a subset of M, B be
a subset of N, and f : A — N, g : B — P be maps such that f(A) < B. Suppose that
ae An A and lim f(x) = b, and g is continuous at b. Then lim(go f)(x) = g(b).

r—a

Proof. Let {z,}°, < A\{a} be a convergent sequence with limit a. Then {f(x,};_, is a
convergent sequence with limit b; thus the continuity of g at b implies that { g(f (xn))}oo

n=1

converges to g(b). o

Corollary 4.24. Let (M,d), (N, p) and (P,0) be metric spaces, A be a subset of M, B be
a subset of N, and f : A — N, g: B — P be maps such that f(A) < B.
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L. If f is continuous at a and g is continuous at f(a), then go f : A — P is continuous

at a.

2. If f is continuous on A and g is continuous on B, then go f : A — P is continuous

on A.

Alternative Proof of 2 in Corollary 4.24. Let W be an open set in (P, r). By Theorem 4.14,
there exists V open in (N, p) such that ¢7'(W) = V n B. Since V is open in (N, p), by
Theorem 4.14 again there exists U open in (M, d) such that f~*(V) =U n A. Then

(Go )M =f g W) =f"(VnB)=fV)nf(B)=UnAnf(B),
while the fact that f(A) < B further implies that
(go /) OV) U A.

Therefore, by Theorem 4.14 we find that (g o f) is continuous on A. o

4.3 Images under Continuous Maps

4.3.1 Image of compact sets

Theorem 4.25. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f : A — N

be a continuous map.
1. If K < A is compact, then f(K) is compact in (N, p).

2. Moreover, if (N, p) = (R,|-|), then there exist xo,x1 € K such that
f(zo) =inf f(K) =inf{f(z) |z € K} and f(z1)=sup f(K)=sup{f(z)|ze K}.

Proof. 1. Let {y,}°; be a sequence in f(K). Then there exists {z,}, € K such that
yn = f(z,). Since K is sequentially compact, there exists a convergent subsequence

{zn, 72, with limit z € K. Let y = f(z) € f(K). By the continuity of f,

Lim p(yn,,y) = lim p(f(zn,), f(z)) =0

which implies that the sequence {y,, }7~; converges to y € f(K). Therefore, f(K) is

sequentially compact.
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2. By 1, f(K) is sequentially compact. Corollary 3.45 then implies that inf f(K') € f(K)
and sup f(K) € f(K). o

Alternative Proof of Part 1. Let {V,}aer be an open cover of f(K). Since V, is open, by
Theorem 4.14 there exists U, open in (M,d) such that f~'(V,) = U, n A. Since f(K) <

U Ve,

ael

Kcf(f)c|Jr'va)=4nJUa

ael a€el

which implies that {U,}aer is an open cover of K. Therefore,

ISl #]<wsKcSAn | Us={]F ' (Va);

aeJ aed

thus f(K) < | F(f7 (V) € U Va. o

aeJ aed

Corollary 4.26 (Extreme Value Theorem). Let f : [a,b] — R be continuous. Then f
attains its maximum and minimum in [a,b]; that is, there are xq € |a,b] and x; € [a,b] such
that

f(xo) =inf{f(z)|z€la,b]} and f(z1)=sup{f(z)|zea,b]}. (4.3.1)

Proof. The Heine-Borel Theorem shows that [a, b] is a compact set in R; thus Theorem 4.25
implies that f([a,b]) must be compact in R. By Corollary 3.45,

inf f([a,0) € f({a,b]) and sup f([a,b]) € £([a,B)
that further imply (4.3.1). o

Remark 4.27. If f attains its maximum (or minimum) on a set B, we use max { f(z) |z €
B} (or min {f(xz)|x € B}) to denote sup { f(z) | € B} (or inf{f(z) |z € B}). Therefore,

(4.3.1) can be rewritten as

f(zo) =min{f(z)|z e [a,b]} and f(z1)=max{f(z)|ze€[a,b]}.

Remark 4.28. Let f : R — R be defined by f(z) = 0. Then f is continuous. Note that
{0} = R is compact, but f~'({0}) = R is not compact. In other words, the pre-image of a

compact set under a continuous map might not be compact.
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Example 4.29. Recall that two norms |-|| and || - || on a vector space V are called equivalent

if there are positive constants ¢ and C' such that
clz| < ||zl < Clel  VzeV.

We note that equivalent norms on a vector space V induce the same topology; that is, if | - |
and || - || are equivalent norms on V, then U is open in the normed space (V,| - |) if and
only if U is open in the normed space (V, || - ||). In fact, let U be an open set in (V, || - |).

Then for any x € U, there exists » > 0 such that
Bi(z,r)={yeV||z—y| <r}cU,

here we use the norm in the subscript to indicate that the distance in this ball is measured
by this norm. As in the proof of Theorem 2.39, the ball By.(z,cr) € By.(x,r). Therefore,
Uisopenin (V,||-||). Similarly, if U is open in (V, || - ||), then the inequality ||z]| < Ca|z|
implies that U is open in (V, | - |).

In fact, for a vector space V with two equivalent norms || - | and || - ||, we have

1. {zg}y, converges in (V.| - |) if and only if {x}}2; converges in (V.|| - |[|)-

2. F is (totally) bounded in (V,| - |) if and only if F' is a (totally) bounded subset in
V- 1ID-

3. Fisclosed in (V,|| - |) if and only if F' is closed in (V, || - ||)-
4. Uis open in (V, | - ) if and only if U is open in (V, || - [|).

) if and only if K is compact in (V.|| - [|).

5. K is compact in (V, | - |

In the following, we prove the following

Claim: Any two norms on a finite dimensional vector space V over field R (or C) are
equivalent.

Proof of claim: Let {ej,es,--- ,e,} be a basis of V. Then each & € V can be uniquely

expressed as ¢ = Y. 2(Ve; for some 2V € F, where F = R or C. Define the norm
i=1

n

e = 4 [ D 12

=1
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as given in Example 2.28. It suffices to show that any norm | - | on V is equivalent to || - [|z.
In fact, if Cyflz| < |zl < Co|z| and Cs||z|| < ||z < Cyl|z|| for all € V, then
Ch Csy
ol <llll < Z )=l Vaev.
Before proceeding, we first recall that a subset K is (sequentially) compact in (V, | - |2)

if and only if K is closed and bounded (see Remark 3.43). By the triangle inequality and
the Cauchy-Schwarz inequality,

l2] < D |2 Vleill < |22 D leil*; (4.32)
=1 i=1
thus letting C'= 4 | Y] |e;]? we have ||z|| < C|z.
i=1

On the other hand, define f : ¥V — R by

= |2 = | Yo e,
=1

Because of (4.3.2), f is continuous on (V,|| - |2). In fact, for x,y € V,

[f(x) = f(y)| = |lz] = llyl] < lz—yl <Clz—yl.

which guarantees the continuity of f on (V, |- [2). Let K = {z € V||z|, = 1}. Then K
is sequentially compact in (V,| - |2) since K is closed and bounded in (V,|| - |2); thus by

Theorem 4.25 f attains its minimum on K at some point a € K. Moreover, f(a) > 0 (since

if f(a) =0, a=0¢ K). Then for all z e V\{0}, T2l H € K; thus

() = @ Yzeno}.

|2]l2
The inequality above further implies that f(a)| |2 < f(z) = || for all € V; thus letting

c = f(a) we have c|z|, < |z|.

Having established that every two norms on a finite dimensional vector space over R (or
C), for a finite dimensional normed vector space (V, |- |) over R (or C) we have the following

results:

1. A subset K of V is compact if and only if K is closed and bounded (because of Remark
3.43).
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2. Every bounded sequence in (V, |-||) has a convergent subsequence (for a given bounded
sequence, consider the bounded and closed ball B[0, R] for R » 1 and make use of the
sequentially compactness of B[0, R]).

3. (V,| -|) is a Banach space; that is, (V,| - |) is complete (every Cauchy sequence is
bounded; thus possessing a convergent subsequence so that the convergence of the

Cauchy sequence is guaranteed by Proposition 2.58).

Example 4.30. The determinant function f : M,, — R defined by f(A) = det(A) is
continuous on (M, | - ||) for any norm | - | (thus the set GL(n) defined in Example 4.16

is open). To see this, we note that M,,,, is finite dimensional vector space over R; thus the

norm || - || is equivalent to the norm
Iaglll = > lail.
inj=1
Clearly f is continuous on (M, xpn, || - [|) since f(A) is the sum of product of entries of A

and [|B — A|| — 0 if and only if b;; — a;; for all 1 < 7,7 < n. Since ||B — Al| — 0 if and

only if ||[B — A| — 0, we conclude that f is continuous on (M,,sxp, || - |)-

Corollary 4.31. Let (M, d) be a metric space, K be a compact subset of M, and f : K — R

be continuous. Then the set
{re K ‘ f(z) is the mazimum of f on K}

1S a non-empty compact set.

Proof. Note that f(K) is compact in (R, |- |); hence f(K) is closed and bounded so that
M = sup f(K) exists and M € f(K). Then the set defined above is f~'({M}). Moreover,

1. f~'({M}) is non-empty by Theorem 4.25;

2. f71({M}) is a subset of K; thus By Proposition 3.51 implies that f~*({M}) is totally
bounded;

3. By Theorem 4.14, f~1({M}) is closed since {M} is a closed set in (R, |-|); thus Theorem
3.27 implies that f~!({M}) is complete.

Therefore, Theorem 3.53 shows that f~1({M}) is compact. =
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4.3.2 Image of connected sets

Theorem 4.32. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f : A — N
be a continuous map. If C < A is connected, then f(C') is connected in (N, p).

Proof. Suppose that there are two open sets V; and V5 in (N, p) such that
(a) f(C)nVinVa=g; (b) f(C)nVi#T; (¢) f(C)nVa# T (d) f(C) S ViuVa

By Theorem 4.14, there are U; and U, open in (M,d) such that f~*(V}) = U; n A and
[7Y(Va) =U, n A. By (d),

Ccfl(feNnc ' v)uftVa)=UvlU)nAcU LUUs.
Moreover, by (a) we find that

CrnlUinUy=Cn(UinA)nUynA)=CnfrV)n (W)
cfHfC)nVinVy) =g

which implies C n Uy n Uy = . Finally, (b) implies that for some =z € C, f(x) € Vi.
Therefore, z € f~1(V}) = U; n A which shows that x € Uy; thus C n U; # . Similarly,

C n Uy # . Therefore, C' is disconnected which is a contradiction. o

Corollary 4.33 (Intermediate Value Theorem). Let f : [a,b] — R be continuous. If
fla) # f(b), then for all d in between f(a) and f(b), there exists ¢ € (a,b) such that
fle) =d.

Proof. The closed interval [a, b] is connected by Theorem 3.68, so Theorem 4.32 implies that
f(Ja, b]) must be connected in R. By Theorem 3.68 again, if d is in between f(a) and f(b),
then d belongs to f([a,b]). Therefore, for some ¢ € (a,b) we have f(c) = d. o

Remark 4.34. Let f: R — R be defined by f(x) = 2. Then f is continuous. Note that
C = {1} is connected, but f~1(C) = {1, —1} is not connected. In other words, the pre-image

of a connected set under a continuous map might not be connected.

Example 4.35. Let f : [0, 1] — [0, 1] be continuous. Then there exists g € [0, 1] such that
f([[‘o) = Xy.

Proof. Let g(z) =z — f(x).
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Case 1: g(0) =0 or g(1) = 0. Then zy = 0 or zy = 1 satisfies f(xy) = xo.

Case 2: ¢g(0) # 0 and g(1) # 0. Then ¢(0) < 0 and g(1) > 0; thus by the continuity of
g :[0,1] = R, there exists xy € [0, 1] such that g(z¢) = 0 which implies the existence

of zg € (0, 1) satisfying f(x¢) = zo. o

Remark 4.36. Such an zy in Example 4.35 is called a fized-point of f.

4.4 Uniform Continuity (#2232 %)

Definition 4.37. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f :
A — N be a map. For aset B < A, f is said to be uniformly continuous on B if for
any two sequences {z,}r_ |, {yn}’; S B with the property that 7}2130 d(xn,yn) = 0, one has
7}1_{{}10 p(f(zn), f(yn)) = 0. In logic notation, f is uniformly continuous on B if

(V{zntns, {yn}izy < B) (nlgrolo (20, yn) = 0= lim p(f (), [(yn)) = o) _

n—o0

Proposition 4.38. Let (M,d) and (N,p) be metric spaces, A be a subset of M, and

f:A— N be amap. If f is uniformly continuous on A, then f is continuous on A.

Proof. Let a e An A, and {zx};2, € A be a sequence such that z;, — a as k — o0. Let
{yr}; be a constant sequence with value a; that is, yx = a for all k € N. Then {y,}72, < A
and d(zy,yx) — 0 as k — oo. By the uniform continuity of f on A,

k—0o0 k—o0

which implies that f is continuous on a. =

Example 4.39. Let f :[0,1] — R be the Dirichlet function; that is,

(0 itzeQ,
f@)_{l it 7 € Q.

and B =Q n[0,1]. Then f is continuous nowhere in [0, 1], but f is uniformly continuous
on B. However, the proposition above guarantees that if f is uniformly continuous on [0, 1],
then f must be continuous on [0, 1] (Check why the proof of Proposition 4.38 does not go
through if B is a proper subset of [0, 1]).
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Example 4.40. The function f(z) = |z| is uniformly continuous on R. In fact, by the
triangle inequality,

[f(x) = FW)] = [lo] = lyl| < |z —yl;
thus if {z,}, and {y,},~, are sequences in R and nll_{rolo |z, — yn| = 0, by the Sandwich

lemma we must have lim |f(z,) — f(ya)| = 0.
n—0o

Example 4.41. The function f : (0,00) — R defined by f(z) = 1 is uniformly continuous
x

on [a,0) for all a > 0. To see this, let {z,,}°_; and {y,}r_, be sequences in [a, ) such that

lim |z, —yn| = 0. Then

n—ao0

1

— |$n_yn| < ‘xn _yn|
TIn Yn

< 5 —0 as n— o
| T Yn] a

| (@n) = fyn)| =

which implies that f is uniformly continuous on [a, ) if a > 0.

. . . 1 1
However, f is not uniformly continuous on (0,c0). Let x,, = — and y,, = o Then
n n

]xn—yn]:%—»O as n— oo but |[f(x,) — fly.)|=n=>1.

Example 4.42. Let f : R — R defined by f(z) = 2% Then f is continuous in R but not

. . 1
uniformly continuous on R. Let x, = n and y, =n + o Then
n

1 1
— 2 —
|f(zn) = flyn)| = ‘n—(n—i—Qn ‘—‘n —n—1—4—n2‘ 1—1—4—712990 as n — .
Example 4.43. The function f(z) = sin(z?) is not uniform continuous on R. Define

Ty = 204/ + \8/% and y, = 2n,/T — \8/% Then lim |z, — y,| = 0 while
n n n—00

— Qi 2 T
) SlIl( 5 6

| sin(z}) — sin(y2)| = | sin (

7T T T
2 64n? 64n2 ’

thus lim |sin(z2) — sin(y2)| = 1 # 0.

n—0o0

Example 4.44. The function f : (0,1) — R defined by f(x) = sin 2 is not uniformly
X
continuous on (0, 1).
T -1 Ty —1
Let z,, = (2n7r + 5) and y, = (2n7r — 5) . Then

=2,

) 1 o1
Sl — — S1In —
Tn Yn

while |z, — = = — (0 asn — .
’ n yn‘ An2r2 — %2 (477,2 _ %)TF
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Theorem 4.45. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f : A — N

be a map. For a set B < A, f is uniformly continuous on B if and only if
Ve>0,36 >03p(f(z), fly)) <e whenever d(z,y) <0 and z,y€ B.

Proof. “<" Let {z,}2_ 1, {yn}r_, be sequences in B such that lim d(z,,y,) =0, and ¢ > 0

n=1»
n—0oo

be given. By assumption, there exists 6 > 0 such that
p(f(z),f(y)) <& whenever d(z,y)<dandz,ye B.

Since lim d(xp,y,) = 0, there exists N > 0 such that

n—0o0

d(xp,yn) <6 whenever n = N;

thus
p(f(zn), f(yn)) <& whenever n > N.

1
“=" Suppose the contrary that there exists ¢ > 0 such that for all § = - > (), there exist

two points x,, and y, € B such that

d(@p, Yn) < % but p(f(In), f(yn>) ZE.

These points form two sequences {x,}° ;, {yn}>; in B such that 7}1_{130 d(xn,yn) = 0,

while the limit of p(f(xn), f(yn)), if exists, does not converges to zero as n — 0. As

a consequence, f is not uniformly continuous on B, a contradiction. =

Remark 4.46. The theorem above provides another way (the blue color part) of defining
the uniform continuity of a function over a subset of its domain. Moreover, according to

this alternative definition, f : A — N is uniformly continuous on B < A if
(Ve > 0)36 > 0)(diam(f (Bu (b, 5) 0 B)) < =)
M\Y, 9 )

that is, the diameter of the image, under f, of subsets of B whose diameter is not greater
than ¢ is not greater than e (&= B ® 3 J& 74 4216 0 v+ G &4 Sl f P2 218 > ¥
Je3d ¥ hE S € A7 ¢ ) . The statement above is the same as

(Ve>0)35>0)(Vbe M)(3ce M)(f(BM(b,g) nB) < BN(c,g)> .
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Remark 4.47. For a given function f, let §(f,c,e) denote the supremum of all §(c,¢)
mentioned in Remark 4.6. Then the uniform continuity of a function f : A — N is equivalent

to that
6f(5)zin£6(f,c,€)>0 Ve>0.

Remark 4.48. Let (M, d) and (NN, p) be metric spaces, A be a subset of M, and f: A —> N

be a map. For a set B < A, the following four statements are equivalent:

(1) f is not uniformly continuous on B.

(2) 3 {xn}aomozla {yn}le S B> T}l_{ralo d<mm yn) = 0 and lim sup P(f(ajn)a f(?h)) > 0.

n—00

(4) 3e >03VYn>0,32,,y, € B and d(x,,y,) < % 5 p(f(2n), fyn)) =&

Theorem 4.49. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f : A — N
be a map. If K is a compact subset of A and f is continuous on K, then f is uniformly

continuous on K.

Proof. Assume the contrary that f is not uniformly continuous on K. Then ((3) of Remark

1.48 implies that) there are sequences {x,}>; and {y,}>; in K such that

lim d(z,,y,) =0 but gl_r)lgop(f(xn),f(yn)) >0.

n—0o0
Since K is (sequentially) compact, there exist convergent subsequences {z,, };>, and {y,, }7-,
with limits z,y € K. On the other hand, lim d(x,,y,) = 0, we must have z = y; thus by
n—00
the continuity of f (on K),

0=p(f(2), f(x)) = lim p(f(xn,), f(yn,)) = lim p(f(zn), f(ya)) >0,
a contradiction. o

Alternative proof. Let ¢ > 0 be given. Since f is continuous on K,

Vae K, 35 =6(a) > 03 p(f(x), f(a)) < % whenever = € B(a,0) n A.
Then {B (a, 6(;)) }aEK is an open cover of K; thus the compactness of K implies that

N
I{ay, - ,aN}gKaKQUB(ai,%),
=1
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where 0; = 0(a;). Let § = %min{él, -+ ,0n}. Thend > 0, and if 21, 29 € K and d(x1, 25) < 9,

there must be j = 1,---, N such that z1,2, € B(a;,d;). In fact, since 2, € B(aj, %J) for
some j =1,---, N, then
9;

d(xQ,aj) < d(.’ll'l,l’g) + d(l’l,CL]’) <o+ 5 < 6]' .
Therefore, 1,25 € B(a;,0;) n A for some j =1,---, N; thus
e €
p(f(xr), fwa)) < p(f(x1), flay)) + p(f(@2), flaj)) < 5+ 5 =¢. o

2 2
Lemma 4.50. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f: A— N

be uniformly continuous. If {xy}i, S A is a Cauchy sequence, so is {f(xk)}zozl.

Proof. Let {x}7°, be a Cauchy sequence in (M, d), and € > 0 be given. Since f: A - N

is uniformly continuous,
30 >05p(f(z),f(y)) <e whenever d(z,y)<dandz,ycA.

For this particular d, there exists N > 0 such that d(xg,x,) < 6 whenever k,¢ > N.

Therefore,

p(f(zy), f(ze)) <e whenever k,{>N. o

Corollary 4.51. Let (M,d) and (N, p) be metric spaces, A be a subset of M, and f : A — N
be uniformly continuous. If N is complete, then f has a unique extension to a continuous
function on A; that is, there exists g : A — N such that

(1) g is uniformly continuous on A;

(2) g(x) = f(z) for allz € A;

(3) if h: A — N is a continuous map satisfying h(x) = f(z) for all x € A, then h = g.
Proof. Let x € A\A. Then there exists {7;}?°, < A such that ¥, — x as k — 0. Since
{z}, is Cauchy, by Lemma 4.50 {f(:ck)}zozl is a Cauchy sequence in (N, p); thus is
convergent. Moreover, if {z;}72; € A is another sequence converging to x, we must have
d(xy, zx) — 0 as k — oo thus p(f (), f(z)) — 0 as k — o0, so the limit of {f(z)},_, and
{f(zk)}zozl must be the same.

Define g : A — N by
f(z) ifreA,
g(x) =

klim f(zy) ifze A\A, and {z;}?, € A converging to = as k — 0.
—0
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Then the argument above shows that ¢ is well-defined, and (2) holds.

Let € > 0 be given. Since f : A — N is uniformly continuous,

30 > 03 p(f(z), f(y) < % whenever d(z,y) < 2§ and z,y € A.

Suppose that x,y € A such that d(z,y) < 6. Let {m}7,, {yx}, € A be sequences

converging to x and y, respectively. Then there exists N > 0 such that

) 1) € €
d(wp, @) < 5, d(e,y) < 5 and p(f(2e),9(@) < 3, p(fn),9(y) <5 V=N,
In particular, due to the triangle inequality,
) )
d(wN?yN) < d<xN7$) + d((lﬁ,y) + d(y7y1\r) < 5 +4+ 5 = 25’

thus p(f(zy), fyy)) < % As a consequence,

e € ¢
p(9(x):9()) < p(9(2), (o)) + p(f(2y): F(y)) + (), fW) < 5+ 3+ 35 =¢
which establishes (1).

Finally, suppose that h : A — N is a continuous map satisfying h = f on A, and a € A.
Let {3}, be a sequence in A with limit a. By Proposition 4.38, ¢ is continuous on A;
thus Proposition 4.9 implies that

g(a) = lim g(z)) = lim f(zy) = lim h(zy) = h(a),
k—o0 k—0o0

k—o0

so (3) is also concluded. o



Chapter 5

Differentiation of Maps

5.1 Bounded Linear Maps

Definition 5.1. Let X, Y be vector spaces over a common scalar field F, where F = R or C.
A map L from X to Y is said to be linear if L(cx; + x3) = cL(xy)+ L(x,) for all &y, 2o € X
and ¢ € F. We often write Lz instead of L(z), and the collection of all linear maps from X
to Y is denoted by Z(X,Y).

Suppose further that X and Y are normed spaces equipped with norms |- |x and | - |y,

respectively. A linear map L : X — Y is said to be bounded if

sup |L|y < .
] x=1

The collection of all bounded linear maps from X to Y is denoted by #(X,Y), and the

number sup |Lzly is often denoted by ||L|zx,v)-
] x=1

Example 5.2. Let L : R® — R™ be given by Lx = Az, where A is an m x n matrix. Then
Example 2.19 shows that ||L| g®ngm) is the square root of the largest eigenvalue of A™A
which is certainly a finite number. Therefore, any linear transformation from R™ to R™ is
bounded.

Example 5.3. Recall that X = € ([a,b];R) and | - |x = | - |2 given in Example 2.21 which
makes a normed vector space (X, | - |x). Let ¢ € X be given. Define F': X — R by

F(f) = f f(@)o() da

Then clearly F' € Z(X,R) (the proof is left as an exercise). Moreover, the Cauchy-Schwarz
inequality implies that

112
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()] < [ f]2l¢]2;
thus

sup F(f) <|¢f2 <.
IFlo=1

Therefore, F' € (X, R).

Example 5.4. Let (X,|||x) = (Y,|-|y) = (C,|-]), and we consider the bounded linear
maps #A(X,Y).

1. Treat C as a vector space over C. Then {1} is a basis of C and a linear map L € .Z(C, C)
is determined by L1 and we have Lz = zL1 (thus any linear map from C to C is a

multiple of a complex number). Moreover,

sup |Lz| =|L1] < o
|z|=1

which shows that L € Z(C,C).

2. Treat C as a vector space over R. Then {1,i} is a basis of C and a linear map
L e Z(C,C) is determined by L1 and Li. In fact, if L1 = a + bi and Li = ¢ + di for

some a,b,c,d € R, then for z,y € R,

L(x+yi) = L1 + yLi = z(a + bi) + y(c + di) = (ax + cy) + (bx + dy)i .

Treating x + yi as a vector (z,y) € R?, the map L maps [ﬂ to [Z ccl] [ﬂ . Since

sup |L(z +yi)| = sup |(az+cy)+ (b +dy)i| = sup H {Z 2} {ﬂ ‘

b
|z+yil=1 |z+yil=1 |(z,y)]2=1 Y12

the norm of L is the same as the 2-norm of the matrix [ } . Therefore,

a c
b d

|L|#c,cy = the square root of the largest eigenvalue of {Z ccl] [CCL Z] < w0,

thus L € #(C,C). Since C over R is identical to R?* over R (from the discussion

above), we always treat C as a vector space over C.

Remark 5.5. By treating C as a vector space over C (which, we emphasize again, will
always be the case), there is only one linear map from C to R, the trivial linear map (which

sends any vectors to the zero vector). This result is left as an exercise.
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Proposition 5.6. Let (X, || x) and (Y, |- |y) be normed spaces over a common scalar field
F, where F =R or C, and L € (X,Y). Then

”LHSB(X,Y) = sup HLCBHY

=inf{M > 0||Lz|y < M|=z|x}.
w20 |Z]x

In particular, the first equality implies that
|Lzlly < ||L|zxy)|®|x Vee X.

Proposition 5.7. Let (X, |- |x) and (Y,|| - |y) be normed spaces over a common scalar
field F, where F =R or C, and L € Z(X,Y). Then L is continuous on X if and only if
Le BX,Y).

Proof. “=" Since L is continuous at 0 € X, there exists 6 > 0 such that

|Lz|y = |Lx — LO|y <1 whenever |z|x <.

Then HL(%:B) HY < 1 whenever ngHx < 0; thus by the linearity of L and properties
of norms,

|Lz|y < whenever |z x < 2.

SN )

Therefore, sup |Lz|y <
2l x=1

which implies that L € Z(X,Y).

SR )

“="If Le Z(X,Y), then M = |L|zx,y) < o, and
|Lxy — Las|y = |L(zy — @) |y < M@ — 22 x
which shows that L is uniformly continuous on X. O

Proposition 5.8. Let (X, | - |x) and (Y,|| - |y) be normed spaces over a common scalar
field F, where F = R or C. Then (B(X,Y),| - |#xy)) is a normed space. Moreover, if
(Y, | - |ly) s @ Banach space, so is (%(X, Y),| - H,@(Xy)).

Proof. That (#B(X,Y),| - |#xy)) is a normed space is left as an exercise. Now suppose
that (Y,] - |y) is a Banach space. Let {L;}72, = #(X,Y) be a Cauchy sequence. Then by
Proposition 5.6, for each € X we have

| Lvw — Lex|y = [(Le — Lo)zly <[ L — Le|zx v |®[x — 0 as k£ — .
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Therefore, for each € X the sequence {Lyx}2 , is Cauchy in Y; thus convergent. Suppose
that klim Lix = y. We then establish a map x — y which we denoted by L; that is, Lz = y.
—00

Then L is linear since if 1,y € X and c € F,
L(czy + x2) = lim Ly(cxy + x2) = lim (CLkwl + Lk$2) =clLxz + Lxs.
k—0o0 k—0o0

Moreover, since { L}y is a Cauchy sequence, by Proposition 2.58 there exists M > 0 such
that | Li|zx,y) < M for all k € N. For each x € X there exists N = N, > 0 such that

|Lyx — Lz|y <1 whenever k> N,.
Therefore, for k > N,,
| Ly < |Lizly +1 < |Li| o le|x +1 < M{z|x + 1

which implies that sup |Lz|y < M +1; thus L € #(X,Y).

|z x=1
Finally, we show that klim |Li — Ll|#x,yy = 0. Let ¢ > 0 be given. Since {Lj}Z, is
-0

a Cauchy sequence, there exists N > 0 such that ||Ly — L¢||5x,y) < % whenever k, ¢ > N.
Then if k£ = N, for every € X we have

. . €
iz — Laly = lim | Lye — Lyaly < limsup | L — Llaoon 2y < Sl
£—00 {—00 2

thus |Lr — L|#x,y) < € whenever k > N. o
Proposition 5.9. Let (X,| - |x), (Y, |y), (Z,] -|lz) be normed spaces over a common

scalar field F, where F =R or C, and L€ B(X,Y), K€ B(Y,Z). Then KoL e B(X,Z),

and

|K o L|#x,2) < |K|2v.2)| Ll 2x,y) -

We often write K o L as KL if K and L are linear.

Proof. By the properties of the norm of a bounded linear map,

|K o L(z)lz = [K(L2)|z < [ Klay.z)| Lely < 1K@z Llscyl2)x o

From now on, when the domain X and the target Y of a linear map L is clear, we use

|L| instead of |L|z(x,yy to simplify the notation.
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Theorem 5.10. Let (X, |- |x) and (Y, |- |y) be normed spaces over a common scalar field
F, where F =R or C, and X be finite dimensional. Then every linear map from X to'Y is
bounded; that is, £ (X,Y) = B(X,Y).

Proof. Let {e;}?_; be a basis of X (so that dim(X) = n). Then every z € X can be
expressed as a unique linear combination of e;’s; that is, for all € X, there exist unique n

numbers ¢; = ¢i(x), - - , ¢, = ¢,(x) € F such that
r=ce +---+cye,.

Define an inner product {-,-) on X by

<iB, y> = 2 Ck(m)m
k=1

and let | - ||z be the norm induced by this inner product; that is, |x|s = 4/{x, ). That {-,-)
is indeed an inner product on X is left as an exercise.
Having define (-, ), these coefficients ¢;’s in fact are determined by cx(x) = (x, €;), and,

by Example 4.29 and the Cauchy-Schwarz inequality, satisfy

er(@)| < |zlflexl> < Clafx  V1<k

N

n
for some constant C' > 0. As a consequence, if L is a linear map from X to Y, then

ILaly = |L(ci(@)er + -+ enl@en)], < lers (@) Lesly + -+ ea(@)l| Lealy
< O(ILerly + [Lealy + -+ |Lely) lelx < Mzlx

for some constant M > 0; thus |L|zx,y) < M < oo which shows that L € Z(X,Y). o
Theorem 5.11. Let GL(n) be the set of all invertible linear maps on R"; that is,
GL(n) = {L e L(R",R")| L is one-to-one (and onto)} .
1. If L € GL(n) and K € B(R",R") satisfying |K — L||L™'| < 1, then K € GL(n).
2. GL(n) is an open set of B(R™, R™).

3. The mapping L — L™ is continuous on GL(n).
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Proof. 1. Let |[L7Y] = % and |K — L| = 8. Then § < «; thus for every & € R",

alzfes = o L7 Lz < o L7 |Lapn = |Lafrs < (L — K)@|re + | K 2]z

< Bl

R” + ||K:I:

R” .

As a consequence, (a — f)|x

Rn < HKIZJ

g and this implies that K : R® — R” is

one-to-one hence invertible.

2. By 1, we find that if | — L| < HL1—1H’ then K € GL(n). Then B(L, ”L11) < GL(n)
if L € GL(n). Therefore, GL(n) is open.
3. Let L € GL(n) and £ > 0 be given. Choose § = min {22_1, 2”;_1”2 } Then 6 > 0,

and K € GL(n) whenever |K — L| < §. Since K~! — L™! = K~}(L — K)L™', we find
that if |K — L] < 6.

_ _ _ _ _ _ [
K =27 < 1K = L7 < IEHIK = L2 < 1K
which implies that |[K || < 2| L~!|. Therefore, if |[K — L| <,

|0 = L7 < JKHIK = LI < 2|27 <ce. o

5.2 Definition of Derivatives

Definition 5.12. Let (X, || x) and (Y, -|y) be two normed spaces over a common scalar
field F, where F =R or C. Amap f: A< X — Y is said to be differentiable at a € A
if there exists a map in A(X,Y), denoted by (Df)(a) and called the derivative of f at a,
such that

. |f(z) = f(a) = (Df)(a)(x - a)],

im

a—a |z —alx
where (D f)(a)(x — a) denotes the value of the bounded linear map (D f)(a) applied to the
vector t —a € X (so (Df)(a)(x —a) € Y). In other words, f is differentiable at a € A if
there exists L € Z(X,Y) such that

=0,

Ve>0,36 >0 3| f(z) — f(a) — L(x — a)|y < ¢|z — al|x whenever z € B(a,d) n A.
If f is differentiable at each point of A, we say that f is differentiable on A.

Remark 5.13. If f is differentiable on A, then for each x € A, (D f)(z) is a bounded linear

map from X to Y, but Df in general is not linear in x.
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Remark 5.14. The condition
o @ = 10 = (DP@a = ),

=—a |z —allx

=0 ,
is sometimes written as

f(x) = fla)+ (Df)(a)(z —a)+ o(|z —alx) as z—a,

where f = g+ o(h) as © — a is a short-hand notation for lim Hf;gl = 0.

Remark 5.15. Let a € A and v be a unit vector in (X, | - ||x) such that a + tv € A for all
te[0,1]. If f: A — R is differentiable at a, then
|ftat )~ f(a) — (D))
im

=0.
0+ |(a+tv) —a|x

Since (Df)(a)(tv) = t(Df)(a)(v) and |[tv||x = t (since t > 0), the identity above implies
that

i 10+ 10) = f(@)

t—0t t

— (Df)(a)(v)| =0

or equivalently,

tim T IO _ (pyay ).

In Calculus, the limit on the left-hand side is the directional derivative of f at a
in direction v and is usually denoted by (D,f)(a); thus the quantity (Df)(a)(v) is a

generalization of the directional derivative.

Example 5.16. Let f : (a,b) — R be differentiable at ¢ € (a,b). Then there exists

L e B(R,R) such that
@) S0~ L~ o)

T—C |$ - C‘
Since L € B(R,R), there exists a real number m such that L(x) = mz for all x € R; thus

the identity above implies that

=0.

i £ @) = flO) =m@—c) _,

T—cC r —cC

or equivalently,

o f@ =)
T—cC r —cC

In other words, a function f : (a,b) — R is differentiable at ¢ € (a, b) if and only if the limit
L S~ 7(e)

T—C r —cC

L with the real number f’(c) using the relation L(x) = f'(c)x.

exists. The limit is usually denoted by f’(c), and we identify the linear map
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Example 5.17. Let f : (0,00) — R be given by f(z) = é Then f is differentiable at any

a € (0,00) since (Df)(a) : R — R is the linear map given by
1
(Df)(a)(a) =~ .
To see this, we observe that

i e

r  a  a?

a2—xa+x2—xa

2

a? — 2za + x2

lim = lim za = lim
r—a |.%' — a\ r—a \x — (1’ r—a xa2\x — a!
= lim \x _ a\ =
t—a  xa?

Example 5.18. Let (X, | - ||x) and (Y, - |y) be two normed spaces. Then every bounded

linear map L : X — Y is differentiable. In fact, (DL)(a) = L for all a € X since
lim |Lz — La — L(z — a)|y

=~ |z = alx

=0.

Example 5.19. Recall that M,,.,, denotes the collection of all n x n real matrices. Equip
it with 2-norm and let f : M,,x,, — M, be given by f(L) = L?. Then for K, L € My,

FK) = f(L) = K*— [* = L(K — L) + (K — L)L + (K — L)2.
This motivates us to define (D f)(L) by (Df)(L)(H) = LH + HL so that
|f(K) = f(L) = (DAYL)K = L)]2 < | K = L|3;

which shows

o WU = F(L) = (DD = L)
W KLl

Therefore, f is differentiable at every L € M, 5.

=0.

Example 5.20. Let f : GL(n) — GL(n) be given by f(L) = L™, where GL(n) is defined in
Theorem 5.11. Then f is differentiable at any “point” L € GL(n) with derivative (Df)(L) €
P(GL(n),GL(n)) given by

(DfY(L)(K)=—~L'KL™  forall K eGL(n).
To see this, for K, L € GL(n),

|f(K) = f(L) + L7 (K — L)L~

_ -1 -1 —1
y H(L - K7)(K - L)L B(GL(n),GL(n))

P(GL(n),GL(n)

< L7 = K™Y wcrm).cnmy 1K — Lllzcrm).cron |l L 2crm),.cnm) ;
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thus if K # L,

|f(E) = £(L) + L7HE = L)LY g my.anmy)
IK — L] z(GLm),cLn))

< L7 gscrm el L — K7 @ crm),.cLm))-

By the fact that the map L — L™! is continuous on GL(n) (Theorem 5.11), we find that

|f(K) = f(L) + L7 (K — L)L~

B(GL(n),GL(n))

lim =0.

K—L | K — L|| z(@L(n).cL@))
Example 5.21. Recall the setting in Example 4.11 that X = € ([a,b;R), |- |x = | - [|2,
and I : X — R given by

b
2
= J |f(2)|" da.

Then I is differentiable at every f € X since if (DI)(f =2 f f(x)h(z) dr, Example 5.3

shows that (DI)(f) € Z(X,R) and

o) 1)~ (PO~ Dl =| [ [l9@)F = 1#@P - 27(@)gla) - 5(2)] ]

_ J [9(z) — f(2)] dz = | f — g3

a

which implies that
o9 = 16) — (DD (g - 1)

=0.
9= lg = fl2

Example 5.22. The function f : R?> — R given by f(z,y) = 2? + y? is differentiable at
every (a,b) € R%. In fact, (Df)(a,b)(h, k), the linear map (Df)(a,b) acting on the vector
(h,k) is (Df)(a,b)(h,k) = 2ah + 2bk, since

(@.y)—>(a.b) H(w y) (a, b
= im
(h.k)—(0,0) H (h, K|l
y |(a+ h)*+ (b+ k)? — a® — b* — 2ah — 2bk|
= im
(h,k)—(0,0) Vh? + k2
. h? + k2 .
= lim ————= lim Vh2+k2=0.

(h,k)—(0,0) v/ h2 + k2 (h,k)—(0,0)
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On the other hand, Example 5.5 shows that the function g : C — R given by g(z) = |2|? is
differentiable only if ¢'(z) = (Dg)(z) = 0. Therefore, if ¢ is differentiable at zj, then

. ‘|Z’2—’ZO|2} . ‘(Zo—Fh)'Zo-i-h—Zo%} .
0 = hm _— = llm = hm
z2—20 |Z — 20| h—0 |h| h—0

_ h
ool

. . h .
thus zy = 0 since lim 7 does not exist.

—0
By treating R as a subset of C, we treat g as a function from C to C (note that there
are more maps in Z(C,C) so in principle it is easier to have differentiable functions from
C to C). Assume the contrary that g’(zy) = (Dg)(z) € Z(C, C) exists, then

19(2) — g(20) — g/ (20)(z — 20)] l9(z0 + ) — g(20) — g (20) |

0=l =1
s |z — 20} - |h]
h h) — 2020 — ¢’ h hz h+|h?=¢q’ h
~ im ](zo + h)(20 + h) — 2020 — 9 (20) } ~ lim ‘ 20 + zoh + |h|* — g'(20) ‘
h—0 |h| h—0 |h|

] h
= }111_1{(1) ‘Zo —g'(20) + Zo|h|‘ ;

‘ZQ = 0 or equivalently, ZO(}lliH(l) \hh|> = ¢'(20) — % If 20 # 0, then

. h . . . .
the fact that }ILIII%) Tl does not exist shows that the identity above cannot be true; thus g is

not differentiable at zy # 0. On the other hand, if zy = 0, the choice of g’(z)) = 0 makes

thus lim (50 —g'(20) + 20

—0

the identity valid. Therefore, g is differentiable only at 0 and ¢’(0) = 0. This agrees with
the observation by treating g as a function from C to R.

Note that by writing z = z+iy, we indeed have g(x+iy) = x2+y?%; thus f(z,y) = g(z+iy).
Even though f is differentiable at every point in R2, ¢ is not. The reason behind this is
that there are “much more” bounded linear maps in Z(R? R) than bounded linear maps in
PB(C,R) or B(C,C) so that it is easier to make a function from R? — R differentiable.

Theorem 5.23. Let (X, | |x), (Y,]|ly) be normed vector spaces, A be a subset of X, and
f:A—Y be differentiable at a. If a € A, then (Df)(a) is uniquely determined by f.

Proof. Suppose Ly, Ly € B(X,Y) are derivatives of f at a. Let ¢ > 0 be given and e € X
be a unit vector; that is, |e|x = 1. Since a is an interior point of A, there exists r > 0 such

that B(a,r) < A. By Definition 5.12, there exists 0 < 6 < r such that
|f(x) = fa) = La(z — a)|y |f(x) = fla) = La(z — a)|ly

<E and <E
|z — alx 2 |z — allx 2
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if 0 < ||z —a|x < 0. Letting = a + Ae with 0 < |A| < 4, we have

1
|Lie — Loely = ‘_i“Ll(x —a) — Ly(x —a)|y
< W(Hf(f) — fla) = Li(z — a)|, + | f(z) = fla) — La(z — x3) )
_ |f(x) = fla) = Ly(z —a)|, N | f(z) = f(a) = La(z — a)|,,
|z — alx |z — alx
< g + % =c

Since £ > 0 is arbitrary, we conclude that Lie = Lqe for all unit vectors e € X which

guarantees that L; = Lo (since if z # 0, Liz = Ha:HXLl( - ) = Ha:HXL2< - > = Loz). ©

=] x (E4P

Example 5.24. (D f)(a) may not be unique if the domain of f is not open. For example,
let A= {(z,y) ‘O <z <1,y =0} be a subset of R? and f : A — R be given by f(z,y) = 0.
Fix a = (h,0) € A, then both of the linear map

Li(z,y) =0 and La(z,y) =hy  ¥(z,y) € R
satisfy Definition 5.12 since

lim ‘f(x70)_f(h70>_Ll(x_h70)| . ‘f(x70)_f(h70>_L2(x_h70)|

= =0.
(,0)—(h,0) |(2,0) = (h,0)| 5 (2.0)5(1.0) |(2,0) = (h,0)| 5

Remark 5.25. Let U < R” be an open set and suppose that f : U — R™ is differentiable
on U. Then Df : U — ZA(R",R™). Treating Df as a map from U to the normed space
(BR",R™),]| - | #@~rm)), and suppose that Df is also differentiable on U. Then the
derivative of Df, denoted by D?f, is a map from U to Z(R", Z(R",R™)). In other words,
for each a € U, (D*f)(a) € B(R", B(R",R™)) satisfying

DH@) ~ (DH@) ~ D@~ )] o

=a |z = afen

=0,

here (D?f)(a) is bounded linear map from R" to Z(R",R™); thus (D?f)(a)(x — a) €
B(R" R™).
Definition 5.26. Let {e;}}_; be the standard basis of R”, U < R" be an open set, a € U

and f : U — R be a function. The partial derivative of f at a in the direction e;, denoted

of . .
by gj(a), is the limit
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fla+he;) — f(a)

iy H
if it exists. In other words, if a = (ay,--- ,a,), then
a_f(a) — hm f(a17~.~ ,a/j—laaj +h,aj+17-.. 7an) — f(al’... 7an)
0x; h—0 3 _

Theorem 5.27. Suppose U < R" is an open set and f : U — R™ is differentiable at a € U.
Then the partial derivatives %(a) exists for alli=1,---m and j = 1,---n, and the matrix

representation of the linear map D f(a) with respect to the standard basis of R™ and R™ is

given by
[ N fr ]
571@) E(G) .
[(DH@] =1+ or [(Df)(@)],; = aa{j @
Ofm Ofm
| o (@ ()

Proof. Since U is open and a € U, there exists » > 0 such that B(a,r) < U. By the
differentiability of f at a, there is L € Z8(R™,R™) such that for any given € > 0, there exists
0 < 0 < r such that

[f(x)— f(a) — L(z — a)|gm < €|z —allgn whenever z € B(a,d).

In particular, for each i =1,--- ,m,
; he:) — f; he.) —
Jlathe;) = Jil@) ] < )f(H &) = J(a) —LejH <e VO<|h| <8 heR,
h h R™
where (Le;); denotes the i-th component of Le; in the standard basis. As a consequence,
foreachi=1,---,m,
. fila + he;) — fi(a) :
}llli% }i = (Le;); exists
. ofi ofi
and by definition, we must have (Le;); = P (a). Therefore, L;; = P (a). o
J J

Definition 5.28. Let U < R” be an open set, and f : U — R™. The matrix

[ df1 oft ] [ df1 of1 i
PR 671(;6) E(x)
@)= + -~ 1 |(2)= : . :
afm afm 5fm &fm
B _671(95) a$n($)_




124 CuAPTER 5. Differentiation of Maps

is called the Jacobian matrix of f at z (if each entry exists). If n = m, the determinant
of (Jf)(z) is called the Jacobian of f at x.

Remark 5.29. A function f might not be differential even if the Jacobian matrix J f exists;
however, if f is differentiable at z, then (Df)(x) can be represented by (Jf)(x); that is,

[(Df)(@)] = (Jf)(@).

Example 5.30. Let f: R? —» R3 be given by f(x1,22) = (2%, 2325, z{23). Suppose that f

is differentiable at x = (x1, z3), then

211 0
(Df)(@)] = | 3afwy i

4323 2xiws

Example 5.31. Let f : R? - R be given by

ﬂmw:{aﬁiﬂiHLW#WQL

Then %(O, 0) = (2‘5(0, 0) = 0; thus if f is differentiable at (0, 0), then [(Df)(0,0)] = [0 0].

However,

f(z,y) — f(0,0) — [0 0] [m]’: 2yl lay %m;

y 22+ y? (22 4 42)

’wiy‘g cannot be arbitrarily small even if 22 41>

thus f is not differentiable at (0, 0) since
(22 +y?)2

is small.
Example 5.32. Let f : R? - R be given by

x ify=0,

flz,y)=< y ifx=0,
1 otherwise.

O oo FO) = F0,00 R Of
Then 8:6(0’0) = flgr(l) - = }lLl_r)%h = 1. Similarly, o (0,0) = 1; thus if f is

differentiable at (0,0), then [(Df)(0,0)] = [1 1]. However,

I

e = 100~ [1 1) ) = Ifte) ~ e 4)
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thus if zy # 0,
[f@.y) = (@+y)|=[1—2—y[%0 as (z,y)—(0,0),zy #0.
Therefore, f is not differentiable at (0, 0).

Definition 5.33. Let U < R" be an open set. The derivative of a scalar function f : U — R
is called the gradient of f and is denoted by gradf or Vf.

5.3 Continuity of Differentiable Maps

Theorem 5.34. Let (X,| - ||x) and (Y,| - |y) be normed spaces, U < X be open, and
f:U =Y be differentiable at a € U. Then f is continuous at a.

Proof. Since f is differentiable at a, there exists L € Z(X,Y’) such that
36> 05 |f(z) = fa) = Lz —a)|, < |z —a|x VazeB(a,d).
As a consequence,
|f(x) = fa)|, < (|L|+1)|z—a|x VaeB(a,d); (5.3.1)

thus lim | /(z) — f(a)]y = 0. 0
Remark 5.35. In fact, if f is differentiable at xy, then f satisfies the “local Lipschitz
property”; that is,

IM = M(z) > 0and § = () > 03 ||f(x) — f(zo)|ly < M|z —x0|x if |z —z0llx <0
since we can choose M = |L| + 1 and 6 = d; (see (5.3.1)).

Example 5.36. Let f : R? — R be given in Example 5.31. We have shown that f is not
differentiable at (0,0). In fact, f is not even continuous at (0,0) since when approaching

the origin along the straight line zo = max,

ma? oom?

lim f(z1,mx;) = lim # £(0,0) if m #0.

(21,m1)—(0,0) 210 (m2+1)z?  m?2+1

Example 5.37. Let f : R? — R be given in Example 5.32. Then f is not continuous at
(0,0); thus not differentiable at (0, 0).
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Example 5.38. Let f : R? — R be given by
3

flay) =1 #*+v°
0 if (x,y) = (0,0).

if (x,y) # (0,0),

Then f,(0,0) =1 and f,(0,0) = 0. However,

‘f(%y)—f(oao)—[l 0] {yM: " o (z,y) — (0,0).

A2 492 (22 + 2)2

Therefore, f is not differentiable at (0,0). On the other hand, f is continuous at (0, 0) since

(2. y) = F(0,0)] = [f(z,y)] < [z| - 0 as (z,y) — (0,0).

5.4 Conditions for Differentiability

Proposition 5.39. Let U < R" be open, a € U, and f = (f1, -+, fm) : U = R™. Then
f is differentiable at a if and only if f; is differentiable at a for all i =1,--- ,m. In other

words, for vector-valued functions defined on an open subset of R™,
Componentwise differentiable < Differentiable.

Proof. By the definition of differentiability and Proposition 2.49,
f is differentiable at a

o (L e Myt =IO = L0l _ )

s = — alg

< (L€ My)( lim fu(; )—_afﬂij -1 ( ix—_aﬁw ) HRm 0)
e (@Le Mpwm)(V1<i< n)(m W (e TL)(%)‘ - o)
el —
< (AL e Mpun)(V1<i<n) (I_rg [fit) Za:)_ a(“RnL)(x 2| _ O)
= (@ Lie M) tim P2 ||; _)aRn edl-)
< f; is differentiable at a for each 1 < i < n. =

Theorem 5.40. Let U < R"™ be open, a€ U, and f : U — R. If each entry of the Jacobian
oI of f

matrix [07;1 . 6%]
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1. exists in a neighborhood of a, and
2. 1s continuous at a except perhaps one entry.
Then f is differentiable at a.

Proof. W.L.O.G. we can assume that 55

standard basis of R", and € > 0 be given. Since

is continuous at a for 1 < < n. Let {e;}7_, be the

is continuous at a fori=1,--- ,n — 1,

T

‘ of of <= _ A
36, >05 axl(x) 6:@( a) <\/ﬁ whenever |z — allgn < 6;.

On the other hand, by the definition of the partial derivatives,

35, > 05 )f(a—i—he;)—f(a) B jxj;( )‘ < % whenever  |h| < 0, .

Let k:x—aandézmin{él,--- ,5n}. Then
0 0
fla) = £(@) = [ @)1 —an) o+ a;;< )~ an)]|
_ of of
= |fla+k)— fla) - a%1()7%‘1 axn<)k"
0 0
= |flar + ki, an+kn) — flag, - an) — 851( k1 — ---—agi(a)kn
< |flayr+kr,oo o an + k) — flar,ag + kg, - ,an+kn)—§£(a)k1)
—|—‘f(a1,a2+k2,'-- 7an+kn)_f(a17a27a3+k3a"' 7an+kn)_§lj_;(a)k2‘

+‘f(ala”'7an—17an+kn)_f(al7"'aa’n) af()kn

By the mean value theorem,

f(ala'“ 7ajflaa’j+kj7“' 7an+kn)_f<a17'“ 7ajaa’j+1+kj+17'“ 7an+kn>

0
= kjaa{;(ab“' s @1, a5+ 05kj, a1 + ki, o an + k)
for some 0 < 0; < 1; thusfor j=1,--- ,n—1,if |z — a|gn = |k|r» < 0,
of
‘f(ala"' 7aj717aj+kj7'” 7an+kn)_f(a’17"' 7a’j7aj+1+kj+17"' 7an+kn) O ( ) j
J
0
‘axj a1 Ok G+ R ) — 2 (@)lk] < =kl

ox; \/ﬁ
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Moreover, if |z — allgn < 6, then |k,| < |k|ge = || — a|gr < 0 < §,; thus

Flan s+ anran+ ko) = flan, - a0) = 2-(a)k,

As a consequence, if |z — a|g» < d, by Cauchy’s inequality,

@) = 7o) = [ (@) ar = ) + -+ (@) — )|

ox1 oxy,

n
g
S \/ﬁ; kj| < e|k|rn = €]z — a||gn

which implies that f is differentiable at a. =
of .. 6]“} of a

51’1 o axn

Remark 5.41. When two or more components of the Jacobian matrix [

scalar function f are discontinuous at a point a € U, in general f is not differentiable at a.
For example, both components of the Jacobian matrix of the functions given in Example
5.31, 5.32, 5.38 are discontinuous at (0, 0), and these functions are not differentiable at (0, 0).

Example 5.42. Let U = R*\{(z,0) € R?|z > 0}, and f: U — R be given by

x
arccos ————— ify >0,
Va2 + y? Y
f(z,y) = arg(z +iy) = T ify=0,
x
21 — arccos ——— if y < 0.
vV +y? Y
Then
y T ify 0
of R ify#0, of 22 + o2 Yy J
a_(xay) = y and a_(xvy) = 1
t 0 if y=0, y - ify=0.
. of of . - .
Since p and =, are both continuous on U, f is differentiable on U.
L Yy

Definition 5.43. Let U < R” be open, and f : U — R™ be differentiable on U. f is
said to be continuously differentiable on U if Df : U — Z(R™,R™) is continuous on
U. The collection of all continuously differentiable mappings from U to R™ is denoted by
€1 (U;R™). The collection of all bounded differentiable functions from U to R™ whose

derivative is continuous and bounded is denoted by %} (U; R™). In other words,

¢ (U;R™) = {f : U —» R™ is differentiable on U | Df : U — Z(R",R™) is continuous}
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and

GUR™) = {1 € 6" (UR™) | sup| £ (@)] + sup | D (@) e ey < 0}

zeU
Theorem 5.44. Let U < R" be open, and f : U — R™. Then f € €*(U;R™) if and only if

the partial derivatives ofi exist and are continuous on U fori=1,--- mandj=1,--- ,n.
Zj

Proof. Note that Z(R",R™) is finite dimensional. By Example 4.29, there exist c and C' > 0

such that

m n

CZ Z |aij| < | L||z@n zm) <C’Z Z la;;| ¥V LeZA(R",R™) with representation [L] = [a;;] .

i=1j=1 i=1j=1

Therefore, for every a € U,

cii‘m ~ )| < (1) @) - (D@,

635] ox;j

5fz 5]‘} ,
Z[R™R™) CZZ ‘(31'] 6x] (a)

)
i=1j=1

thus lim |(Df)(z) — (Df)(a)|#®@rrm) = 0 if and only if lim

r—a r—a

ofi, y _ 0fi ‘ _
o; (x) 5z, (a)] = 0 for all
I1<i<m,1<j<n. o

Example 5.45. If f : R — R is differentiable at a, must f’ be continuous at a? In other
words, is it always true that lim f'(z) = f'(a)?
Answer: No! For example, take
, . 1
r®sin — if x # 0,

o) = E
0 if  =0.

Then f is differentiable at x = 0 since the limit

1

- h?sin —

i LOER) = FO) b — i hsin >~ = 0
h—0 h h—0 h h—0 h

exists. Therefore,
. 291:sin1—cosl ifx #0,
f (3;) = T T
0 if x =0.

However, hH(l) f'(x) does not exist.
xTr—>
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5.5 The Product Rule and the Chain Rule

Theorem 5.46. Let (X, || x), (Y,||-|y) be normed vector spaces over field F, where F = R
or C, U < X be open, and f : U - Y and g : U — F be differentiable at a € U. Then
gf : U =Y 1s differentiable at a, and

D(gf)(a)(v) = g(a)(Df)(a)(v) + (Dg)(a)(v)f(a). (5.5.1)

Moreover, if g(a) # 0, then g : U =Y is also differentiable at a, and D(g)(a) X > Y is
given by
_ 9(@((DH@W) ~ (Dg)(a)()f(a)
9 9*(a) '
Proof. We only prove (5.5.1), and (5.5.2) is left as an exercise.
Define A : X — Y by A(v) = g(a)(Df)(a)(v) + (Dg)(a)(v)f(a). Then clearly A €
Z(X,Y). Moreover,

(5.5.2)

[4v]y < g(@)(D )@@, + [(Dg)(@)(v)f (@],
)

<lg@[l(PH@ )]y +[(Dg)@)@)| /(@]
< |g@[[(DN)(@)] yx 3 IV]x + [(Dg)(@)] 4y 0] x 1 F (@)
= Ug ’H Df)( CL) #xy) T H (Dg)(a HJ(XF)H]C( )HY] lvlx

so that A is bounded. Note that

(9f)(x) = (9f)(a) — Alz — a) = g(2)(f(2) = f(a) — (Df)(a)(z — a))
+ (9(2) — g(a) — (Dg)(a)(z — a)) f(a)
+ (9(2) — g(a)((Df)(a)(z — a))) -

As a consequence, for x # a,

|(9f)(@) — (9/)(a) — Az —a)|,, <| 7) ‘Hf(w)*f(a)*(Df)(a)(fﬁ*a)Hy

|z = allx

|z —alx

|g(x) — g(a) — (Dg)(a)
|z — alx

s =N @)l + [(DH@)] sy o) — 91

and the right-hand side approaches zero as z — a since f and g are differentiable at a (so
that ¢ is continuous at a). Therefore, gf is differentiable at a with derivative D(gf)(a)
given by (5.5.1). o
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Theorem 5.47. Let (X, |- |x), (Y, llv), (Z,]-|z) be normed vector spaces, U < X and
V €Y be open sets. Suppose that f : U — Y is differentiable at a € U, f(U) <V, and
g:V — Z is differentiable at f(a). Then the map F' = go f:U — Z defined by

F(z) = g(f(z)) VeelU
is differentiable at a, and
(DE)(@)(h) = (Dg) (f(@) (Df)(@)(h) ~ VheX.
In particular, if X =R™, Y =R™ and Z = R, then

:iagz )2 q).

035]

Proof. To simplify the notation, we write b = f(a), A = (Df)(a) € A(X,Y), and B =
(Dg)(b) € A(Y, Z). Since U and V are open, there exists ry, 7o > 0 such that Bx(a,r;) € U
and By (b,r2) <V, where By and By denote balls in X and Y, respectively.

Let £ > 0 be given. Define u : Bx(0,r;) - Y and v : By(0,73) — Z by
u(h) = f(a+h) — f(a) — Ah and v(k) =g(b+k)—g(b) — Bk.

By the differentiability of f and g at a and b, there exist 0 < d; < r; and 0 < dy < 1 such

that
I3

|u(h)]y < min {1 SIBIED

}HhHX whenever A x < 01,

lv(k)|lz < WHI{:HY whenever  |k|y < 0.

Let k= f(a+h) — f(a) = Ah + u(h). Then }llirr(l] k = 0; thus there exists d3 > 0 such that
|klly < d2  whenever |h|x < d5.
Define § = min{é;,d3}. Then 6 > 0; thus by the fact that

Fla+h)— F(a) = g(b+ k) — g(b) = Bk +v(k) = B(Ah + u(h)) + v(k)
= BAh + Bu(h) +v(k),

we find that if |h|x < 0,

|Fa+h) = F(a) = BAh|z < [Bu(h)|z + [v(k)|z < [ Bu(h)]y + 1%

£

2(1A1+1)
9 9

(IANR]x + lu(m)ly) < SIAlx + S1Rlx = €lhlx -

3

g
< Ehlx o
2 Ix + a1
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Since BA= Bo Ae %A(X,Z) by Proposition 5.9, we conclude that F' is differentiable at a
and (DF)(a) = BA. o

Example 5.48. Let X = %([a,b];R) and | - ||x be the maximum norm; that is, | f|lx =
max !f(x)\ Let I : X — X be defined by I(f) = f? and J : X — R be defined by

z€la,b]

J(f) = fbf(x)2 dx. Then I is differentiable on X (with (DI)(f)(h) = 2fh) and J is

b
differentiable on X (with (DJ)(f)(h) = J 2f(z)h(z) dz). Therefore, the chain rule implies
that J o I is differentiable on X and ’

D(J o I)(f)(h) = (DI)(f*)((DD)(f)(h)) = (DI)(f*)(2fh) = J 4f(z)h(z) dz.

Example 5.49. Let f : GL(n) - Z(R",R") and g : Z(R",R") - Z(R",R"™) be defined
by f(L) = L' and g(L) = L?. Then for H € GL(n), Example 5.19 and 5.20 imply that

(DfY(L)(H)=—~L*HL™ and  (Dg)(L)(H)=LH + HL.
Therefore, the chain rule shows that

D(go f)(L)(H) = (Dg)(L™)((Df)(L)(H)) = L~ ((Df)(L)(H)) + ((Df)(L)(H)) L™
= L 2HL ' - L 'HL?2.

5.6 Higher Derivatives of Functions

Let U < X be open, and f : U — Y is differentiable. By Proposition 5.8, the space
(B(X,Y),| - |#x.y)) is a normed space, so it is legitimate to ask if Df : U — ZB(X,Y)
is differentiable or not. If Df is differentiable at a, we call f twice differentiable at a,
and denote the twice derivative of f at a as (D*f)(a). If Df is differentiable on U, then
D2f : U — %’(X, B(X, Y)) Similar, we can talk about three times differentiability of a

function if it is twice differentiable. In general, we have the following

Definition 5.50. Let (X, | - |x) and (Y,] - |y) be normed spaces, and U < X be open. A

function f: U — Y is said to be twice differentiable at a € U if

1. fis (once) differentiable in a neighborhood of «;
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2. there exists Ly € %’(X, B(X, Y)), usually denoted by (D?f)(a) and called the second

derivative of f at a, such that

|(Df) (@) = (Df)(a) = La(z — a)

=a |z —alx

2XY) _ g

For two vectors u,v € X, (D*f)(a)(v) € Z(X,Y) and (D*f)(a)(v)(u) € Y. The vector
(D?f)(a)(v)(u) is usually denoted by (D?f)(a)(u,v).

In general, a function f is said to be k-times differentiable at a € U if
1. fis (k — 1)-times differentiable in a neighborhood of «;

2. there exists L, € B(X,B(X, - ,B(X,Y)---)) , usually denoted by (D¥f)(a) and

~"
k copies of “X?” k copies of «)”

called the k-th derivative of f at a, such that
(D" ) (&) — (D )(@) ~ Lule — a)

B(X,B(X, B(X)Y)))

lim =0.
za |z = alx
For k vectors u™, - u® e X, the vector (D*f)(a)(u™, -, u®) is defined as the vector

(D* ) (a)(u®) (1) - (),
where (D* f)(a)(u™) e B(X, B(X,--- ,B(X,)Y )---)) so that (DF f)(a) (u®)(uk—)
< / \ )

(k—1) co‘pries of “X” (k —1) copies of «)”
BX,BX, - BX,)Y )--)) , and etc.
. ~- J W—j
(k — 2) copies of “X”  (k — 2) copies of “)”
Example 5.51. Let (X, - |x) and (Y,| - |y) be two normed spaces, and f(z) = Lx for
some L € #(X,Y). From Example 5.18, (Df)(a) = L for all a € X; thus (D*f)(a) = 0

since Df : U e #A(X,Y) is a “constant” map. In fact, one can also conclude from

D)~ (DH@) 0 — )]y
lim

T—a Hl‘— CLHX

that (D?f)(a) =0 for all a € X.

=0

Remark 5.52. We focus on what (D*f)(a)(ug)(---)(u1) means in this remark. We first
look at the case that f is twice differentiable at a. With x = a +tv for v e X with |v|x =1
in the definition, we find that

(D) + ) — (DF)(@) ~ HD2D(@ )| oy,
lim

=0.
t—0 |t|
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Since (Df)(a + tv) — (Df)(a) — t(D*f)(a)(v) € B(X,Y), for all u € X with |ul|x = 1 we

have

1% H (Df)(a + tv)(ut) — (Df)(a)(u) _ (D2f>(a)<v)(u)HY
 lim |(Df)(a + tv)(w) — (Df)(a)(u) — t(D*f)(a)(v)(w)],
N t—0 |t|
_ i PN 410 - RUOE HD2D)(@)(w)] ()]
i 2D+ )~ (DO ~ DN @O gery _
10 |(a+tv) —alx

On the other hand, by the definition of the direction derivative (see Remark 5.15),

(Df)(a + tv)(u) — (Df)(a)(u) = lim [f(a+tv+w) — fla+tv)  fla+su)—f(a)].

550 s 5 ’

thus the limit above implies that
(D2f)(a)(v)(u) = lim lim L@+ 50 = flat ) = flat su) + f(a)

t—0 s—0 st
lim fla+tv+su)— flat+tv) lim fla+ su) — f(a)
— lim s—0 S s—0 S
t—0 t
= Dy(Duf)(a) .

Therefore, (D?f)(a)(v)(u) is obtained by first differentiating f around @ in the u-direction,
then differentiating (D f) at a in the v-direction.

In general, (D*f)(a)(uy)---(u;) is obtained by first differentiating f around a in the
uy-direction, then differentiating (D f) near a in the us-direction, and so on, and finally
differentiating (D*~1f) at a in the ug-direction.

Remark 5.53. Since (D?f)(a) € B(X,B(X,Y)), if vj,v5 € X and ¢ € R, we have
(D%f)(a)(cvy +v2) = c(D%f)(a)(v1) + (D*f)(a)(vs) (treated as “vectors” in B(X,Y)); thus

(D?f)(a)(cvr +v2)(u) = c(D*f)(a)(v1)(u) + (D*f)(a)(va)(w)  Vu,v1,02€ X.
On the other hand, since (D?f)(a)(v) € B(X,Y),
(D?f)(a)(v)(cur + uz) = c(D*f)(a)(v)(w1) + (D*f)(a)(v)(uz)  Vuy,uz,veX.

Therefore, (D?f)(a)(v)(u) is linear in both u and v variables. A map with such kind of
property is called a bilinear map (meaning 2-linear). In particular, (D*f)(a): X x X - Y

is a bilinear map.
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In general, the vector (D*f)(a)(u™,--- ,u®) is linear in ™, -- -, u®; that is,

(D f)(a) (M, - u™Y av + fw,uV o WP
= a(D*f)(a) (@D, w7 ol Ly (R
+ 5(Dkf)(a)(u(1)’ e ’u(i—l)jw,u(i—&-l)’ o 7u(k))

for all v,w € X, a,f € R, and ¢ = 1,--- ,n. Such kind of map which is linear in each
component when the other £ — 1 components are fixed is called k-linear.
Consider the case that X is finite dimensional with dim(X) = n, {61762, e ,en} is a

basis of X, and Y = R. Then (D?f)(a) : X x X — Y is a bilinear form (here the term “form”
means that Y = R). A bilinear form B : X x X — R can be represented as follows: Let

n
a;; = B(e;,ej) e Rfor 4,5 =1,2,--- ,n. Given z,y € R", write u = Z u;e; and v = Z vje;.

i=1 7=1
Then by the bilinearity of B,
n n n aix - Qip U1
B(u, ’U) = B(Z U;e;, Z UjGj) = Z Uﬂ)j(lij = [Ul cee Un]
= = b=t an1 - Qpp Un

Therefore, if f: U € R" — R is twice differentiable at a, then the bilinear form (D?f)(a)
can be represented as

(D*f)(erer) -+ (D*f)(a)(eren)] Ty
(D*f)a)(u,v) = [ur - wn] : : :
(D*f)(en,e1) -+ (D*f)(a)(en,en)) LT

The following proposition is an analogy of Proposition 5.39. The proof is similar to the

one of Proposition 5.39, and is left as an exercise.

Proposition 5.54. Let U < R" be open, a € U, and f = (f1, -+, fm) : U > R™. Then f is
k-times differentiable at a if and only if f; is k-times differentiable at a for alli =1, --- ,m.

Due to the proposition above, when talking about the higher-order differentiability of

f:U<CR" - R™ and a point a € U, from now on we only focus on the case m = 1.

Example 5.55. In this example, we focus on what the second derivative (D?f)(a) of a
function f is, or in particular, what (D?f)(a)(e;,e;) (which appears in the Remark 5.53) is,
if X =R2
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Let f : R? — R be differentiable, then

(DN )] = L@y few)] =L@y Law

Suppose that f is twice differentiable at (a,b), and let Ly = (D?f)(a,b). Then

|(DF) (. y) = (Df)(a.b) = La((z = a,y = b)) | gz

li _
(x,y)lg%a,b) v (z —a)?+ (y —b)? 0
or equivalently,
ey @] - [fe@b) fyab)] = [La((@ - ay = )] o g
lim ®2R) _ ¢
aie VP r 0 ’

where [Lg ((x —a,y— b))] denotes the matrix representation of the linear map Lo ((w —a,y—
b)) € Z(R? R). In particular, we must have

hm[h@@—ﬁmw nu@—@m@]_pﬁﬂ =0
z—a T —a r—a B(R2,R)
and
hm{hww—nww nww—nm@}_uﬁﬂ =0
y—b y—b y—0b B(R,R)

Using the notation of second partial derivatives, we find that

[Lgel} = [fm(a,b) fyz(a, b)} and [Lgeg] = [fxy(a,b) fyy(CL, b)} s

where fu, = (f2)y = ;y(gi) and fy, = (fy)z = ;; (gi) Therefore, if v = vie; + v9e9,

[Lov] = [La(vier + vaea)] = [v1fon(a, b) + 2 fuy(a,b) 01 fye(a,b) + vafyy(a,b)] .  (5.6.1)

Symbolically, we can write

[LQ} = |: [fME(a? b) fyﬂﬂ(av b)] [fxy(a’v b) fyy(a’= b)} }

so that

[Lo(vier + vaes)] = [Lo] M = {[fm(a,b) fye(@,0)] [ fay(a,b) fyy(a,w]} M

V2 V2

=0 [fwx(aa b) fyl‘(av b)] + Vo [fmy(aa b) fyy(aa b)] .
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For two vectors w and v, what does (D?f)(a,b)(v)(u) or (D*f)(a,b)(wu, v) mean? To see

this, let w = uie; + usey and v = vie; + v9ey. Then
(D) (0. D)) = [(D)(a b)) [4] = [Earer + vaea)] |12

=0 [Fulat) flat)] 2] 4 [Ffad) fufad)] 2]
= [Ul ] |:fm:(a’> ) fy96<a7 b):| |:u1}
Jay(a,b)  fyy(a,0)] |uz]”
Therefore, (D*f)(a,b)(e1,e1) = fuz(a,b), (D*f)(a,b)(e1,e2) = fuy(a,b), (D*f)(a,b)(e, e1) =
fyl‘(a? b) and (sz) (a’ b)(627 62) = fyy(a’ b)
On the other hand, we can identify Z(R?;R) as R? (every 1 x 2 matrix is a “row” vector),

and treat g = [D f]T : R? — R? as a vector-valued function. By Theorem 5.27 (Dg)(a, b)

can be represented as a 2 x 2 matrix given by

fex(a,0)  fuy(a,b)
[(Dg)(a,b)] N [fyﬂcma b) fyy(aab>] .

We note that the representation above means

o] -] = ey e [o3)
o Va2 (b7

R? — (.

The equality above is equivalent to that

[0 = (DN = fr=a y=t] [Fre]) o] ]

) V@ —aZ+ (y- b2 -
According to the equality above, Ly, = (D?f)(a, ) should be defined by
_ fea(@,b) fra(a,0)] _ ([farl@b) foy(a,0)] [er])"
Batwen o] = o] [0 200 = () o) )

which agrees with what (5.6.1) provides.

Proposition 5.56. Let U < R" be open, and f : U — R. Suppose that f is k-times
differentiable at a. Then for k vectors uV, .- u*) e R",

n k
(D@, ) = Y O (@ ),

Jiy k=1 axjk axjk—l e 695]»1




138 CuAPTER 5. Differentiation of Maps

where u') = (ugi),u(;),'-- : (i)) foralli =1,k ( P R3E57 chiF g rb Th k B
BY RSB R o TR - BRI RN S BLE ) and
*f 2

(a) =

x:a<axi_l ("'ajj2 (ai{) )) '

Proof. We prove the proposition by induction. Let {ej 1 be the standard basis of R". By

0,05, _, -+ 0T an

Remark 5.53 (on multi-linearity), it suffices to show that

ok f

ja
&xykaxjk 10T

(DEf)(@)(ei) (&) - (e)(e) = (DM f)(a) (e s ej) = (a) (56.2)

provided that f is k-times differentiable at a since if so, we must have

(Dkf)(a)(u(l),... ,u(k)> ( Z ujl €, i ug’:)ejk>

Jj1=1 Jr=1
=2 2 D@ e e Jug wg )

(1,2 .,

J1 J2 Jk

|
—

S
S~—

Jiysjk=1

Note that the case k = 1 is true because of Theorem 5.27. Next we assume that (5.6.2)
holds true for & = ¢ if f is (¢ — 1)-times differentiable in a neighborhood of a and f is
(-times differentiable at a. Now we show that (5.6.2) also holds true for k = ¢+ 1 if f is
(-times differentiable in a neighborhood of a, and f is (¢ + 1)-times differentiable at a. By
the definition of (¢ + 1)-times differentiability at a,

lim [(D!f)() = (D f)(a) = (D f)(a) (@ = a)| yin spzn .. mgn )y

r—a Hx — a||Rn

=0.

Since

(D" )(@) = (D' F)(@) = (D F)a)( — )] (e) -+ (e (es)
<|[(0DE) = (D'D@) ~ (O P~ )] e) - (en)] el

)
< [(D'F)(@) — (D“)(a) — (D" f)(a)(x - Hﬂwgmmw%wmmﬂ%ww~wwmw
= (D) (@) — (D' )(@) — (D f)(a)(x — a)],

AR, BRYR)-))
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using (5.6.2) (for the case k = {) we conclude that for = # a,
o'f of

\axj Fr o ) T e, (@~ (DT (@) (e i — )
HLL’ — aHR"
= ‘(Def)(x)(ejl’ e Leg) — (Def)(a)(ejlv e ,ej,) — (Dulf)(a)(x —a)(ej,, 7ej1z)‘
”.’E — aHRn
|(D ) (@) = (D f)(a) = (D) (a) (@ = a)| g e spmn 20 )
h Iz — af[gn

and the right-hand side approaches zero as * — a so that

‘ 7 (z) — 2 (a) — (D£+1f)(a)(ejl, L€, T —a)

axjeﬁfjk_l T ale axjeaxjk—l T 63:]-1

lim =0.

r—a Hl‘ - a”Rn

In particular, we pass to the limit as x — a in the way r = a + te;,, as t — 0 for some

Jex1 = 1,--- ,n and conclude from the definition of partial derivatives that
olf olf
(a +tejp,,) = (a)
(D“_lf) (a) (eju T €y ejz+1) = 11I% e IS T . Lije Oy Tjy
aZ—l—lf
B 0Ty, , 0,0, _, -+ - Oy (@)
which is (5.6.2) for the case k = ¢ + 1. o

Example 5.57. Let f : R? — R be given by f(z1,22) = 2?cosxy, and u) = (2,0),
u® = (1,1), u® = (0,—1). Suppose that f is three-times differentiable at a = (0,0) (in
fact it is, but we have not talked about this yet). Then

3 Wy W (2 () _ O
(D°f)(a)(u Z 63:;96:3]8:61 (a)u; Uy U Z &Eg&a}ﬁml 2 Yy (=)
a3f agf
é’xg(?xl 02202,
Corollary 5.58. Let U < R™ be open, and f : U — R be (k + 1)-times differentiable at a.

Then for u®, -+ u® y*+) ¢ Rn

2 (0,0)-2-1-(=1) + (0,0)-2-1-(=1)=0.

n

k+1 . k+1) (k+1)
(D) @), -2 =

(Dkf)(x)(u(l),-“ ’u(k))_

Tr=a

In other words, (using the terminology in Remark 5.15) (D1 f)(a)(u™, -, u® u*+D) s

the “directional derivative” of the function (D*f)(-)(u™M, - u®)) at a in the “direction”
(h+1)
uF Y,
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Proof. By Proposition 5.56,

C ak+1f 1 k k+1
(Dk+1f) (a)(u(l)’ Y ’u(k)7 u(k+1)) = Z Oxi OXi ++-0x; (a)ug'l) . .u.gk)u§k+1)
J1 dhadrgr=1 JRHLTTIR J
" n k+1
z : (k+1) 2 ] oL f (1) (k)
U, (a)u s U
Jr1=1 e i k=1 0T jy 11 OFjy. O . o
_ Zn (k+1)_ 0 Zn: Pyl
. e . J
Jrk+1=1 e a:Eij T G k=1 ax]k ax]l o t
— § : D) 0 (D 1) (@)D, -, u®). .
. jk+1 ax]k 1 Tr=a
Jr+1=1 +

Example 5.59. Let f : R? —» R be twice differentiable at a = (a;,as) € R?. Then the

proposition above shows that for u = (u1, us),v = (vi, v9) € R?

(D*/)(@)(0) ) = (D*/) Sy M%

7 j_
_O*f 0 f f 0?f
= &Tﬁ(a)ulvl + PR (a)uyvg + P (a)ugvy + a—x%(a)ugvg
0% f 0% f
o AN e
= U1 Uy 62'](. 627']0(&) Vs .
0x10x2 63:%

In general, if f : R® — R be twice differentiable at a = (a1,---,a,) € R". Then for

U = (ula"' ,Un),U = (Ulv"' 7Un) ERH7
>f Pf ]
a—x%(a) e a) o
(D*f)(a)(v)(u) = [w Un] : . : :
o f o f Un
e, @ 2@

The bilinear form B : R” x R™ — R given by

B(u,v) = (D*f)(a)(v)(u) Vu,veR"
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is called the Hessian of f, and is represented (in the matrix form) as an n x n matrix by

2f 2f ]
8755%@) 07,071 (a)
0% f 62f

| 0z10z, a @(a) i

2

aag (a) of f at a exists for all 4,5 = 1,--- ,n (here the
TjO0Lg

twice differentiability of f at a is ignored), the matrix (on the right-hand side of equality)

If the second partial derivatives

above is also called the Hessian matrix of f at a.

Even though there is no reason to believe that (D?f)(a)(u,v) = (D*f)(a)(v,u) (since
the left-hand side means first differentiating f in w-direction and then differentiating D f
in v-direction, while the right-hand side means first differentiating f in v-direction then
differentiating D f in u-direction), it is still reasonable to ask whether (D?f)(a) is symmetric
or not; that is, could it be true that (D*f)(a)(u,v) = (D*f)(a)(v,u) for all u,v € R®? When
f is twice differentiable at a, this is equivalent of asking (by plugging in u = e; and v = ¢;)

that whether or not
0% f
al'j a$1

(@)= S

- a$1al‘j

(a) . (5.6.3)

The following example provides a function f : R? — R such that (5.6.3) does not hold at
a = (0,0). We remark that the function in the following example is not twice differentiable

at a even though the Hessian matrix of f at a can still be computed.

Example 5.60. Let f : R? — R be defined by

ay(z? —y?) .
=7 if (z,y) # (0,0),
flag =] e P00
0 i (ny) = (0,0).
Then . ) ;
xry +4dxcy® —y° .
if (x,y) # (0,0),
feg=] Gepp TE0Z00
0 if (z,y) = (0,0),
and

x® — dady? — a:y4

fe) =] @R
0 if (z,y) = (0,0),

if (z,y) # (0,0),
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It is clear that f, and f, are continuous on R?; thus f is differentiable on R?%. However,

fxy(()aO) :]1€_>0 L :_17
while
0,0) = lim 20200y

h

thus the Hessian matrix of f at the origin is not symmetric.

Theorem 5.61 (Clairaut’s Theorem). Let U < R™ be open, and f : U — R. Suppose that
of of  0*f 0% f

— exist in a neighborhood of a, and

the mized partial derivatives Gvi’ Bw;’ Gmom dmyom

a2

1s continuous at a. Then
&:zj €Ty

02 f 02 f

a) =
axjﬁxi 0$Z8IJ

(5.6.4)

Proof. Let a € U be given. For real numbers h, k # 0 such that a + he; + ke; € U, define

fla+ he; + ke;) — f(a+ he;) — f(a+ kej) + f(a)

Q(h,k) = o ‘
Then
lim Q(h, k) = %}}i% (f(a + he; + k‘e]i) — fla+he) flat ke;i) n f(a)>
_ %(%(a + hey) (%(@) ,
thus N N
Hm fmm QR k) = e, @ (5.6.5)

Define ¢(x) = f(z + ke;) — f(x). Then the mean value theorem implies that

o(a+he;) —p(a) 1 0p

_1/0f of
—_ E(al’z (a —f- thei + k:ej) — a—xl(a —|— thez)>
o f

= (}x]axl (a + thei + 92kej)
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for some functions 0; = 6,(h, k) and 0 = 65(h, k) satisfying 0 < 6,0 < 1. Therefore, we
establish that there exist functions ¢, = 01(h, k) and 0y = 6,(h, k) such that 61,60, € (0,1)

and
2

Q(h> k) = 656']&.1'1 (CL + 91hei + 92k’ej) .

. o . - o f
Passing to the limit as k& — 0 first then h — 0, using (5.6.5) and the continuity of o
we conclude that ]Z

*f o T O f
0x;07; (a) = flblﬂ% ilCIE%Q(h’ k) = }Ll—rftl) ]£1_r)r(1] 0x;0x; (0 Ouhei + Boke;) = 0x;0x; (@) .

Remark 5.62. In view of Remark 5.52, (5.6.4) is the same as the following identity

i i £ @+ hei + kej) — fla+ hei) — fla+ kej) + f(a)
h—0 k—0 hk
_ i fim L@ e he) = flathe) = fla+ key) + f(a)
k—0 h—0 hk

which implies that the order of the two limits lim and lim can be interchanged without

h—0 k—0

changing the value of the limit (under certain conditions).

Example 5.63. Let f(z,y) = yz? cosy?. Then

faoy(7,y) = (22y cosy?), = 2z cosy® — 2xy(2y) siny® = 2x cosy* — day?siny?,
(2, y) = 22 cosy? — yr?(2y) siny?), = (2% cosy® — 22%y% siny?),
Y Y Y Y Yy Yy Yy Y Yy
= 2z cosy® — dzy’siny® = fo,(2,y).

Definition 5.64. A function is said to be of class €* if the first k derivatives exist and
are continuous. A function is said to be smooth or of class ¢ if it is of class €* for all

positive integer k.

Now we would like to answer the question of what kind of functions are k-times differ-
entiable. Suppose that U < R" is open and f : U — R. Note that by the definition of
differentiability, f is k-times differentiable in U if and only if D*~!f is differentiable in U.
This would further imply that f is k-times differentiable in U if and only if D¥=2f is twice
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differentiable in U. Therefore, Proposition 5.39 and Theorem 5.44 imply that

f is k-times (continuously) differentiable in U

< Df is (k — 1)-times (continuously) differentiable in U

of of o 1. e : : : .
[8751’ pre ’E] is (k — 1)-times (continuously) differentiable in U
SR is (k — 1)-times (continuously) differentiable in U for all 1 < j; <n
Tj1
< D of is (k — 2)-times (continuously) differentiable in U for all 1 < j; <n
L1
. [ a1 is (k — 2)-times (continuously) differentiable in U
axlale ’ ’ (’7’xné’le
foralll1<j; <n
e2f . . : . . . o
is (k — 2)-times (continuously) differentiable in U for all 1 < jy,j2 < n.
04,0 j,

Applying similar argument several times, we obtain the following theorem which is an anal-

ogy of Theorem 5.44.

Theorem 5.65. Let U — R"™ and f : U — R. Suppose that the partial derivative
o f

exists in a neighborhood of a € U and is continuous at a for all ji,--- , jxr =
awjkaxjkq T ale

orf

0, 0y, -+ Oy

s continuous

1,---,n. Then f is k-times differentiable at a. Moreover,

on U if and only if f is of class €*.
Corollary 5.66. Let U € R™ be open, and f is of class €*. Then

(D?f)(a)(u,v) = (D*f)(a)(v,u) VaeU and u,veR".

5.7 Taylor’s Theorem

Recall Taylor’s Theorem for functions of one variable:

Theorem 5.67 (Taylor). Suppose that for some k € N, f : (a,b) — R be (k + 1)-times
differentiable and c € (a,b). Then for all x € (a,b), there exists d in between ¢ and x such

that

SPARG ¢ (E+D(d k+1
o) = 2 o+ e =,

where f© denotes the (-th derivative of f.
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Theorem 5.68 (Taylor). Let U < R™ be open, and f : U — R be (k+1)-times differentiable.
Suppose that x,a € U and the line segment joining x and a lies in U. Then there exists a

point ¢ on the line segment joining x and a such that

£ copies of x — a

f@) = fa) = Y H(DN@)(E a7 a)
=1 (5.7.1)
P @@ a2 ).

(k+1) copies of x — a

Proof. Let g(t) = f((1 —t)a+tz). Since Ta < U and U is open, there exists § > 0 such
that (1 —t)a+tx e U for all t € (—d,1+ ). By the chain rule, for ¢t € (=4, 1+ 9),

thus for t € (—0,1 4+ ¢), Proposition 5.56 shows that

L= 00+ )@ - a) = (01 (1= Do+ 1) (2 - )

"(t) = 4'2:1 6ai»6fxi (1 =t)a+tx)(z; — a;)(z; — aj) = (D*F)((1 = t)a + tz) (x — a,z — a).

By induction, we conclude that

g(é)(t) = (Dgf)((l —t)a+tm)(iﬁ—a,~-- T —a).

J/
~
£ copies of x — a

By the fact that f is (k + 1)-times differentiable, g : (0,1 + §) — R is (k + 1)-times
differentiable as well. Theorem 5.67 then implies that for some ¢, € (0, 1),

E a0y gDy
:Zggl(HQk (10‘) (5.7.2)
N G
Letting ¢ = (1 — tg)a + toz, (5.7.2) implies (5.7.1). o

Definition 5.69. Let U < R" be open, and f : U — R be k-times differentiable. The k-th

(order) Taylor polynomial for f at a is the polynomial

1
2? a:—a,-~~,:c—(3).

£ copies x — a
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Corollary 5.70. Let U < R"™ be open, f: U — R be (k+ 1)-times differentiable, and define

the remainder

k
1
Ri(a,h) = fla-+ ) = Y} (D' D)(@)(h -+ 1),
=0 "
Then fllirr(l) Rﬁ;ak’ h) _ 0, or in notation, Ri(a,h) = o(|h|%.) as h — 0.
—> Rn
Remark 5.71. An n-dimensional multi-index is a vector a = (ay, - - - , @) of non-negative

integers (that is, a; € N U {0} for all 1 < j < n). Given an n-dimensional multi-index

a=(ag, - ,a,), |a| and a! are numbers defined by

n n
la| = Z ar and ol = Hak!,
k=1 k=1

and the differential operator D is defined by
o™ oo oled
DO{

= = 5z Qgom 0z ... Qgon
1 n 1 n

We also use D“ to denote DS when the variable of differentiation is clear. For a vector
h = (hi, -+, h,) € R" and an n-dimensional multi-index «, we use h* to denote the number
hi*hy? - - - hom.

Suppose that f : U — R is (k + 1)-times differentiable. Then D’f is continuous on U
for 1 < ¢ < k; that is, f is of class €*; thus Theorem 5.65 implies that all the mixed partial
otf

derivatives
8@-@8:5]-”1 e 81’j1

are continuous on U. Therefore, the Clairaut Theorem shows
that
!
D H @) 0 = 3 L pepyape veev nerr,

al
|oe|=¢

and the Taylor Theorem further implies that

f@) =2 Y SO N@E-at+ Y (DO ).

=0]al=k |a|=m+1

Example 5.72. Let f(x,y) = e”cosy. Compute the fourth degree Taylor polynomial for
f at (0,0).
Solution: We compute the zeroth, the first, the second, the third and the fourth mixed
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derivatives of f at (0,0) as follows:

FO.00=1,  £(0,00=1,  £,(0,0)=0,
f2z(0,0) =1, f24(0,0) = f,2(0,0) =0, fyy(0,0) = —1,
J222(0,0) =1, Jry(0,0) = f1ye(0,0) = fy2(0,0) = 0,
Foy(0,0) =0, fyya(0,0) = fyay(0,0) = fayy(0,0) = —1,
and
fra22(0,0) =1, Syyyy(0,0) =1,
J122y(0,0) = fozyo(0,0) = fryez(0,0) = fyeze(0,0) =0,
Jayyy(0,0) = fyayy(0,0) = fyyay(0,0) = fyyye(0,0) =0,
Jrwyy(0,0) = fayay(0,0) = foyye(0,0) = fyawy(0,0) = fraya(0,0) = fyyea(0,0) = —1.

Then the fourth order Taylor polynomial for f at (0,0) is
£(0,0) + £.(0,0)z + £,(0,0)y + % [fm(o, 0)22 + 2 £, (0,0)xy + £, (0, O)yQ}
+ é [ Fawn (0,002 + 3 funy (0, 0022y + 32y (0, 0)2y + F,1 (0, 0)y3]
b o [onan (00088 4 410, (0,002 + 6,1, (0,002
4y (0, 00" + fyyun (0, 0}y

1 1 1
=1+z+ 5(1‘2 — yg) + é(mg — 3xy2) + ﬂ(fl — 62%y? +y4) .
Observing that using the Taylor expansions

1 1 1 1 1
ele—l—x—i—éxz—l—éx‘g—i—ﬂx‘l—i—--- and cosy:1—§y2+ﬂy4+---,

we can “formally” compute e” cosy by multiplying the two “polynomials” above and obtain

that

T w__» 1 2 2 13_1 2 i4_122 iQ .
e cosy = 1+:1c+2(x y)—l—((jx me)+(24x 4xy +24y)—|—h.0.t.,

where h.o.t. stands for the higher order terms which are terms with fifth or higher degree.

Theorem 5.73. Let U € R"™ be open, and f : U — R be of class €% and (D*f)(a) =0 for
(=1, k—1. If (D¥f)(a)(u,u, -+ ,u) >0 for all non-zero vectors u € R™, then f has a

local minimum at a; that is, there exists 6 > 0 such that

f(x) = fla)  VaeBa,d).
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Proof. Let a € U. Since U is open, there exists r > 0 such that B(a,r) € U. Note that
g: B(a,7) x R* — R defined by g(x,u) = (D*f)(x)(u,- - ,u) is continuous since

)
(2) = (D)) 0, )

W) = (D))o, o
< (D)) (- w) = (D)), o)+ |[(D")
< (D)@, w) = (D)), o) + (DA ) = (D))ol
< (D" @) = v,u,- ,u>\ (DA @) @, w) = (DA, - )]
+|(D*f)(@) - < Wl

< (¥ x)HHu—vHR HuH (D) (@) (0, u - vyus - u) — (DA (@) (v, o)
(D P @) w0, w) — (D)), o) + (DA ) (@) — (D)) ol

< [@*N@)[Ilu = vire (lullge’ + lulzz?vles + - + [ulravlza® + lolzs")

+ (D) (@) = (D) )| vl

so that

gz, u) — g(y,v)|
L . i i 5.7.3
< [(@*F)(@)] (e + Jolen) ™ u = vl + [(DFF)(x) = (D)) o) o7

and the right-hand side approaches zero as * — y and v — v. In particular, by the
compactness of S*' = {z € R"|||lz| = 1}(= B[0,1)\B(0, 1) which is closed and bounded),

g(a,-) attains its minimum at some point w € S"!; that is,
g(a,u) = g(a,w) YueS 1.

Let A = g(a,w) = (D¥f)(a)(w, -+ ,w) > 0. Since f is of class €*, there exists 0 < § < r
such that
I(D*f)(x) — (DFf)(a)|| < % whenever z € B(a,0).
Let x € B(a,0)\{a} be given. By Taylor’s Theorem there exists ¢ € Ta (so that ¢ €
B(a,0)) such that

E_1 écopies}\ofx—a kcopiesj\ofz—a
f(ﬂf)Zf(a)ﬂLZe,(DEf)( a)(z—a, - z—a)+ (D'“f)( J@—a, -z —a).
/=1

Since (D*f)(a)(u,u, -+ ,u) =0 for 1 < j < k — 1, we conclude that

f(z) = f(a)+%(Dkf)(c)(x—a,:v—a,-~- ,T—a) = f(a)—l—%g(c,x—a).
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Note that (5.7.3) implies that

9(e. =) — (o =] < (D)@~ (D*D(@)] < 5
thus N
o) 7= 222

By the fact that g(c,z — a) = g(c, H )|z — a|*, we conclude that

x —al

Mz—al* Ve Bla,0)\{a};

f(x)>f(a)—|—%

thus f(z) = f(a) for all z € B(a,?).

]

Corollary 5.74. Let U < R" be open, a € U, and f : U — R be of class €. If g(a) =0
¢

for all1 < ¢ < n and the Hessian matriz of f atl a is positive (cf. negative) definitive, then

f has a local minimum (cf. mazimum) at a.

Definition 5.75. Let U < R" be open. A function f: U — R is said to be real analytic

autaniff(x):iO]l

o (D*f)(a)(x — a, - ,x — a) in a neighborhood of a.
k=0 R

Example 5.76. Let f : R — R be defined by

1
exp(———=) ifxz >0,
ey = { PP
0 ifxr<0.

Then f is of class €%, and f*)(0) = 0 for all k € N. Therefore, f is not real analytic at 0.



Chapter 6

Integration of Functions

6.1 Integrable Functions

In this chapter, we discuss the integration of (bounded) real-valued functions defined on
bounded sets. We first recall the integral of functions of one variable that we learned from

Calculus.

Definition 6.1. A finite set P = {x¢,z1,--- ,x,} is called a partition of the closed interval
[a,b]if a =z < 21 < -+ < x,, = b. Such a partition P is usually denoted by {a = z¢ < z; <
+++ < &, = b}. The norm of P, denoted by |P|, is the number max {z; — z;_1 |1 <i < n}.

Let f : [a,b] — R be a function. A Riemann sum of f for the partition P = {a = 2y <

x1 < - - <x, = b} of [a,b] is a sum which takes the form

n

(&) (@ — mra)

k=1

where &, € [xg_1,2¢] for each 1 < k < n. f is said to be Riemann integrable on |a,b] if
there exists a real number A such that for every € > 0, there exists 6 > 0 such that if P is
partition of [a, b] satisfying |P| < d, then any Riemann sums for the partition P belongs to

the interval (A — e, A+¢). Such a number A (is unique and) is called the Riemann integral

of f on [a,b] and is denoted by f(z)dx.
[a,b]

To define the partition of a bounded set A in R™, we start with the simplest case n = 1.

Definition 6.2. Let A < R be a bounded set. A collection of point P = {xg, 21, ,zn}
is called a partition of A if P is a partition of the closed interval [inf A, sup A}. Such a

150
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partition P is usually denoted by {[xk,xkﬂ] | 0<k<N-— 1}, and the norm of P is the

maximum of the length of intervals in P; that is,
|P| = max {z), — z)_1 | L <k < N}.
Next we look at how a partition of a bounded set in the plane is defined.

Definition 6.3. Let A < R? be a bounded set. Define

a; = inf{z € R|(z,y) € A for some y € R},
by = sup {z € R|(z,y) € A for some y € R},
az = inf{y e R|(z,y) € A for some z € R},
b, = sup {y € R|(z,y) € A for some z € R}.

A collection of rectangles P is called a partition of A if there exists a partition P, of [a;, b1 ]

and a partition P, of [ag, bs], where
Px:{a1:x0<x1<---<:vn:bl} and Py:{a2:y0<y1<---<ym:b2},
such that
P = {Aij‘Aij =21, 2] X [yj_1,y;] fori=1,2,--- ;nand j=1,2,-- ,m}.

The norm of P, denoted by ||P|| and also called the mesh size of the partition P, is a real
number defined by

IP] :max{\/($i_$i*1)2+(yj —yi)?li=12, n =12 am}'

The number \/(z; — z;-1)? + (y; — yj—1)? is often denoted by diam(A;;), and is called the

diameter of A;; (thus the norm of P is the maximum of the diameter of rectangles in P).
In general, the partition of a bounded set A < R" is defined as follows.

Definition 6.4. Let A < R” be a bounded set. Define the numbers ay,as,--- ,a, and
b17b27'” ,bn by

ak:inf{xkeR‘x:(xl,--- ,x,) € A for some 1, Tp_1, Tpy1, - ,xneR},

bkzsup{xkeR‘x:(xl,--- ,x,) € A for some 1, Tp_1, Tpy1, - ,xneR}.



152 CHAPTER 6. Integration of Functions

A collection of rectangles P is called a partition of A if there exists partitions P®*) of

[ak, by], k=1,--- ,n, P® = {ak = m(()k) < xgk) << xg\]fz = bk}, such that
1 1 2 2 n n+1
P = {Ai1i2~--in Aijigein = [95511179551)] X [x§211a$§2)] Koo X [xgnll,xEJ )]’

ik:1,2,---,Nk,kzl,---,n}.

The norm of P, denoted by ||P|| and also called the mesh size of the partition P, is a real
number defined by

HP” maX{JZ($£:)IEEf)1)2 ) Zk:1727 7Nk7k:17"' an}-

k=1

n

The number 4 [ ] (x(k) — 2 _)? is often denoted by diam(A;,4,...;, ), and is called the diam-

ik T
k=1

eter of the rectangle Ay ;,..;,. The volume of A, ,,..; , denoted by v, (A;,..;,) (or simply

V(A iyi,) 18 v is clear to us), is defined by

n

V(Ayigei,) = l_[ (x(k) — ™ ) = (x(l) — 1) (ZE@) —z? ) e (x(-n) — " ) .

ik ip—1 i1 11— 12 190—1 in in—1
k=1

Next we define the Riemann sum of a function f: A — R for a partition P of A.

Definition 6.5. Let A € R” be a bounded set, and f : A — R be a (bounded) function.
A Riemann sum of f for the partition P = {Ay, Ay, .-+, Ax} of A is a sum which takes

the form N

FE&wray),

k=1
where ?A is a function given by
f

() :{ @) we A, (6.1.1)

0 z¢A.
and the set = = {&;,&, -+ , &N} satisfies that & € Ag forall 1 <k < N.

Definition 6.6. Let A € R” be a bounded set, and f : A — R be a (bounded) function.
The function f is Riemann integrable on A if and only if there exists (a unique) I € R such
that for every given € > 0, there exists 6 > 0 such that if P is a partition of A satisfying

|P|| < ¢, then any Riemann sums of f for the partition P belongs to the interval (I—e,I+¢).
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In other words, f is Riemann integrable on A if and only if there exists I € R such that for

every given £ > (, there exists § > 0 such that

N
Z v(A) =1

whenever P = {Ay,--- Ay} is a partition of A satisfying |[P| < & and the set =
{&1,6, - &N} satisfies that & € Ay for all 1 < & < N. The number I is denoted by

R) L Flz) de.

The definition of the integrability of functions given above is due to Bernhard Riemann;

<e (6.1.2)

however, the definition above somehow lacks of flexibility for developing the theory of in-
tegration of functions. In the following, we adopt another point of view due to Gaston
Darboux to discuss the integration of (bounded) functions f : A — R for general bounded
set A < R™.

Definition 6.7. Let A € R™ be a bounded set, and f : A — R be a (bounded) function.
For a partition P = {Al, Ag, -+ ,AN}, the upper sum and the lower sum of f for the
partition P, denoted by U(f,P) and L(f,P) respectively, are numbers defined by

N

U(f,P)= Y sup f (@v(Ay)  and  L(f,P) =) inf f'(z)v(Ay).

fo=1 2€2k jm TEA

The two numbers

[‘ f(z)dz = inf{U(f,P)|P is a partition of A},
A

and
.

.JA f(z)dr = sup {L(f, P) ‘73 is a partition of A}

are called the upper integral and lower integral of f on A, respectively. The function

f is said to be Darboux integrable (on A) if J f(z) dx and J f(z) dx are identical real

numbers, and in this case, we express the upper and lower integral as ( J f(x) dz, called

the Darboux integral of f on A.

Using the property of supremum and infimum, we immediately obtain the following
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Proposition 6.8. Let A < R" be a bounded set, and f,g: A — R be functions. If P is a
partition of A, then

L(f,P)+ L(g,P) < L(f+¢9,P)<U(f+g,P)<U(f,P)+Ulg,P). (6.1.3)

Definition 6.9. A partition P’ of a bounded set A < R” is called a refinement of another
partition P of A if for any A’ € P’, there is A € P such that A’ < A. A partition
P of a bounded set A < R” is called the common refinement of another partitions

7)1,7)2, s ,Pk of A if
1. P is a refinement of P; for all 1 < j < k.
2. If P’ is a refinement of P; for all 1 < j < k, then P’ is also a refinement of P.

In other words, P is a common refinement of Py, Ps, - -- , Py if it is the coarsest refinement.

14 b
_l’_

Figure 6.1: The common refinement of two partitions

Qualitatively speaking, P is a common refinement of Py, Py, -, Py if for each j =
1,---n, the j-th component ¢; of the vertex (¢, -- ,¢,) of each rectangle A € P belongs to

Pi(j) for some i =1,--- k.

The following proposition should be clear to the readers, and the proof is left as an

exercise.

Proposition 6.10. Let A < R"™ be a bounded set, and f : A — R be a function. If P and
P’ are partitions of A and P’ is a refinement of P, then

L(f,P) < L(f,P") <U(f,P") <U(f,P).

Corollary 6.11. Let A € R"” be a bounded set, and f : A — R be a function. If Py and P,
are partitions of A, then L(f,P1) < U(f,P2).

Proof. Let P be the common refinement of P; and P,. Then Proposition 6.10 implies that

L(fapl)<L<f77))<U(f77D)<U(f7P2) =
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Corollary 6.12. Let A < R"™ be a bounded subset, and f : A — R be a function. Then

_L @)z < L F(z)dz

Proof. Note that for each given partition P of A, the previous corollary implies that L(f, P)

is a lower bound for all possible upper sum. Therefore,

L(f,P) < J f(x)dx for all partitions P of A
A

which further implies that J f(x)dx is an upper bound for all possible lower sum; thus
A

L flx)de < L F(x)de. :

In the following proposition, we state an equivalent condition for Darboux integrability

of bounded functions (on bounded sets).

Proposition 6.13 (Riemann’s condition). Let A € R™ be a bounded set, and f : A — R be
a (bounded) function. Then f is Darbouz integrable on A if and only if

Ve > 0,3 a partition P of A sU(f,P) — L(f,P) <e

Proof. “=7" Let ¢ > 0 be given. By the definition of infimum and supremum, there exist
partition P; and Py of A such that

Jf(:c)da:—£<L(f,732) and ff(x)dx+5>U(f,7>1).
Ja 2 ) 2

Let P be a common refinement of P; and P,. Since f is Darboux integrable on A,

J flz)dx = J f(z)dz; thus Proposition 6.10 implies that
JA A

U(f,P) = L(},P) <U(f,P1) = L(f, P2)

ff da:—l——* Jf 3:~§ =c.

<" Let ¢ > 0 be given. By assumption there exists a partition P of A such that U(f,P)—
L(f,P) <e. Then

0 < Lf(:c)da:— Lf(x)dxé U(f,P)— L(f,P) <e.
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Since e > 0 is given arbitrary, we must have f f(z)dx = f f(z)dz; thus f is Darboux
A

A
integrable on A. o

The following theorem establishes the equivalence between the Riemann integrals and

the Darboux integrals.

Theorem 6.14 (Darboux). Let A € R" be a bounded set, and f : A — R be a (bounded)
function. Then f is Riemann integrable on A if and only if f is Darboux integrable on A.
In either cases,

®) | f@)dr =) [ fa)de.

rTr r 7"j|7l

Proof. The boundedness of A guarantees that A < [—5, 5} " for somer > 0. Let R = [—5, 3
Then v(R) = r™.
“=7” Suppose that f is Riemann integrable on A with (R)J f(x)der = 1. Let € > 0 be
A
given. Then there exists ¢ > 0 such that if P is a partition of A satisfying ||P|| < ¢,
then any Riemann of f for P locates in (I — %, I+ Z)
Let P = {Ay,---, Ay} be a partition of A with |P| < §. For each 1 < k < N, choose
§k,77k € Ak such that
5

(a) sup f(z) — W) < F(&) < sup F(2);

xEAk .Z‘EAk

Then
N A N —A g
U(f,P)= ,;552 Fr@)v(ay) < ,; [F(&) + v (B0
. ol —A A £ o A I g 15 1 15
—kzlf (&r)v( k>+4V(R)kZ:1V( k) < tit=1+35
and
N N A 13
L(f,P) = I;mggk (@A) > ,; L7 n) = gl (A)
ol —A e al g 19
= kzlf (me)v(Ag) — (B kZlV(Ak) >1- 11 =1- 3
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As a consequence, I—% < L(f,P) <U(f,P) < I+%; thus U(f, P)—L(f, P) < € which
shows that f is Darboux integrable on A. Moreover, since € > 0 is given arbitrarily

and L(f,P) f f(z)dr < P), we must have [ = (D)J f(z)dx.
A

“<=" Let I = (D)J f(z)dz, and € > 0 be given. Since f is Darboux integrable on A,
A

there exists a partition Py of A such that U(f,P1) — L(f,P1) < % Suppose that
7311 {Z/g ,y1 ; 7ymz} for 1 < i <n. We define
5= €

4r=L(my + my + -+ my +n) (sup f(R) —inf f(R) + 1)
Then 6 > 0.

Assume that P = {A1, Ay, -+ ,Ax} is a given partition of A with |P| < 4.
Let P’ be the common refinement of P and P;. Write P’ = {A], A}, --- | Al\,} and
Ap =AM AP s Al as well as AL = ATV x AP scooox AT Define two

classes of rectangles in P and P’ by

={AeP|y ¢ AV foralli,j},  Co={AeP|y e AD for some 7, j},
={A"e P'}y](-i) ¢ A'Dforalli,j}, Dy={AeP| yj(i) e A for some 4,5} .

By the definition of the upper sum,

N

U(f,P) =Y sup f(z)v(Ay) = Y| sup f (2)w(A) + Y] sup ' (2)v(A)

=1 TEA AeCy TEA AeCh TEA
and similarly,
—A —A
2 sup ' (@)v(Ay) = Y sup (@A) + D sup F(z)w(A).
k=1 CL’EA/ A/EDl zeA/ A/EDQ xeN’
By the fact that C; = Dy, we must have
—A —A
D1 sup fr@)w(A) = D) sup f7(x)r(A)
AeCy TEA A’eD; zeA’

and
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The equalities above further imply that

U(f.P)=U(f,P)= Y supf (z)v(A) = > sup [ (z)v(A)

AeCy, TEA AleD, TEA
< (sup F(R) —inf F(R)) )} v(A)
AeCy
= (sup f(R) — inf f*(R)) D v(Ag)

1<k<N with 3" € A for some i,
n m;

= (sup?A( —inf Z 2 Z v(Ay).

=170 1<k<N with y{Veal?

Moreover, for each fixed 1, 7,

U el b ol o)« 3

1<k<N with y;i)eAgj)

thus
> V(AR <20/t Vi<i<nl<j<m.
1<k<N with yVeA(?
Therefore,

n m;

U(f,P) - U(f.P") < (sup f(R) —inf F(R)) D) > v(Ay)

=17=0 1<k N with yVeAf)

n m;

< (Sup?A( ) —inf 7 ( 22257“" !

i=135=0
<26r" Ymy+mo 4o+ my, + n)(supfA(R) - infTA(R)) <

DN ™

and the fact that U(f,P1) — L(f,P1) < g shows that

U(f,P) 1< U(f,P) =1+ U(f,P1) = U(f, P1)
<U(f,P) = L(f,;P1) + U(f,P1) —U(f,P) <e

Similar argument can be used to show that L(f, P) — 1 > e. Therefore,

I—e < L(f,P)<U(f,P) <I+e

which implies that any Riemann sum of f for P locates in (I —¢,1+ ¢). =
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Notation: If f: A — R is Riemann/Darboux integrable on A,
®) | f@)dz= (D) | f@)da
A A
and we use f f(z) dx to denote this common number.
A

From now on, we will simply use f to denote the zero extension of f when the

domain outside which the zero extension is made is clear.

6.2 The Lebesgue Theorem

In this section, we talk about another equivalent condition of Riemann/Darboux integra-
bility, named the Lebesgue theorem. The Lebesque theorem provides a more practical way
to check the Riemann/Darboux integrability in the development of theory. To understand

the Lebesgue theorem, we need to talk about a new concept, sets of measure zero.

6.2.1 Volume and sets of measure zero

Definition 6.15. A bounded set A < R” is said to have wvolume if the characteristic
function or the indicator function of A, denoted by 14 and given by

{1 ifreA,

1 —
a(@) 0 otherwise,

is Riemann integrable on A, and the number f 14(z) dx is called the volume of A and is
A

denoted by v(A). If v(A) = 0, then A is said to have volume zero or be a set of volume

Z€ero.
Remark 6.16. Not all bounded set has volume.

Proposition 6.17. Let A < R"™ be bounded. Then the following three statements are

equivalent.

(a) A has volume zero;

(b) for every e > 0, there exists finite open rectangles Sy, ---, Sy whose sides are parallel

to the coordinate axes such that

N N
AclJS  and D w(Sk) <e (6.2.1)
k=1 k=1
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(c) for every e > 0, there exist finite rectangles Sy, - -+, Sy such that (6.2.1) holds.

Proof. It suffices to show (a)=>(b) and (c)=>(a) since it is clear that (b)=>(c).

“(a)=(b)” Let € > 0 be given. Since A has volume zero, f 14(z) dz = 0; thus there exists
A
a partition P of A such that

U(1a, P) < f

g 9

1 ifAnA#T,
' m. @ we must have )] V(A)<E.N0WifAEP
0 otherwise, AcP 2

ANA+D

and A n A # ¢, we can find an open rectangle [] whose sides are parallel to the
coordinate axes such that A < [J and v([J) < 2v(A). Let Sy, -+, Sy be those open

N N
rectangles []. Then A < [ J S, and >, v(Sk) <e.

k=1 k=1

Since sup 14(z) = {
reEA

“(c)=(a)” Let £ > 0 be given. By assumption there exist rectangles Sy, Ss, - -+, Sy such
that (6.2.1) holds. W.L.O.G. we can assume that the ratio of the maximum length
and minimum length of sides of Sy is less than 2 for all k& = 1,--- | N (otherwise
we can divide Sy into smaller rectangles so that each smaller rectangle satisfies this
requirement). Then each Sy can be covered by a closed rectangle [J, whose sides are
parallel to the coordinate axes with the property that v([J;) < 2" '/n"v(Sy). Let
P be a partition of A such that for each A € P with A n A # ¢, A < [, for some
k=1,--- N. Then

N N
Ua,P)= > v(A)< Y v(h) <27'Wn" Y v(S) <2 'Wn'e;
AeP k=1 k=1

AnA#J

thus the upper integral J 14(z) dx = 0. Since the lower integral cannot be negative,
_ A

we must have J 14(z)de = J 14(z) dr = 0 which shows that A has volume zero. o
A JA

Example 6.18. Each point in R™ has volume zero.

Definition 6.19. A set A < R" (not necessarily bounded) is said to have measure
zero (R1E % % ) or be a set of measure zero (% p|E & ) if for every € > 0, there exist

00]
countable many rectangles Sy, S, - -+ such that {Sx}; is a cover of A (that is, Ac | Sk)
k=1

Q0
and Y, v(Sg) <e.
k=1
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Example 6.20. The real line R x {0} on R? has measure zero: for any given ¢ > 0, let

£
Sk = [k, k] x [2k+3k 2k+3k] Then

0 o0 0 0
2e € €
RX{O}QkLJSk and ;V<Sk):;2k'2k+3k:;2k+1:§<5'
=1 =1 —1 —1

Similarly, any hyperplane in R™ also has measure zero.

Proposition 6.21. Let A < R" be a set of measure zero. If B < A, then B also has

measure zero.
Modifying the proof of Proposition 6.17, we can also conclude the following

Proposition 6.22. A set A < R"™ has measure zero if and only if for every € > 0, there

exist countable many open rectangles S1, Sz, -+ whose sides are parallel to the coordinate

azes such that A < U Sk and Z v(Sk) < e.

Remark 6.23. If a set A has volume zero, then it has measure zero.

Proposition 6.24. Let K < R"™ be a compact set of measure zero. Then K has volume

ZEero.

Proof. Let ¢ > 0 be given. Then there are countable open rectangles 57, S5, - -+ such that

0 o0
c U Sk and 2 v
k=1 k=1

Since {Sk}72; is an open cover of K, by the compactness of K there exists N > 0 such that
N N o

K < | Sk, while >, v(Sk) < > v(Sk) < e. As a consequence, K has volume zero. o
k=1 k=1 k=1

Since the boundary of a rectangle has measure zero, we also have the following

Corollary 6.25. Let S < R™ be a bounded rectangle with positive volume. Then S is not a

set of measure zero.

o0
Theorem 6.26. If Ay, Ay, --- are sets of measure zero in R", then |J Ay has measure

k=1
ZET0.
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Proof. Let ¢ > 0 be given. Since Ajs are sets of measure zero, there exist countable
rectangles {S](k) };il, such that

0

* €
Avs s and Y u(s) < g vkeN.
1 =

Consider the collection consisting of all .S ](-k)’s. Since there are countable many rectangles in

this collection, we can label them as S;, Ss, - -+, and we have
e} e} o6} [ee}
k
UarcsJUs =Js
k=1 k=1j=1 =1
and
PICOEDIDNICHY 22k+1:_<€
k=1 k=1j=1 k=1
e}
Therefore, | J Ay has measure zero. =

k=1
Corollary 6.27. The set of rational numbers in R has measure zero.

Theorem 6.28. Let A < R"™ be bounded and B < R™ be a set of measure zero. Then Ax B

has measure zero in R™"T™.

Proof. Let € > 0 be given. Since A is bounded, there exist a bounded rectangle R such that

A < R. Since B has measure zero, there exist countable rectangles {S;};2; < R™ such that

0 0 c
c| JSk and Vm(Sk) < :
,Ql 2. v(R)

k=1

Then A x B < |J(R x Si), and

k=1
o0 [ee} e}
Z Vn—i—m( X Sk - Z Vm Sk - Vn Z
k=1 k=1 k=1
Since R x S}, is a rectangle for all k € N, we conclude that A x B has measure zero. =

(=)

.2.2 The Lebesgue theorem

\«\-\

2_

Vi e F] 9 &k Riemann ¥ f 05 B & % i% % @ Riemann’s condition f= Darboux

b

o Aim— &P o AP iE S HiE Riemman ¥ frﬂf - BE x% EiE o iEBE x% iE &

i
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Wi B f & AL L Riemann 7 ff hF 2 2 [ eutdp [ (LSET A T
£V FRE) PP RS DELAPIRLT o L EP B APAK- B
Sfchi F - BRG] e B BABIDD N T URE A ke Bafch-
R E

]

Definition 6.29. Let f : R™ — R be a function. For any x € R", the oscillation of f at
x is the quantity

osc(f,x) =inf sup  |f(21) — flz2)|.

6>0 4, ,x2€B(z,9)

AP R A A AP infimum Gz BE A(Gz) = sup  [f(@1) — flao)|
z1,226B(x,0)
B0 e St (v AE ) @ ose(f,x) RIA_h(d;2) § 0 > 0 Premfm*T o 5 #h > Ay
ALIR h(0e) 4 TR A sup f(y)— inf f(y).
yeB(z,0) yeB(,0)
T Lemma M3 4rimiesh- B odich- BRI o

Lemma 6.30. Let f : R" — R be a function, and xo € R™. Then f is continuous at xy if

and only if osc(f,zo) = 0.
Proof. “=7" Let € > 0 be given. Since f is continuous at x,
36> 053 |f(z) — f(z)] < % whenever = € B(xg, 9).

In particular, for any x;, 25 € B(zo,9),

£ (1) = F(@2)] < [F(o1) = Flao)| + |flwo) = fla)| < T

thus  sup  |f(z1) — flz2)| < % which further implies that

:)31,33263(.’170,5)

0 < osc(f,xg) < % <e.

Since € is given arbitrarily, osc(f, zo) = 0.

“<" Let € > 0 be given. By the definition of infimum, there exists 6 > 0 such that

sup | f(z1) — f(z2)| <e.

1,226 B(z0,9)

In particular, |f(z) — f(zo)| < sup  |f(z1) — f(z2)| <€ for all z € B(z,0). o

xl,:pgeB(azo,E)
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Lemma 6.31. Let f : R® — R be a function. Then for all ¢ > 0, the set D, = {a: €
R" | osc(f,z) = e} is closed.

Proof. Suppose that {yx}7; € D. and y,, — y. Then for any § > 0, there exists N > 0 such
that y, € B(y,d) for all £ > N. Since B(y,d) is open, for each k > N there exists 0 > 0
such that B(yk,dr) < B(y,d); thus we find that

sup  |f(z1) = fzo)| < sup  |f(z1) — flx2)] Vk>=N.

©1,226B(yr,0k) x1,22€ B(y,0)
The inequality above implies that osc(f,y) = ¢; thus y € D, and D, is closed. =

Theorem 6.32 (Lebesgue). Let A € R™ be a bounded set, f : A — R be a bounded function,
and ?A be the extension of f by zero outside A; that is,

A(x):{ flo) ifzeA,

0 otherwise.

f
Then f is Riemann integrable on A if and only if the collection of discontinuity of TA is a
set of measure zero.
Proof. Let D = {z € R" ! OSC(TA,x) >0} and D, = {z e R" ‘ osc(fA,a:) > c}. We remark
ee}
here that D = | J D:.
k=1 "

“=" We show that D 1 has measure zero for all k € N (if so, then Theorem 6.26 implies

that D has measure zero).

Let £ € N be fixed, and ¢ > 0 be given. By Riemann’s condition there exists a
partition P of A such that

> [sup (@) — inf [ w(a) <

g
Aep €A k

Define

D(l)E{xeD%\xeaAforsomeAEP},

1
k
(

S

D )E{xeD%‘xeint(A)forsomeAEP}.

1
E

Then D 1= D(;) u D?. We note that D(f) has measure zero since it is contained in

1
K k k
J 0A while each dA has measure zero. Now we show that D(f) also has measure
AeP k
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zero. Let C = {A € P|int(A) n D, # @}. Then D(f) < |J A. Moreover, we
k AeC
also note that if A € C, sup?A(:c) - ini TA(LE) > % In fact, if A € C, there exists
zEA z€
y € int(A) n D%; thus choosing 6 > 0 such that B(y,d) < int(A),

sup F() — inf 7 (@) = sup [F'(or) = F'(@2)| = swp  [F(w) = T (w2)

TEA T1,T26A 1,226 B(y,0)

> inf sup VA(xl) —?A(szﬂ = OSC(TAJJ) =
0>0 421 22€B(y,6)

| =

As a consequence,

E3u(a) < X [sup T @) — inf T (@) w(A) = UG, P) — L(,P) <

AeC Aep €A

which implies that >; v(A) < e. In other words, we establish that D(f) has measure
AeC k
zero. Therefore, D% has measure zero for all k£ € N; thus D has measure zero.

“<" Let R be a bounded closed rectangle with sides parallel to the coordinate axes and A <

5
, where = su 2.
2| flleo +v(R) +1 1f oo meg‘f( )|

int(R), and € > 0 be given. Define ¢’ =

1. Since D,/ is a subset of D, Proposition 6.21 implies that D. has measure zero;

thus Proposition 6.22 provides open rectangles Sy, S, - - - whose sides are parallel
o0 Q0

to the coordinate axes such that D, < |J Sk, and ) v(Sk) < €. In addition,
k=1 k=1

we can assume that S, < R for all £ € N since D., € R.

2. Since D < R is bounded, Lemma 6.31 implies that D, is compact; thus D. <

N
S for some N € N.
k=1

Let [ = Sk, and P; be a partition of R satisfying
(a) For each A € Py with A n Do # &, A [, for some k=1,---, N.

(b) For each k =1,--- N, [ is the union of rectangles in P;.

(¢) Some collection of A € Py forms a partition Py of A.
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AL L S e S e I

Figure 6.2: Constructing partitions P; and P, from finite rectangles Sy, --- , Sy

Rectangles in P; fall into two families: C} = {A eP: ‘ A € [y for some k=1, --- ,N},
and Cy = {A e P1 ‘ Ad[pforallk=1,--- N } By the definition of the oscillation
function, for x ¢ D, we let §, > 0 be such that

7 Flxa)| <€

. —A
sup f(y)— inf f(y)= sup [f(x1) -
z€B(y,dy) zeB(y,dy) z1,22€B(x,04)

Since K = [J A is compact, there exists r > 0 (the Lebesgue number associated
AeCoy

with K and open cover |J B(z,d,)) such that for each a € K, B(a,r) < B(y,d,) for
zeK
some y € K. Let P’ be a refinement of P; such that |P’|| < r. Then if A" € P’ satisfies

that A’ < A for some A € Cy, we must have A’ < B(y, d,) for some y € K; thus
—A

sup f () — inf fi(x) < sup f(y)— inf F(y)

PN e’ z€B(y,0y) z€B(y,0y)

= sup ‘TA<$1) - TA(%)\ <
x1,22€B(y,0y)

if A’ < A for some A € Cy. Let P = {A’ e P’ ’ A’ < A for some A € 732}. Then P is
a partition of A and
ULP) L) = (2 + X )(sup T (@) — inf T (@))u(a)

!
AleP! Alep! zel
A'cAeCy AlcAeCy

<2flw Dy A+ Y w(A)

Alep’ AleP!
AlcAeCy AlCAeCy
<2fle > v(A)+eV(R)
AePnCi
N
<2 floo 2, v(Sk) +EV(R) < (20 + V(R))e < e
k=1

thus f is Riemann integrable on A by Riemann’s condition. =
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Example 6.33. Let A=Qn [0,1], and f: A — R be the constant function f = 1. Then

- 1 fzeQn](0,1],
flz) = :
0 otherwise.

The collection of points of discontinuity of f is [0, 1] which, by Corollary 6.25, cannot be a
set of measure zero; thus f is not Riemann integrable.

Another way to see that f is not Riemann integrable is U(f,P) = 1 and L(f,P) = 0 for
all partitions P of A.

Corollary 6.34. A bounded set A < R™ has volume if and only if the boundary of A has

measure zZero.

Proof. 1t suffices to show that the collection of discontinuities of the function 14 (which is
the same as 1,") is indeed dA.

1. If 29 ¢ OA, then there exists § > 0 such that either B(wzg,0) € A or B(xq,d) < A%

thus 1,4 is continuous at z ¢ 0A since 14(x) is constant for all z € B(x, ).

2. On the other hand, if g € 0A, then there exists z;, € A, y, € A such that z;, — z and
yr — xg as k — oo. This implies that 14 cannot be continuous at zy since 14(x;) =1
while 14(yx) = 0 for all ke N.

As a consequence, the collection of discontinuity of 14 is exactly dA, and the corollary

follows from Lebesgue’s theorem. =

Corollary 6.35. Let A < R" be a bounded set with volume. A bounded function f: A — R
is Riemann integrable on A if and only if the collection of discontinuities of f has measure
zero. In particular, a bounded function f : A — R with a finite or countable number of

points of discontinuity is Riemann integrable on A.
Proof. Note that
{x e R"” ‘ osc(f,x) > O} c 0A U {a: €A ’ f is discontinuous at :U}
and
{x cA ‘ f is discontinuous at x} < {x e R"” ’ osc(f,x) > O} ;

thus by the fact that dA has measure zero (Corollary 6.34) and Theorem 6.26 we conclude
that the collection of discontinuities of f has measure zero if and only if the collection of

discontinuities of f has measure zero. O
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Corollary 6.36. A bounded function is integrable on a compact set of measure zero.

Proof. 1f f : K — R is bounded, and K is a compact set of measure zero, then the collection

of discontinuities of f is a subset of K. =

Corollary 6.37. Suppose that A, B < R™ are bounded sets with volume, and f : A — R is

Riemann integrable on A. Then f is Riemann integrable on A n B.

Proof. By the inclusion

N

{z €int(An B)| osc(f'°7 x) > 0} < {zeR"| osc(f', z) > 0},

we find that

{zeR"| osc(f'"",z) > 0} € d(An B)u {zeint(Adn B) |osc(7AmB, z) >0}
c 0AudBuU {xERn‘OSC(?A,.T) > 0}

Since dA and 0B both have measure zero, the integrability of f on A n B then follows from
the integrability of f on A and the Lebesgue Theorem. =

Remark 6.38. Suppose that A < R" is a bounded set of measure zero. Even if f: A - R
is continuous, f might not be Riemann integrable. For example, the function f given in

Example 6.33 is not Riemann integrable even though f is continuous on A.

Remark 6.39. When f : A — R is Riemann integrable on A, it is not necessary that A
has volume. For example, the zero function is Riemann integrable on A = Q n [0, 1] even

though A does not has volume.

Corollary 6.40 (Lebesgue’s Differentiation Theorem, a simple version). Let A € R" be a

bounded set with volume, and f : A — R be bounded and Riemann integrable on A. Then

1

" (Blao,r) n A) f() fl@)dw = f(@) (6:2:2)

for almost every xqg € A; that is, the equality above does not hold only for xo from a set of

measure zZero.

Proof. Let ¢ > 0 be given, and suppose that f, the zero extension of f outside A, is

continuous at xy. Then there exists 0 > 0 such that

|f($)_ (550)‘ < Vae B(xg,d)nA.

DO | ™
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Since 0A has measure zero, by the fact that 0(B(xg,r) n A) € dB(xg,r) U dA we find that
0(B(xg,r) N A) also has measure zero for all » > 0. In other words, B(z, ) n A has volume.
Then if 0 < r < 4,

e L@O,w fla)da = fao)

1
— ’y(B(a:O,T’) A A) JB(xO,r)mA (f(l') — (:L'O)) dwl
1 - _
v(B(zg,7) N A) JB(ZO,T)QA ‘f(x) - f($0)| dx
€ 1 )
20(B(xq,7) N A) JB(IO’T)QA ldx = 5 <€

N

<

This implies that (6.2.2) holds for all z; at which f is continuous. The theorem then follows

from the Lebesgue theorem. =

6.3 Properties of the Integrals

Proposition 6.41. Let A < R" be a bounded set, and f,g: A — R be bounded functions.
Then

f(x)dx and L (f1p)(x)dx = f f(x) dx.

B

(a) If B< A, then L (f1p)(z)dx = J

B

jf da:+j ff+g>(>d jf+g jf d:c+j

(c) If ¢ =0, thenf( )z )x—cff dxcmdf (cf)(z dm—cff x)dz. If ¢ <0,

thenf x)dr =c J x)dx andf (cf)(z x—cf f(z

(d) If f < g on A, then J J g(x)dx and f flx Lg(w) dx.

(e) If A has volume zero, then f is Riemann integrable on A, and f f(x)dz =0.
A

Proof. We only prove (a), (b), (c) and (e) since (d) is trivial.
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(a) Let € > 0 be given. By the definition of the lower integral, there exist partition P4 of
A and Pgp of B such that

JA(fIB)(m) der —e < L(flp,Pa) = Z 1nf 15" (x)v(A)

AGPA

and

TeA
AePp

| sde=5 <10 = T nf Fmla).

Let P!y be a refinement of P4 such that some collection of rectangles in P/, forms a

partition of B. Denote this partition of B by Pj. Since in£ T x) <0if Ae PPy,
xe

Proposition 6.10 implies that

JA<le)($) dr —e < L(le,PA) < L(le,,PA) Z mf le ( )V(A)

AGPA

>+ Y )il @A)

AeP)\Py AePj

< D) inf [ @w(A) = L(f,Pp) < f flz)dz.

AePl, =B
On the other hand, let 75A be a partition of A such that Pg < 75,4 and
€
A< ———
) VA) < 5o
AE'PA\'PB,AK\B#Q

where M > 0 is an upper bound of | f|. Then

2, inf fU@p(A) =M Y (A=

- zeA -
AE'PA\'PB,AHBig AE’PA\’PB,AﬁBig

which further implies that

| U1y de = 215, By = 3 inf 71" @)

A€73A

-(X+ X+ ¥ )

AEPB  AePs\Pp,AnB£Z AePA\Pg, AnB=

= L(f,Ps) + > 1nff ff )ydx —¢.

AeﬁA\PB,AmB?s@
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Therefore, we establish that

JB flw)de —e < L<f13)(x) dr < JB f(x)dz +¢.

Since ¢ > 0 is given arbitrarily, we conclude that J (f1p)(z)dx = f f(z)dz. Similar
argument can be applied to conclude that J (f1p)(x)dx = j flx

(b) Let € > 0 be given. By the definition of the lower integral, there exist partitions Py
and P,y of A such that

f f(x)dx — ‘< L(f,P1) and J g(x)dx — ‘< L(g,Ps).
Ja 2 Ja 2
Let P be a common refinement of P; and P,. Then

JA f(z)dzx —i—f g(x)de —e < L(f,P1) + L(f,P2) < L(f,P)+ L(g,P)

= 2, A (B)+ ), nfglap(a

AeP AeP
< 3 i+ @A) = L(F +0.P) < | (F+0)a
AeP Y

Since € > 0 is given arbitrarily, we conclude that

IREEE j s)de < [ ()i
Similarly, we have f (f+9)( f f(z)dz + J x) dzx; thus (b) is established.

(c) It suffices to show the case ¢ = —1. Let € > 0 be given. Then there exist partitions
P, and P, of A such that

J—f(:p)dx—5<L(—f,731) and U(f,P2)<ff(x)dm—l—5.
JA A
Let P be the common refinement of P; and P,. Then

JA —f(x)de —e < L(—f,P1) < L(—f,P) < J —f(z)dx

A

and

Lf(l')dl’<U(f,73) <U(f,Ps) < Lf(:c)dx—irs.
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By the fact that

L(=f,P) = Y, inf (=) (@)(A) = = Y sup f (2)u(A) = ~U(f,P),

AepxeA = zeA
we find that
J —f(x)de —e < L(—f,P)=-U(f,P) < —J f(z)dx
JA A
and _
—f(x)de = L(—f,P)=-U(f,P) > —J f(z)dx —e.
JA A
Therefore,

JA—f(:U)dx—a<—Lf(x)dx< JA_f(x)dx+€'

Since £ > 0 is given arbitrarily, we conclude (c).

Since f is bounded on A, there exist M > 0 such that —M < f(z) < M for all z € A.
Therefore, —14 < % < 14 on A; thus (¢) and (d) imply that

L 14(x) dz > L % de = % L (@) do

f(z)dx < 0. Similarly, f — f(x) dz < 0 which further implies
A

0= | 1a@)do

which implies that f
A

that f f(z)dx = 0. Therefore, by Corollary 6.12 we conclude that
Ja

0< Lf(x) dr < Lf(x) dr <0

which implies that f is Riemann integrable on A and j f(x)dx =0. o
A

Remark 6.42. Let A < R"™ be a bounded set.

1.

2.

If f: A— Ris a bounded function, then (a) of Proposition 6.41 shows that if B < A,

then f is Riemann integrable on B if and only if f1g is Riemann integrable on A.

If f,g: A— R are bounded functions, then (b) of Proposition 6.41 also implies that

_L(f—g)(:w dv < L f(x) do— L g(x) dz and L f(x) du— L o) di < L( o)) de.
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Corollary 6.43. Let A, B < R" be bounded sets such that A n B has volume zero, and
f:Au B — R be a bounded function. Then

_L flz)dx + JB f(z)de < _LUB fz)dz < LUB flz)dz < L f(z)dz + L oL

Proof. Note that f14+ flg = fla,p+ fla~p on AU B. Therefore, (a), (b) of Proposition
6.41 and Remark 6.42 implies that

r
j f(x) do+ j f(2) da = <f1A><x>da:+f (1) () da < f (Fla+ flp)(z) de
JA JB JAUB JAUB

JAUB

- ; (fan = (~flans) o) do
<[ Aas@)de— J (= flanp) (@) da

AuB JAUB

| e

leo

r

[ stade- f (D)

JA

which, with the help of Proposition 6.41 (e), further implies that

Jf dx+ff LUBf(x)d:z:.

The case of the upper integral can be proved in a similar fashion. O

Having established Proposition 6.41, it is easy to see the following theorem (except (c)).

The proof is left as an exercise.

Theorem 6.44. Let A < R" be a bounded set, ¢ € R, and f,g : A — R be Riemann

integrable functions. Then
(a) f £ g is Riemann integrable, and J (f £g)(z)dx = f f(x)dx £+ J g(x)dx.
A A A
(b) ¢f is Riemann integrable, and J (cf)(z)dr = CJ f(z)dx
A A
(¢) |f| is Riemann integrable, and ‘f f(z) dac) < f |f(z)|dz.
A A
(d) If f < g, then f f(x) de < f o(z) da
A A

(e) If A has volume and |f| < M, then ‘J f(x) d$‘ < Mv(A).
A
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Theorem 6.45. Let A < R™ be bounded, and f : A — R be a Riemann integrable function.

1. If A has measure zero, then f f(z)dx = 0.
A

2. If f(x) = 0 for all x € A, and J f(z)dz = 0, then the set {x € A|f(z) # 0} has
A

measure zZero.

Proof. 1. We show that L(f,P) < 0 < U(f,P) for all partitions P of A. Let P =
{Al, e ,AN} be a partition of A. By Corollary 6.25, A, n A # G fork=1,--- ,N;

Y

thus we must have inf f(z) < 0 and sup f(z) > 0. As a consequence, if P is a

TEA reAy,
partition of A,
N B N
L(f,P)Z;xggkf(:v)V( ) <0 and U(f,P)= gsupf Ay) 2 0;
thus J <0< J x)dx. Since f is integrable on A, J f(x)dx = 0.
A

2. Let Ay ={z e Al f(z) = %} We claim that Ay has measure zero for all k£ € N.

Let ¢ > 0 be given. Since J f(z)dz = 0, there exists a partition P of A such that

U(f,P) <. Let C={AeP|An A # @} Then A, |J A, and
AeC

: Z < ), sup fla < Y sup f(z)p(D) = U(f,P) < %

AeC AeC TEA Aep €A

which implies that Y] v(A) < e. Therefore, Ay has measure zero; thus Theorem 6.26
AeC

0
implies that A = | J A also has measure zero. =
k=1

Remark 6.46. Combining Corollary 6.36 and Theorem 6.45, we conclude that the integral

of a bounded function on a compact set of measure zero is zero.

Remark 6.47. Let A =Qn[0,1] and f : A — R be the constant function f = 1. We have
shown in Example 6.33 that f is not Riemann integrable. We note that A has no volume
since A = [0, 1] which is not a set of measure zero. However, A has measure zero since it

consists of countable number of points.
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1. Since f is continuous on A, the condition that A has volume in Corollary 6.35 cannot

be removed.

2. Since A has measure zero, the condition that f is Riemann integrable in Theorem 6.45

cannot be removed.

Definition 6.48. Let A < R" be a set and f : A — R be a function. For B < A, the
restriction of f to B is the function f’B : A — R given by f|g = flpg. In other words,

f(z) ifxeB,
f‘B(x):{ 0 ifzeAB.

The following two theorems are direct consequences of (a) of Proposition 6.41 and Corol-
lary 6.43.

Theorem 6.49. Let A, B be bounded subsets of R", B < A, and f : A — R be a bounded
function. Then f is Riemann integrable on B if and only if f|p is Riemann integrable on

A. In either cases,
f f}B(x) da::J flz)dx.
A B

Theorem 6.50. Let A, B be bounded subsets of R™ be such that A n B has volume zero,
and f: Au B — R be bounded such that f‘A and f!B are all Riemann integrable on A U B.

Then f is Riemann integrable on A v B, and

LUB f(z)dx = L f(z)dx + JB flz)dx.
6.4 The Fubini Theorem

If f: [a,b] — R is continuous, the fundamental theorem of Calculus can be applied to
computed the integral of f on [a,b]. In this section, we focus on how the integral of f on

A < R", where n > 2, can be computed if the integral exists.

Definition 6.51. Let A < R™ and B < R™ be bounded sets, and f : A x B — R be a

bounded function. For each fixed x € A, the lower integral of the function f(z,-) : B —

R is denoted by j f(z,y) dy, and the upper integral of f(z,-) : B — R is denoted by
_ B

j f(x,y)dy. If the upper integral and the lower integral of f(z,:) : B — R are the same
B
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at © € A, we simply write f f(z,y) dy for the integrals of f(z,-) on B. The integrals
_ B

f f(z,y) dx, J f(z,y) dx and J f(z,y) dx are defined similarly.

A JA A

Theorem 6.52 (Fubini’s Theorem). Let A < R"™ and B < R™ be bounded sets, and
f:Ax B —R be a bounded function. For x € R" and y € R™, write z = (z,y). Then

JAxBf(Z) J f f(z, ydy dm J f flx, ydy dx f dz, (6.4.1a)
JAxBf(Z)dZ<JB _Lf(w,y)d:n)dy f ffxydx dy < f dz. (6.4.1b)

In particular, if f : A x B — R is Riemann integrable, then

LxB fle)dz = L (JB f(x7y)dy>d$ = L (L f(x,y)dy>dx
— JB (JA f(x,y)d.r>dy = JB (L f(x,y)dx>dy'

Proof. 1t suffices to prove (6.4.1a). Let € > 0 be given. Choose a partition P of A x B such
that L(f,P) > J f(2)dz — . Since P is a partition of A x B, there exist partition P4
AxB

of A and partitiz)n Pp of B such that P = {A =RxS ‘ RePy,Se PB}. By Proposition
6.41 and Corollary 6.43, we find that

_L ( _L Fla,y) dy ) de = LMAR 14(2) (_fu
L5 e

> ZJ JfAXBxydydw
RePsy SePr

= Z inf TAXB(x>y)Vm(S)Vn(R)

RePssep, (BYERXS

= 2 inf 77 (2, y)nrm(A) = L(f,P) > fA Bf(z)dz —€.

(z,y)eA

f(@,y)1s(y) dy ) do

SePp s

Since € > 0 is given arbitrarily, we conclude that

JAXB J(z)dz < JB (JA f(z,y)dz)d

Similarly, J (J f(x,y)dy) dr < J f(z)dz; thus (6.4.1a) is concluded. o
A B AxB
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Corollary 6.53. Let S < R" be a bounded set with volume, ¢1,ps : S — R be continuous
maps such that p1(z) < pa(z) forallz € S, A= {(z,y) e R"xR |z € 5,91 (z) <y < pa()},

and f: A — R be continuous. Then f is Riemann integrable on A, and
e2(x)
| sewden = [ (|7t dy)ar. (6:42)
A S ~Jei(x)

Proof. Since 0A has measure zero, and f is continuous on A, Corollary 6.35 implies that f

is Riemann integrable on A. Let m = Hli;l ¢1(x) and M = max @a(x). Then A < S x[m, M];
xre e

thus Theorem 6.50 and the Fubini Theorem imply that

[ fenien={  Fenien= [ ([ Fena)n

_ L (J_j?A(x,y) dy)dz. _

Noting that [m, M] has a boundary of volume zero in R, and for each = € 5, ?A( ,-) is

continuous except perhaps at y = @1 (z) and y = ps(x), Corollary 6.35 implies that f (z,-)

is Riemann integrable on [m, M| for each x € S. Therefore, J f x,y)dy = f f z,y)dy
which further implies that

ffa:y (1) fffxydy)dw (6.4.3)

For each fixed z € S, let A, = {y € R|p1(z) <y < ¢a(x)}. Then T, y) = f(z,y)1a, (y)
for all (z,y) € S x [m, M] or equivalently, TA(w, ) = f(z,-)|a, for all z € S; thus Proposition
6.41 (a) implies that

M p2(z)
| Pena=| seva=[" fana  vees. @
m A:): (101(7:)
Combining (6.4.3) and (6.4.4), we conclude (6.4.2). o

Corollary 6.54. 1. Let ¢1,¢s : [a,b] — R be continuous maps such that ¢1(x) < a(x)
for all x € [a,b], A < bpi(z) <y < paa)}, and f: A — R be

continuous. Then f is Riemann integrable on A, and

[ semas={([ (()) (o) dy ).

a ®
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2. Let 1,1 : [¢,d] — R be continuous maps such that 11(y) < a(y) for all y € [c,d],
A= {(x,y) ‘ c<y<d,(y) <z < wg(y)}, and f: A — R be continuous. Then f is

Riemann integrable on A, and

[ swan=["([* sy ar)a

c ¥1(y)

p2(x)
Remark 6.55. To simplify the notation, sometimes we use f J f(z,y) dydzx to denote
S Jp1(z)
(x)

the iterated integral the iterated integral J (J
5

©2
f(z,y) dy) dx. Similar notation applies
e1(x)

wb o rd
to the upper and the lower integrals. For example, we also have J J flz,y)dydzr =

[ ([ st av)ae

d 7d
Remark 6.56. For each x € [a,b], define p(x) = f f(z,y)dy and ¥(z) = J f(z,y)dy.

Then p(z) < ¢(z) for all z € [a,b], and the Fubini Theorem implies that

|| ) = etaas =0,

a

By Theorem 6.45, the set {z € [a,b] | ¢(z) — ¢(z) # 0} has measure zero. In other words,
except on a set of measure zero, f(z,-) is Riemann integrable on [c¢,d] if f is Riemann
integrable on [a,b] x [¢,d]. This property can be rephrased as that “f(x,-) is Riemann
integrable on [c, d| for almost every z € [a,b] if f is Riemann integrable on the rectangle
[a,b] x [c,d]”. Similarly, f(-,y) is Riemann integrable for almost every y € [c,d] if f is

Riemann integrable on [a, b] x [c, d].

Remark 6.57. The integrability of f does not guarantee that f(x,-) or f(-,y) is Riemann
integrable. In fact, there exists a function f : [0,1] x [0,1] — R such that f is Riemann
integrable, f(-,y) is Riemann integrable for each y € [0,1], but f(z,-) is not Riemann

integrable for infinitely many x € [0, 1]. For example, let

if x =0 orif x or y is irrational ,

flz,y) =

"I~ O

ifx,ye@andx:gwith (p,q)=1.
p

Then
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1. For each y € [0,1], f(-,y) is continuous at all irrational numbers. Therefore, f(-,y) is

1 1
Riemann integrable, and J flz,y)de = J f(z,y)dz = 0.
0 Jo

1
2. Forz =0orz¢Q, f(z,-) is Riemann integrable, and J f(z,y)dy = 0.
0

3. If x = % with (p,q) = 1, f(z,-) is nowhere continuous in [0,1]. In fact, for each
Yo € [07 1]7
. 1 . .
Hm f(z,y) = L While  Jim f(z,y) =0;
yeQ y¢Q

thus the limit of f(z,y) as y — yo does not exist. Therefore, the Lebesgue theorem
implies that f(z,) is not Riemann integrable if z € Q@ n (0, 1]. On the other hand, for
x = ]% with (p,q) = 1 we have

1 1 1
T dy = nd T dy = —.
Lf(w)y 0 a Lf(w)y ;

1 7l
4. Define ¢(x) = f f(z,y)dy and ¥(z) = J f(z,y)dy. Then 2 and 3 imply that ¢
Jo 0
1 1
and 1 are Riemann integrable on [0, 1], and J o(x)dx = J Y(z)dr = 0.
0 0

5. For each a ¢ Q n [0,1] and b € [0,1], f is continuous at (a,b). In fact, for any given

€ > 0, there exists a prime number p such that , < e. Let
5:mm{\a—£\|o<£<k<p,keN,eeNu{0}}.
Then § > 0, and if (z,y) € B((a,b),8) n ([0,1] x [0, 1]), we have
fa9) = Flab) = |fay)] < 5 <<,

where we use the fact that if (z,y) € B((a, b), 5) and z € Q, then z =

form) for some k > p.

(in reduced

T~

As a consequence, {(a,b) € R?| f is discontinuous at (a,b)} < Q x [0,1]. Since
Q x [0,1] is a countable union of measure zero sets, it has measure zero; thus f is

Riemann integrable by the Lebesgue theorem. The Fubini theorem then implies that

1 1
f fwwmszf@ww@:u
[0,1]x[0,1] o Jo
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Remark 6.58. The integrability of f(x,-) and f(-,y) does not guarantee the integrability
of f. In fact, there exists a bounded function f : [0,1] x [0,1] — R such that f(z,-) and
f(-,y) are both Riemann integrable on [0, 1], but f is not Riemann integrable on [0, 1] x [0, 1].
For example, let

( k¢

), 0 < k,l < 2™ odd numbers, n e N,
flz,y) =

0 otherwise.

Then for each x € [0,1], f(z,-) only has finite number of discontinuities; thus f(z,-) is

flf(x,y) dy =

Similarly, f(-,y) is Riemann integrable, and J f(x,y)dr = 0. As a consequence,

Jffxydydx—fffxydmdy—o

However, note that f is nowhere continuous on [0, 1] x [0, 1]; thus the Lebesgue theorem
implies that f is not Riemann integrable. One can also see this by the fact that U(f,P) =1
and L(f,P) = 0 for all partition of [0, 1] x [0, 1].

Riemann integrable, and

Example 6.59. Let A = {(z,y) € RQ‘O <z<l,z<y<1} and f: A — R be given by
f(z,y) = zy. Then Corollary 6.54 implies that

Ak b ay? =t Yirooa 11 1
dA = dy)dr=| "L de=| (- Vdz=-—-=-.
Lf(x’y) L(sz«/ y)x L 2 |y L(z 2)”5 48 3

On the other hand, since A = {(:c, y) € R? ‘ 0<y<1,0<z< y}, we can also evaluate the
integral of f on A by

1, ry 1,2 1.3 1
nydA—J (f xydx)dy—f ry ydy—f y—dy:—.
A 0 0 0o 2 le=0 0 2 8

Example 6.60. Let A = {(z,y) € RQ‘O <z <1,4/z<y<1} and f: A— R be given by
flz,y) = e¥’. Then Corollary 6.54 implies that

| fmin= | K ff o dy)do.
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Since we do not know how to compute the inner integral, we look for another way of finding
the integral. Observing that A = {(m, y) € R? ’ 0<y<1l,0<x< y2}, we have

1
1
foydA J Jeydx dy—fy%ygdy:geys

Example 6.61. Let A = R? be the set {(z1,22,23) € R* |21 = 0,25 > 0,23 = 0,and z; +
T + 23 < 1}, and f : A — R be given by f(z1,72,23) = (21 + 22 + 23)%. Let S =
[0,1] x [0,1] x [0,1], and f : R® — R be the extension of f by zero outside A. Then

Corollary 6.35 implies that f is Riemann integrable (since dA has measure zero). Write

y=1  e—1

y=0 3

Ty = (29, 3), T2 = (x1,23) and T3 = (x1, x2). Theorem 6.49 implies that

RECRREE
A s
and Theorem 6.52 implies that

ff(x)dxzj (J f@g,xg)dag)d%.
S [0,1] [0,1]x[0,1]

Let A,, = {(:z:l,xQ) € Rﬂm >0 >0, +x2<1— xg} Then for each z3 € [0, 1],

_ 1—x3 l—xz3—x9o
J f(if& $3)d§3 = J f@:ﬂ, lES)dfs = f (J f(901, T2, $3)d9€1>d$2 .
[0,1]%[0,1] Agg

0 0

Computing the iterated integral, we find that

rl - rl—x3 l—z3—x9
J f(x)dx = ( (J (21 4+ 22 + x3)2dx1)d:c2} drs
A Jo tJo 0

rl - rl-zs 3\ z1=1—a3—2

= [\ (xl + :l:; + :Cg) 1 T 5172] d:E3
Jo tJo z1=0
rl . rl-x3 1 3

_ (:- M)d@] dy
JO JO 3 3
P1<1 x3+x§)d 1 1+1 15-10+1 1

= —_— — _ Lo —= — — — —_——_— = —
Jo\a 3 712/ T4 6 60 60 10

Example 6.62. In this example we compute the volume of the n-dimensional unit ball w,,.

By the Fubini theorem,
1 «\/171% 1—x{——z; 4
:J f J dx, - - dzy .
-1 —«/1—x% - 1—x%—~--—x21
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V1-a? 1—af——ap_, -
Note that the integral f f dz, - - dxs is in fact w, (1 — 2?)77 ;
1 - 1_9”%_‘"_3”% 1
thus . _
. 2
Wy, = J Wn—1(1 — xQ)Tld:E =2W,_1 J cos” 0df . (6.4.5)
-1 0

Integrating by parts,

3 3 6=1 3
f cos" 0 df = f cos" ' fd(sin @) = cos™ ' #sin 0‘6 ‘+(n-1) J cos" 2 0sin® 0 df
0 0 =0 0

=(n-1) JQ cos" 2 f(1 — cos® 0) df)
0

which implies that

s 1 s
JQ cos"@dGzn J2 cos"20db .
0 n 0

As a consequence,

x (n ;(?12)(_ %) 3) 3 2 jz cosfdb if n is odd,
f cos" 0df =
0 (n_l J do if n is even;
n(n — 2)
thus the recursive formula (6.4.5) implies that w,, = QWZ_QW. Further computations shows
that .
%wl if n is odd ,
nin—2)---3
wn = n—2
mw if n is even
nin—2)---47 '

Q0
Let I" be the Gamma function defined by I'(¢) = f ' te ™ dx for t > 0. Then I'(z +1) =
0

xl'(x) for all z > 0, ['(1) = 1 and F(é) = /7. By the fact that w; = 2 and wy = 7, we can

express wy, as
n

T2

M=)

2

6.5 The Monotone and Bounded Convergence Theo-

rems

In the following, we introduce two very important theorems in the theory of integration of

functions. Before proceeding, we establish the following two lemmas.
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Lemma 6.63. Let f : [a,b] — R be a bounded function. Then for each € > 0, there ezist
continuous functions g, h : [a,b] — R such that i?fb} fle)<g< f<h< sup f(z) and
z€la, x€[a,b]
b b b b
f f(x)dx<f g(x)dx + ¢ and J f(x)dac>f h(xz)dz — €.
Proof. We only prove the case of lower integral since the proof of the counter-part is similar.

Let € > 0 be given, and P = {a =20 < T] < < Ty < Ty = b} be a partition of

b
[a, b] such that L(f, P) > j f(z)dx — % Let s(z) be the step function given by

s<x)::§( inf () V() + (0 )1, ()

TE[TR_1,Tk TE[Tn—1,b]

which is a linear combination of characteristic functions. Then i?fb] f(z) < s(x) < f(x) for
z€la,
all x € [a, b] and

J: (@) do < Lbs(x) drt (6.5.1)

since the integral of s on [a, b] is exactly the lower sum L(f, P). On the other hand, for such
a simple function s we can always find a continuous function g : [a,b] — R (for example, ¢

can be a trapezoidal function) such that inb] f(z) < g(x) < s(x) for all z € [a,b] and
z€la,

f s(z) dz < Jbg(az) dr + <. (6.5.2)

a a 2
| | | | | | |
| ?—é | | | | |
I [} I I I I I I
l | SR e e , S —
‘=l o { g
| | | | | | |
| | | [ | |
| | | | | |
| | | | | |
I I I I I I I I
I I I I I I I I
I I I I I I I I
I I I I I I I I
a=xy T Ty T3 X4 TpoTn 1T,=0b

Figure 6.3: One way of constructing g given simple function s
The combination of (6.5.1) and (6.5.2) then concludes the lemma. o

Lemma 6.64. Let hy, : [a,b] — R be continuous for each k € N, and hy(x) = hyy1(x) for
b
each k € N and x € [a,b]. If klim hi(xz) = 0 for each x € [a,b], then k}im hi(z) dx = 0.
—00 —00

a
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Proof. For each k € N define ¢, = m[a)g hi(z). Then {cx}72, is a decreasing sequence of non-
z€la,

b
negative real numbers, so klim ¢r exists and is non-negative. Since J hi(z) dz < ci(b—a),
—00 a
it suffices to show that klim c, = 0.
—00
Suppose the contrary that klim ¢, = 20 for some § > 0. Then there exists N > 0 such
—00

that ¢, = § for all k > N. Define Fj, = {z € [a,b] | hy(x) = 6}. Then
1. Fy is closed for each k£ € N by Theorem 4.14.
2. Fy 2 Fyyq for each ke N.
3. F, # g for each k > N.

0 e}
Therefore, by the nested set property we have [\ Fp # & (or otherwise | J F} is an
k=N k=N

open cover of compact set [a, b] which, using the finite subcover property, implies that there

exists Fy, < [a,b]", a contradiction). This then implies that there exists ¢ € [a,b] such

that hx(c) = 0 for all £ > N which contradicts to the condition that klim hi(z) = 0 for all
—00

x € [a, b]. Therefore, klim e = 0. o
—00

Theorem 6.65. Let {fr}2, be a decreasing sequence of bounded functions on [a, b]; that is,

for each k e N, fp(x) = fri1(x) for all x € [a,b] and [y is bounded. If klim fr(z) =0 for all
—00

x € [a,b], then

lim Lbfk(x) dz =0 (: Lb]}ijglofk(x) dx).

k—o0

Proof. Let € > 0 be given. By Lemma 6.63, for each k£ € N there exists a continuous function
gk : [a,b] = R such that 0 < g < fi and

_J: fu(z)dz < fb gr(x) dx + % . (6.5.3)

Define hy = min{gi,--- , gx}. Then hy is continuous on [a,b], hy = hiy (that is, {hy}7>, is

a decreasing sequence of funtions), 0 < hy < gx < fi for all £ € N, and klim hi(x) = 0 for
—0

all x € [a,b]. Therefore, Lemma 6.64 implies that there exists N > 0 such that

b
J hi(z) do < Z Vk>N. (6.5.4)

a

On the other hand, for 1 < ¢ < k, max{gy, -, gr} < max{fe, -, fx} = fe; thus

Jb (max{ge, -, gi}(x) — ge(w)) dw < Lb fe(x) do — Lb ge(x)dr < %.

a
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Moreover, for each 1 < j < k and z € [a, b,
0 < gi(2) = g;(2) + (g(2) — g;()) < g;(x) + (max {g;(z), -, g(2)} — g5)

< gj(w) + Z (max {gr, -, ge}(x) — ge(2)),

=1
so minimizing the right-hand side over all 1 < j < k implies that

k—1

0 < gr(z) < hi(z) + Z (max{ge, -, gi}(x) — ge(x)) Vaela,b.

=1
As a consequence,

b b k—1 b
€ €
ng gk(x)dxéj hk(x)dx‘i‘Z% <J hk(I)d!E+§;
. a =1 a

thus (6.5.3) and (6.5.4) imply that

b
ngfk(l’)dl’<8 V> N. o

Example 6.66. Let {q1,q2, - ,qn, -} denote the rational numbers in [0, 1], and f; :
[0,1] — R be defined by

0 ifa:EQCU{Q1,Q2>“' an}a
1 otherwise.

fr(@) —{

Then f; > fri1 and ]}im fr(z) =0 for all € [0,1]. Note that f; is not Riemann integrable
1 —®©
on [0, 1] but f fr(x)dx =0 for all k € N; thus
Jo

1

lim | fi(z)dz=0.

k—o0 0

7l
Note that J fr(x)dx =1 for all ke N.
0

Corollary 6.67 (Monotone Convergence Theorem). Let fi, f : [a,b] — R be Riemann

integrable on [a,b], and klim fr(z) = f(z) for all x € [a,b]. Suppose that fi < fry1 for all
—00

keN. Then

b b
L f(z)de = kh_’H;JL fr(x)de.
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Proof. Let g, = f— fr. Then {gr};~, is a decreasing sequence of bounded functions on [a, b]

(since 0 < gp < f— f1) and klim gr(x) =0 for all = € [a,b]. Therefore, the integrability of fy
—0

and f, as well as Theorem 6.65, imply that

b b b
0= im | gu(r)de = tim f (7 = Bl do = Jim [ (7 = la)da

b b
= L f(x) d:z:—k}l_)r{.loL fr(z)dx. o

Corollary 6.68 (Arzela’s Bounded Convergence Theorem). Let fi, f : [a,b] — R be Rie-

mann integrable on [a,b], and klirn fru(x) = f(x) for all x € [a,b]. Suppose that there exists
—m

a constant M > 0 such that |fi(z)| < M for all x € [a,b] and k € N. Then

b
Jb f(z)de = ]}1_{& fr(x)dx.

Proof. Let € > 0 be given. For each k € N, define g (z) = sup |fy(z) — f(z)|. Then {gi};",
=k

is a decreasing sequence of bounded functions on [a,b] and klim gr(xz) = 0 for all = € [a,b].
—00

Therefore, Theorem 6.65 implies that there exists N > 0 such that

b
Jgk(w)dx<5 VkE>=N.

a

Therefore, by observing that 0 < |fi(z) — f(x)| < gi(x) for all k € N, by the integrability of
fr and f we conclude that

b b

| fu(z) = f(z)]dz < J gr(r)dr <e  Vk=N. o

a

NEEEE

a

Theorem 6.69 (Monotone Convergence Theorem). Let A = [a1,b1] X -+ X [ay,b,] be a
rectangle in R™, f.,f : A — R be Riemann integrable on A and klirn fr(x) = f(x) for all
—00

x € A. Suppose that {fi}72, is a monotone sequence of functions; that is, fr < fri1 or

fr = fra1 for all k € N. Then

k—o0

lim JA Fola) do = L @) da.

Proof. W.I..O.G. we assume that f, > fr., for all £ € N. We first prove the case n = 2
d
and write A = [a,b] x [¢,d]. Define gi(z) = J (fk(x,y) — f(:v,y))dy. Then g > gpy1 for
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all £ € N. Moreover, Theorem 6.65 implies that klim gr(x) = 0, and the Fubini theorem
—00

(Theorem 6.52) implies that gy is Riemann integrable on [a, b] for all k € N. Therefore, by

the monotone convergence theorem for functions of one variable (Corollary 6.67) we find

that

0= hmJ gr(z) dx = hmJ J fr(x,y) f(x,y))dy)c&
= lim | (fu(z,y) = f(2,y)) d(z,y).

k—o0 A

Now suppose that the conclusion holds for the case n = N. Then for n = N + 1, write
A = R x [c,d] for some rectangle R in RY, and define g, by

d
Gr(21, - N) = f (fk(xla"' ,Ty1) — f(@n, - ,$N+1))d$w+1-

[

Then Theorem 6.65 again implies that {gx}{_; converges monotonically to 0 on R, and the
Fubini theorem (Theorem 6.52) implies that g is Riemann integrable on R for all £ € N.
Write 2’ = (z1, -+, xy). Then the validity of the monotone convergence theorem for N-tuple

integrals implies that
d
0= lim gk( )de‘ = hm (J (fk;(l'/,xN-i-l) _f($,,$N+l>)dIN+1> d'r/
k—o0 R k—o0 R Je

= lim | (fe(z) — f(z)) dz. o

k—o0 A
Theorem 6.70 (Bounded Convergence Theorem). Let A = [ay,bi] x -+ X [an, b,] be a

rectangle in R™, fi.,f : A — R be Riemann integrable on A and klirn fr(x) = f(x) for all
—00
x € A. Suppose that there exists a constant M > 0 such that |fk($)| < M forallze A and

keN. Then
kh_r)]glo L fr(z)de = L f(z)dx

Proof. For 1 < j < n, let R; be the rectangle [a;, b;] X - - - X [a,, b,], and define g 'R, - R
iteratively as follows.

1. ¢V(a) = sup |fo(x) = f(2);

2. for 1 < ] n— 1 g(J+1)(xj+la"' 71'71) = J g](gj)(xjaxj—&-l 7xn) dmj-
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Then for each 1 < 7 < n, { g,?)}zo:l is a decreasing sequence of bounded functions; that is,

gl(cj)<xj>"' 7xn> 29?—:—1(1‘]’7"' 71'71) VkEN71 <j <n’(l‘j"” ’$”)€Rj'

Moreover, for each 1 < j < n, hm g(”( ) = 0 for all x € R;. To see this, we note that by
the fact that l}im fr(x) = f(x) for all x € A,

lim g (z) = hm sup | fo(z) — f(z)| = lirknsup | fo(z) = f(z)| = 0.

k—o0 —®0 >k

Assume that for some 1 < j < n — 1 such that hm g(”)( ) =0 for all x € R;. Then

b

T () _
Tji1, - 717n)—khﬂolo 97 (x5, %441, x0) dzy =0
Jaj

lim g(J+1) (

k—0o0

for all (z;41,---,2,) € R;y1 which shows that hm g (x) = 0 for all x € Rj;,. By

induction we conclude that hm g“)( y=0forallz e RJ7 thus Theorem 6.65 and the Fubini
theorem (Theorem 6.52) 1mply that

0= lim

bn, bn
k:‘ g](gn)(xn)dxn: hm f Sup}ff X1, - ,I'n)_f(l’l,"' ,Cl?n)}dl'l"'dl‘n
—00

Jan k—a0 Jan al =k

bn b1
>limsupf J | fozr, - mn) = foy, - )| day - - day,
Jan Jay

k—0o0
> i sup j [ule) = @)l = timsup [ |fu(o) = flofdr. .

Remark 6.71. 1. If A is a bounded set with volume, we can choose a rectangle S 2 A

and consider g = 72 as well as g = 7A. Then g, g : S — R satisfy the assumptions
in Theorem 6.69 and 6.70; thus Proposition 6.41 implies that

kh_)rgoj fr(x)de = hm gk(:c) dx = ng(x) dx = L f(z)dx

In other words, the Monotone Convergence Theorem and the Bounded Convergence
Theorem also hold for more general domain A, or to be more precise, for bounded set

A with volume.

. The Monotone Convergence Theorem (MCT) can be viewed as a corollary of the

Bounded Convergence Theorem (BCT) since under the assumptions of MCT, we can
apply BCT (choose M = max { sup f(z),sup fi (m)}) directly to conclude the MCT.
zeA zeA

Here we prove MCT without the help of BCT to demonstrate the power of the Fubini

Theorem.
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6.6 Improper Integrals

The Riemann integral deals with the “integrals” of bounded functions on bounded sets;
however, often times we need to integrate unbounded functions on unbounded sets, such
as finding the area under an unbounded function above x-axis. The improper integral is
an answer to this particular situation. We first consider improper integrals of non-negative
functions. Let A € R™ be a set and f : A — R be a non-negative function. If f is bounded
but A is unbounded, to define the integral of f on A, it is natural to consider the limit

lim f(z)dx.

k=% JA~B(0,k)

We note that for this limit to make sense, it is required that the integral f(x)dx
AnB(0,k)

exists for all £k € N. On the other hand, if A is bounded and f is unbounded, to define the

integral of f on A it is also natural to consider the limit

lim | (fAk)(z)dx, (6.6.1)

k—o0 A
where (f A k)(z) = min{f(x),k}. Again, for the limit above to make sense, it is required
that the integral f (f A k)(x)dx exists for all £k € N. In both cases, we look for generic
A
conditions (independent of k) that f and A have to satisfy so that

Lmsm,k)f (z)dx and L(fAk)(x) dx

are well-defined for all £ € N, and we have the following

Definition 6.72 (Riemann measurable sets and functions).
1. A set A < R"” is said to be Riemann measurable if 0 A has measure zero.
2. A function f: A < R” — R is said to be Riemann measurable if

the set {a: e A ‘ f is discontinuous at m} has measure zero in R".

Adopting this definition, the Lebesgue theorem shows that if A is bounded and Riemann
measurable, then f : A — R is Riemann integrable on A if and only if f is bounded and
Riemann measurable. Since the improper integrals deal with integrals of possibly unbounded
functions on possibly unbounded sets, in view of the Lebesgue theorem it is quite natural
to consider removing the boundedness but keeping the Riemann measurability of A and f

in order to define the improper integrals. Observe that
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1. If A is Riemann measure, then A n B(0, k) is Riemann measurable for all k£ € N since
d(An B(0,k)) € 0A U dB(0, k).

2. If f is Riemann measure, then f A k is Riemann measurable for all £ € N. In fact,
since the function F' : R? — R defined by F(z,y) = max{z,y} is continuous, if f is

continuous at x, then for all k € N,

lim (f A k)(y) = lim F(f(y), k) = F(f(x), k) = (f A k)(2) .

Yy—x Yy—x

Therefore, for all k£ € N,

{x €A ‘ f Ak is discontinuous at x} c {x e A ‘ f is discontinuous at ZL‘} .

In other words, if A < R” is a Riemann measurable set and f : A — R is a Riemann

measurable function.

1. If f is bounded, then J f(x) dx exists for all k e N,
AnB(0,k)

2. If A is bounded, then J (f Ak)(z) dx exists for all k € N.
A

How about the case that A is an unbounded set and f is an unbounded function? From

the discussion above, it is natural to consider the limit of (f nk)(x)dr as k — o0.
AnB(0,k)
We note that if A € R” is a Riemann measurable set and f : A — R is a Riemann measurable

function, then J (f A k)(x) dx exists for all k£ € N. This motivates the following
AnB(0,k)

Definition 6.73. Let A < R" be a Riemann measurable set, and f : A — R be a non-

negative Riemann measurable function. f is said to be integrable on A if the limit

L f(z)dx = lim (f AE)(x) dx (6.6.2)

k=0 JAnB(0,k)

is finite, and in such a case f f(z)dx is called the integral of f on A.
A

Remark 6.74. 1. For non-negative function f : A — R (with f and A satisfying assump-

tions in Definition 6.73), if the limit J f(z) dz is infinite, we still call f f(z)dx
AnB(0,k) A

the integral of f on A. However, in this case f is not integrable on A.
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2. Let A< R"and f : A — R be given in Definition 6.73. If ' < A is a Riemann

measurable set with measure zero, then
f f(z)dx = lim (fAEk)(x)de =0,
F k=0 JpAB(0,k)

where Theorem 6.45 is used to evaluate the integral.

3. By the Monotone Convergence Theorem (Theorem 6.69), (6.6.2) always holds if f :
A — R is Riemann integrable; thus Riemann integrable functions are integrable.
From now on, when talking about integrability, it could refer to Riemann

integrable functions as well.

Remark 6.75. When f : A — R is unbounded, instead of (6.6.1) one might want to define

the improper integral of f on A as

lim L fulw) de

k—o0

where
f(x) if f(z) <k,

0  otherwise.

fule) = (FLyya) () = {

The sequence {f}72; still monotonically converges to f; however, it is not easy to see if the
collection of points of discontinuity of f; has measure zero since the set {a: €A ‘ flz) = k}

could be large. In other words, by defining f; in this way we do not know the integrability
of f; on A; thus it is meaningless to define the improper integral as the limit of f fr(x) dz.
A

Example 6.76. Let f : [1,00) — R be given by f(x) = 2P for some p € R. If p > 0, then f
is unbounded, and in this case
1
2P ifl<a<kp,
(f Ak)(x) = , 1
ko if x> kr;

thus for p > 1

Sl

k k
1
J (f/\k)(x)dx:f xpdx—i—Jl kdw = —— (k"5 — 1) + k(k — k»)
[1,00) (—k,k) 1 kP p+1
and for 0 <p < 1,

k

1
Ak xdxszpdx:—kp“l.
fu,oo)m(k,k)(f )(@) 1 P+ 1< )
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In both cases, the limit (as kK — o0) do not exist.
When p <0, f is bounded by 1 on [1,00). Therefore,

L) it 1,

k

J (f/\k;)(a:)d:czf f(x)de =< p+1
[1,00)ﬁ(—k,k) 1 log k lf p - *1 .

It is easy to see that the limit (as k — o0) exists only when p < —1. Therefore, f is

integrable on (0, 1) if and only if p < —1, and in this case

1

1
— lim —— (R 1) = ———
J e =i ety =

Example 6.77. Let f : (0,1) — R be given by f(z) = z? for some pe R. If p > 0, f is
continuous on (0, 1), so f is Riemann integrable on (0,1). If p < 0, f is unbounded on (0, 1),
so the Riemann integral of f no longer makes sense. Nevertheless, we can find the improper

integral of f using (6.6.2): for each k € N,
o if x> kv ,
koif0 <z <kv;

(f ~k)(x) = {

thus

! & ! LR 1) ifp -1
J(fAk)(x)dx:J kdm+Jlxpdx: pr1l P==

0 0 kp 1+ logk ifp=-—1.
It is easy to see that the limit (as k — o0) exists only when p > —1. Therefore, f is
integrable on (0,1) if p > —1, and in this case

. 1 1+1 1
z)dxr = lim ——(pk 77 +1) = ——.

The following three propositions are generalization of corresponding results in Riemann

integrals.
Proposition 6.78.

1. Let A < R"™ be a Riemann measurable set, and f,g : A — R be non-negative, Riemann

measurable functions. If f < g, then

L f(z)dx < Lg(a:) dx .
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2. Let A, B < R" be Riemann measurable sets, and f : A u B — R be a non-negative,

Riemann measurable function. If A < B, then

L f(z)de < JB f(z)da .

Proof. The first case follows from that f (f Ak)(x) de < J (g A k) (z) dz, while
AnB(0,k) AnB(0,k)
the second case follows from that J (fAk)(x)de < (f k) (z)dx. o
AnB(0,k) BnB(0,k)

Corollary 6.79. Let A < R" be a Riemann measurable set, and f : A — R be a non-negative

Riemann measurable function. Then

L (@) dz = 1im F@)de = lim | (F k) @) da. (6.6.3)

k=0 JAnB(0,k) k= Ja

Proof. For each k € N, Proposition 6.78 implies that

LmB(o,k)(f AE)(z) de < J f(z)de < L f(a) dz,

AnB(0,k)
f (fAk:)(x)dx<f(fAk:)(x)dm<ff(x)dx.
AnB(0,k) A A
The conclusion follows from passing to the limit as k — 0. =

Corollary 6.80. Let A < R” be a Riemann measurable set, and f : A — R be a non-negative

Riemann measurable function. Then for all a > 0,

[en@as=a .

Proof. By Corollary 6.79,

| @@ = tim [(@f) A (ak)] (z) dz = lim olf A k) (@) da
A AnB(0,ak) AnB(0,ak)
= ozklig& AmB(07ak)<f AE)(z)dr = « JA f(z)dx. o

Proposition 6.81. Let A, B < R" be Riemann measurable sets, and f : Au B — R be a

non-negative, Riemann measurable function. If A n B has measure zero, then

LUB f(z)de = L f(x)dx + JB f(z) da.
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Proof. To simplify the notation, for each k € N we let f, = f Ak, and Ay = A n B(0,k) as
well as B, = B n B(0,k). Then

N

(Au
(An

)udB(0,k) € 0A v dB U dB(0,k),

O(Ay U By) = 0((Au B) n B(0,k))
0 )udB(0,k) < AU dBuUIB(0,k);

0 B
(AN By) =0((An B)n B(0,k)) =@ B

N

thus under the assumptions of this proposition, A, u By and A, N By, have volume for each
k € N. Therefore, Corollary 6.35 implies that for each k € N, fi1la,, filp, and fila, ~B,
are all Riemann integrable on Ay U By. Since Ay N By, has measure zero, Theorem 6.45 and
6.50 imply that

(f/\k)dxzj

ArUBy

J fr(z)dx = fr(x) de + fr(x) dz
(AUB)nB(0,k) Ag By,

:J (f/\k)d(ﬂ-'-f (f AK)dx,
AnB(0,k)

BnB(0,k)

and the theorem is concluded by passing to the limit as k£ — 0. =

Proposition 6.82. Let A < R" be a Riemann measurable set, and f,g : A — R be non-

negative, Riemann measurable functions. Then

[ G ro@an= | e | oo

Proof. Note that if f, g are non-negative functions, then for all k£ € N,

[(f +9) Ak](@) < (FAR)(@) + (g A k) (@) < [(f+9) A (2K)](z)  VaeA.

Therefore, Proposition 6.78 implies that for all k € N,

JA B(0,k) [(f +9) K] (@) do < J [(f A k) (@) + (97 k)(x)] d

AnB(0,k)

<J [(f Ak (@) + (g A k) ()] da:éj [(f +9) A (2K)](z) dx .
AnB(0,2k) B(

0,2k)

By Theorem 6.44, we obtain that

J [(f—l—g)/\k:}(x)dxéf (fAk:)(x)danf (g Ak)(z)dz
AnB(0,k) AnB(0,k)

AnB(0,k)

< JB(O o [(f +9) A (2k)](2) d,

and the conclusion follows from passing to the limit as k — 0. o
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Those who are familiar with the improper integrals introduced in Calculus might be
confused with the way we compute the improper integrals in Example 6.76 and 6.77. In
fact, there are other ways of evaluating the improper integrals for functions of one variable,

and the following theorem is useful for this particular purpose.

Theorem 6.83. 1. Let f : [a,00) — R be bounded, non-negative, and continuous except

perhaps on a set of measure zero. Then

f de = hmf f(z (6.6.4)
[a,DO) R—00

2. Let a € R, f: (a,b] > R be non-negative, bounded on [a + €,b] for all ¢ > 0, and

continuous except perhaps on a set of measure zero. Then

dz = lim f @ (6.6.5)

(a, b] e—0t

Proof. 1. Note that for k > max {|a|, sup,cp, ) f(2)},

j[a,oo)m(_k,k)(f Ak)(x)dr = Lk o) do

thus (6.6.4) is obtained by passing to the limit as & — oo.

2. For each € > 0 sufficiently small,
b
| t@ae=| (luwsede< | fla)ds
a+te (a,b] (a,b]
thus passing to the limit as ¢ — 0", we find that

b
lim J fayde < [ f)de. (6.6.6)
(a,b]

e—07F a+te

On the other hand, note that the Monotone Convergence Theorem for Riemann inte-

grable sequence of functions (Theorem 6.69) implies that

b b
k dr = li k)( < li
|G R@ s = tim [ (k)@ dr < tim f fa
Passing to the limit as k& — oo, we find that
b
f(x)dxr = lim frk < lim f flx 6.6.7
s =dm | Ak < (6.6.7

Combining (6.6.6) and (6.6.7), we concluded (6.6.5). o
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Corollary 6.84. Let a € R, f : (a,0) — R be non-negative, bounded on [a + €,0) for all

e > 0, and continuous except perhaps on a set of measure zero. Then

R
J f(x)dx = lim f(x)dx. (6.6.8)
(a,00) Lok Jate

Proof. Let a < b < co. Then Theorem 6.81 implies that

|t f@des | peas
(a,00) (a,b]

[b,0)

thus we conclude from Theorem 6.83 that

J f(z)dx = lim f(z)dz + lim f(z)dx
(a,0) e=0" Jlate,b) R= Jip,R)
= lim f(z)dr + lim f(z)dx
5% Jlate Lot bR
R
= lim (J f(z)dx + f(z) d:z:) = lim f(z)dz,
2ot Mlate) [0, 5% Jate

where the sum of the limits of two integrals is the same as the limit of sums of integrals

since both integrals are increasing as R — o0 and ¢ — 0%, =

Remark 6.85. In view of (6.6.4) and (6.6.5), we also have the following notation for im-

proper integrals for functions of one variable:

0 b
J f(x)dxzf[ )f(x)dx and Jf(x)dx: (b]f(x)dx.

Example 6.86. Let f(x) = a? as in Example 6.76 and 6.77. Since

1
R —(RPHL - 1) ifp#—1,
f 2P dx = P+1< ) b
1 log R ifp=-1,
and
1

1 _ ey _
prdx: m(l ety ifp# -1,

—loge ifp=-1,

by Theorem 6.83 we find that f is integrable on [1,00) if and only if p < —1 and f is
integrable on (0, 1] if and only if p > —1. These are the conclusions that we have obtained
in Example 6.76 and 6.77.
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0
Example 6.87 (The Gamma function). For each ¢t > 0, define I'(t) = J e d.
0

1. For 1 <t < o, the integrand is bounded and non-negative. In fact, 2!~ 'e ™ < Me™2

z .
for some constant M; > 0 (we can choose M; = sup z'~'e™2). Since
z€[0,00)

=R

R R
J e dr < J Mie 2dr < —2Me™ 2 < 2M; < o0
0 0 =0

we find that I'(¢) is well-defined for 1 <t < o0.

2. For 0 <t < 1, the integrand is unbounded near 0; thus by Theorem 6.81 we rewrite
0 1 e] " N
J vl do = f o't dr + J ' lem2e 2 da .
0 0 1

Since 27 te™® < z'! on (0,1] and 2'"te™® < €7 on [1, ), for £ > 0 we have

1 1
1,1 1 1
J e dr < J o't de = ;xt (1-¢" < n
15

B Tr=¢& t

and for R > 1,

R R R
J e dr < f e tdr = —e " —el—efgel,
1 1

Therefore, I'(t) is also well-defined for 0 < ¢ < 1.

The following theorem provides different ways of computing the improper (multiple)

integrals.

Theorem 6.88. Let A < R"™ be a Riemann measurable set, and f : A — R be a non-
negative, Riemann measurable function. Then f is integrable on A if and only if for each

sequence { By}, € R™ of bounded sets with volume satisfying
1. By € Bgyy forall ke N;
2. for all R > 0 we have B(0, R) € By for sufficient large k € N;

the limit lim (f Ak)(z) dx exists.
k—co AﬁBk

Proof. “<" Simply choose By = B(0, k) to conclude the integrability of f on A.
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“=7” For each ¢ € N, there exists N(¢) > ¢ such that B(0,¢) < By, for all k > N({¢). Then

J (fAE)(a:)dx<J (fAz)@)dxsf (FAk)z)de k> N(O).
AnB(0,0) AnBy

AnBy

Since J (f AE)(x)de = J ((f ~k)lg,)(z)de < f f(z)dz, by the sandwich
AnB A A

lemma we conclude that

fAf(x)dx: lim (f Al)(z)dr = lim (f AE)(z)dx. o

=% J AnB(0,0) k=0 JAnB,

In other words, as long as {By}72; “expands to the whole space”, one can evaluate the

improper integral using

J f(x)de = hm (f~k)(x)de.

AﬁBk

One particular sequence of sets {Bg}2, is given by By = [k, k] x -+ x [—k, k].

a0
Example 6.89. Consider the improper integral J e~** dx. Instead of evaluating this

improper integral directly, we consider the improper integral e~ (@+v*) dA. Note that

R2
Theorem 6.88 implies that

f e~ @) JA = lim e~ @) gA = lim e~ (@) gA |
R2 k=0 J1_k k] x [~ k,k] k=0 JB(0,k)

By the Fubini theorem,

k 0

k
lim e~ @) gA = lim (f e_(””2+y2)dy> do = ( f
k=0 J1_k k] x[~k,k] k—oo J_p Nk -

while the change of variables formula (with (z,y) = (rcosf,rsin#)) implies that

22, \?
emdm>,

0

27 k
lim e~ @+ dA = lim e rd(r,0) = lim (J e_TQTdr> df
k=0 Jp(o,k) k=0 Ji0,k]x[0,27] k=0 Jo 0
' 2 677"2 r=k ) 2
= lim < >d9:11m77(1—e )=
k—w J -2

r=0 k—0o0

o0
Since J e~ dr > 0, we must have
—

«© 2
f e dr = /7.

—0
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Now we define the improper integrals for general functions. Let v be an operation which

outputs the maximum of values from both sides of v; that is,

(f v g)(z) = max {f(z),g(x)}.

Define the positive and negative parts, denoted by f* and f~ respective, by f = fv0 and
f==(=f)v0. Since f*, f~ are non-negative and f = f*— f~, to defined the integral of f it

is natural to consider the difference of the integrals J f1(z)dx and f f~(x)dx. Note that
A A
if the collection of discontinuities of f has measure zero, the collections of discontinuities of

both f* and f~ are sets of measure zero; thus the integrals J f*(z) dz makes sense.
A

The discussion above motivates the following

Definition 6.90. Let A < R” be a Riemann measurable set, and f : A — R be a Riemann

measurable function. f is said to be integrable on A if both integrals

J ff(x)dz  and J [ (z)dx
A A
are finite, where f* and f~ are the positive and negative parts of f defined by
ff=fv0 and f~ =(—f)vO0.
If f is integrable on A, the integral of f on A, denoted by f f(z)dz, is the number
A
j fH(x)dx — j /() dx.
A A
Remark 6.91. 1. If f is integrable on A, then
J |f(z)|dz = J fH(z)dw + J f(x)dxr < o0;
A A A

thus the integrability of f on A sometimes is also called the absolute integrability of
f on A or that the integral J f(x) dzx is absolutely convergent.
A

2. For integrable function f: A — R, one can compute the integral of f on A by

f f(z)dx = lim (fT A k)(z)dz — lim (f~Ak)(z)dx
A k=0 J A~B(0,k) k=0 JA~B(0,k)
= lim [T (z)dx — lim [ (z)dx
k=0 J A~B(0,k) k=0 JA~B(0,k)
= lim (ff(z) = f(z)) dz = lim f(x)dx. (6.6.9)

k=% JAnB(0,k) k=0 JAnB(0,k)
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where (6.6.3) is used to conclude the third equality. In (6.6.9), the set B(0, k) can also

be replaced by increasing sequence of set { By}, as introduced in Theorem 6.88.
By Proposition 6.78, 6.81, 6.82 and Corollary 6.80, we can also establish the following

Theorem 6.92. Let A < R” be a Riemann measurable set, and f,qg: A — R be integrable
functions. If f < g, then

L f(z)dx < Lg(x) dx .

Theorem 6.93. Let A < R"™ be a Riemann measurable set, and f : A — R be an integrable
function. Then for all a € R,

| @p@ s =a | s

Theorem 6.94. Let A, B < R" be Riemann measurable sets, and f : A u B — R be an

integrable function. If A n B has measure zero, then

LUB f(z)de = L f(x)dr + JB F(z) da.

Theorem 6.95. Let A < R" be a Riemann measurable set, and f,g: A — R be integrable

functions. Then

[Growar= [ s@a+ | gwar

The proofs for the theorems above are left to the readers as exercises.

Remark 6.96. 1. If f is not integrable on A but one of the integrals f fH(x)dz or
A
f f~(z)dz is finite, the number f ft(z)dx — J f~(z)dz is still well-understood,
A A A

and we still call this difference as the integral of f on A.

2. When at least one of the integrals J ft(z)dx or J f~(x) dx is finite,
A A

f f(x)dx:klim (f+/\k:)(x)da:—klim (f~ ~Ak)(z)dx
A —% JA~B(0,k) —% JAnB(0,k)
= lim T A — A
a ’CLOO (JAmB(O,k)(f £)lw) de JAmB(O,k)(f 5@ d:c)
= lim (=k)v (fAk)(z)de.

k=0 JAnB(0,k)
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Therefore, it is tempting to define the integrability of f on A by the existence of the
limit

lim (k) v (f A k)] (z)dz.

k=0 J A~B(0,k)
However, this cannot be the correct definition since if we adapt this definition, then
the function f : R — R defined by f(z) = é for z # 0 (and f(0) is given arbitrarily)

will be integrable on R (and the integral is 0 by symmetry), while Theorem 6.94, a
should-have theorem for integrable functions, fails to hold for this particular function

since

O:JRf(m) dr # f[opo)f(x) dx+f f(a)dz.

(70070]

Theorem 6.97 (Comparison Test). Let A € R" be a Riemann measurable set, f,g: A — R
be Riemann measurable functions. If |f| < g on A and g is integrable on A, then f is

integrable on A.

Proof. Since |f| = f* + f~, the condition that |f| < ¢ implies that f* < g and f~ < g;
thus

ng(o,k)(fi A k) (z)de < J (g A k) (z)dr < L g(z)dr < 0.

AnB(0,k)

Since J (f* Ak)(z) dx are increasing in k, both limits
AnB(0,k)

lim (ff A k)(z)dz
k= JAnB(0,k)
must exist (and are finite). Therefore, f is integrable on A. o
Example 6.98. Let f : [0,00) — R be given by f(z) = ST ppen |f(z)| < 1 and
’ z? 41 z? 41
the function y = ot is integrable on [0, o) since
R _
1 =R
lim 5 dr = lim tan™' z = lim tan' R = — .
R Jo 2?4+ R— =0 R— 2
Q0
Let {ax};>; be a non-negative sequence. Then the series )] aj can be viewed as the
k=1

integral of the piecewise constant function

flx)=a, if k—1<zxz<k (6.6.10)
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over the set RT™ = {x > 0}. Now suppose that {a;};2, is a general sequence in R. Define

af = max{ay,0}, a; = max{— ak,O} for each k € N, and let f : R* — R be defined by

(6.6.10). Recall that a series Z ay is absolutely convergent if Z lag| < oo and this is
k=1 k=1

o0 o0
Zaz<oo and Za,;<oo.
k=1 k=1

Since f+( )dr = Z a and f f(z)dx = Z a,, we find that the series Z ay is

k=1

equivalent to that

absolutely convergent 1f and only if f given by (6.6.10) is integrable on R*.

There is another concept of convergence of series, called the conditional convergence.
0 4

Recall that a series | ay is said to be conditionally convergent if the limit glim > ay exists
k=1 P k=1
a0 Q0
but Y |ax| = 0. Let > aj be a conditionally convergent series, and f : R — R be given
k=1 k=1

by (6.6.10). Then
0 0
:L':Zag:oo and J f’(x)d:r;:Za,;:
k=1 R+ k=1

¢ ¢
while the limit elim f(z)de = elim > ay exists. The connection between the two kinds
—00 0 —00 k=1

R+

of convergence of series and integrals motivates the following

Definition 6.99. Let A < R be a Riemann measurable set, and f : A — R be a Rie-

mann measurable function. The improper integral J f(z)dx is said to be conditionally

convergent if [ is not integrable on A but the limit lelm f(z) dz exists.
=% JAn(—tk)

0

Remark 6.100. Suppose that the series > ay is conditionally convergent. Then for each
k=1

r € R, there exists a permutation 7 : N — N such that

r= ) n( = (1) + Qe+ Ga) T
k=1
In other words, the order of the summation matters in a conditional convergent series; thus
in general it will not be possible to talk about conditionally convergent integrals of functions
on subsets of R™ if n > 2 since it usually requires the Fubini theorem to evaluate the multiple

integrals while the Fubini theorem involves evaluating integrals in different orders.
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sin x

Example 6.101. Let f : [0,00) — R be given by f(z) =

using the integration by parts formula we obtain that

r=R R1—cosx 2 2 R 9 4
+ —le’ <=5+ -+ —dr = —.
, T r

T=r

. Then for all 0 < r < R,

R -
1—
J Smmdwl _ ‘ COST

i X

T

k-
Let I}, = f Slzxda:. Then the inequality above implies that {I;}"; is Cauchy in R, so the
0

© sinx
limit J dxr = lim [} exists. However,
0

X k—o0
w © ~(2k—1)7 e (2k—1)m o
J fﬂx)dszJ Smmdw)Z;f sin xdr = 22 !
0 im1 J@2k=2)r T 1 (2k — D) (2k—2)m 2k — 1

0 0 2k 2km 0
—sinz 1 1
L f(z)dx l;lf( T = E ka,[ sin x)dx E L =@

2%k—1)7 2%k— 1)7T =1

3

Therefore, the improper integral j sinx dx is conditionally convergent.
0 T

6.6.1 The monotone convergence theorem and the dominated con-
vergence theorem

In the remaining part of this section, we present some important theorems introduced in

Section 6.4 under the new settings of improper integrals.

Theorem 6.102 (Dominated Convergence Theorem). Let A € R"™ be a Riemann measurable
set, and fr, f : A — R be Riemann measurable functions such that klglolo fr(x) = f(x) for all
x € A. Suppose that there exists an integrable function g such that |fy| < g for all k € N.
Then f is integrable on A, and

J f(z)dx = lim | fi(x)dz
A k—coo J 4

Proof. Since |fi(z)| < g(z) for all z € A and k € N, |f(z)| < g(z) for all z € A. By
the integrability of g, the comparison test (Theorem 6.97) implies that f; and f are also
integrable on A.

Let € > 0 be given. Since f, g are integrable on A, there exists L > 0 such that

OéJ g(:z:)dxf (gAl)(x)dx < c Vi=L (6.6.11)
A AnB(0,0) 3
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and

‘ JA f(z)dx — JAmB(O,é) (=0 v (fr0)(z) d:z:‘ < % V> L.

Moreover, since (—L) v (fy A L) — (=L) v (f A L) p.w. as k — o (due to the pointwise
convergence of {fy};2y to f), and |[(=L) v (fx A L)| < L on A n B(0,L), the Bounded
Convergence Theorem (Theorem 6.70) implies that there exists K > 0 such that

’LmB oL v (feAL))(z)ds — LmB(o,L) (L) v (f A L))(x) dw‘ < % Vi> K.

Note that Theorem 6.81 implies that

Uf d:c—f i) da Uf LmB L)V (f A L)) di

+\LM v D) LQB D) (fon D)) ]

—i—‘J v (fi A L))( dx—f (x)dx‘—i—” fr(x) dz
AnB(0 L) AnB(0,L) AnB(0,L)t

and the fact that ‘ fk| < g implies that

Y

[(=L) v (fe n L)) (@) = fu(2)| < g(z) = (g A L)(2).

Therefore, for k > K,

Uf dx—Jfk dx

<=y Lmb (60~ (g A @) dr + | s

3 AB(0,L)¢

2
<—€+Jg(:p)d1’—f (gAL)(z)dx < <. o
3 A ARB(0,L)

The Monotone Convergence Theorem for improper integrals, unlike the case in the Rie-
mann integrals, is no longer an immediate consequence of the Dominated Convergence
Theorem since the “integral” of the limit function might be infinite. It requires a little bit

more attention to get proved.

Theorem 6.103 (Monotone Convergence Theorem for Improper Integrals). Let A < R”

be a Riemann measurable set, and fi,f : A — R be non-negative, Riemann measurable
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functions such that klim fi(x) = f(x) for all x € A. Suppose that {fi}, is a monotone
—00

increasing sequence of functions; that is, fr < fri1 for all k € N. Then
J f(z)dx = lim | fi(x)de. (6.6.12)
A k=0 J 4
Proof. By the Dominated Convergence Theorem (Theorem 6.102), we only need to consider
the case that f f(z)dx = oo and show that klim f fr(x)dr = 0. We also assume the
A -0 Ja

non-trivial case that J fr(x)dr < oo for all ke N.
A

Let M > 0 be given. Since J f(x) dr = oo, there exists L > 0 such that
A

f (fAl)(x)de=2M  YO=1L.
AnB(0,£)

By the Monotone Convergence Theorem for Riemann integrals (Theorem 6.69), there exists
K > 0 such that

—Méf (kaL)(:E)dm—J (fAL)(z)de <0 Vk=K.
AnB(0,L) AnB(0,L)

Therefore, for all k > K,

| #terde = | iy LHB(O,L)UIC D@ et [ (fn D)) ds

AnB(0,L)

B LNB(M; A L)) de + J (f A L)(z) d

AnB(0,L)

fok(x)dx—f (fenL)(x)de +M = M. o
A AnB(0,L)

When non-negativity of functions is removed from the condition, for (6.6.12) to hold it is
required that the sequence of functions has an integrable lower bound. To be more precise,

we have the following

Corollary 6.104. Let A < R" be a Riemann measurable set, and fi., f : A — R be Riemann
measurable functions such that klgrolo fr(z) = f(z) for all x € A. Suppose that there exists an
integrable function g : A — R such that fi(x) = g(x) for allx € A and k e N, and {fi}7,
is a monotone increasing sequence of functions; that is, fr < frr1 for all k € N. Then

J f(x)de = lim | fi(z)dzx.
A k—o0

A
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Proof. Consider the new sequence of functions {h;}, defined by hy = fr — g and apply

the Monotone Convergence Theorem (Theorem 6.103). o
For monotone decreasing sequences of functions, we have the following

Corollary 6.105. Let A < R" be a Riemann measurable set, and fi., f : A — R be Riemann
measurable functions such that klim fr(x) = f(x) for all x € A. Suppose that fi is integrable
—00

on A and {fi}}2, is a monotone decreasing sequence of functions; that is, fi, = fry1 for all
ke N. Then

ff(-r)dx: lim | fu(2)dz.
A k—w 4

Proof. Consider the new sequence of functions {hy};2, defined by hy = fi; — fx and apply

the Monotone Convergence Theorem (Theorem 6.103). o

6.6.2 The Fubini theorem and the Tonelli theorem

In this section we present the Fubini theorem for improper integrals. The Fubini theorem

for improper integrals takes the form

LxB flo o y) = L <JB (=, y)dy) da

JAXB flw,y)de,y) = JB <L f(377y)dx> dy .

as long as f satisfies certain conditions. However, the iterated integrals on the right-hand
side will be meaningless if the functions F(z) = j f(,y)dy and G(y) = J f(z,-)dz are
B A

or

not Riemann measurable; thus in general we need to impose the condition that F' and G
are Riemann measurable. In fact, even if f : A x B — R is continuous, F' might still be
discontinuous at some points. For example, let A = [-1,1], B = [1,0) and f(z,y) =
|z|y~'~1*l. Then
0 ifx=0,
Fle) = { 1 otherwise,

which is discontinuous at z = 0. In other words, the collection of discontinuities of F' might
not be empty even if f is continuous on A x B since “partial integration” might produce
extra discontinuities; thus in general we do not know if /' is Riemann measurable even if f
is continuous.

Before proceeding to the Fubini theorem, we first establish the following
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Theorem 6.106 (Tonelli). Let A < R" and B < R™ be Riemann measurable sets such that
A x B is Riemann measurable, and f : A x B — R be a non-negative Riemann measurable

function.

L. If for all z € A, f(z,-) is integrable on B and the function f fGy)dy : A — R is
B

Riemann measurable, then
f f(z,y)d(z,y) :f (J f(x,y)dy>dx~
AxB A B

2. If for ally € B, f(-,y) is integrable on A and the function f f(z,)dz : B - R is
A
Riemann measurable, then

LXB f(z,y)d(z,y) = JB (L f(%?ﬁdx) dy .

Proof. Tt suffices to show the first case since the proof of the other case is similar.
We show that for each k € N, the function g : A — R defined by

w@) = | AR

is Riemann measurable. We note that the fact that f(z,-) is integrable on B for each x € A

implies that g, is well-defined for all z € A.

For each ¢ € N, the Fubini theorem for Riemann integrals provides that

gr(z) dz = J gr(z) dz .
An[—L™

(f A R y)d(a,y) = f

J(Am[e,e]n)x(Bm[k,k]m) An[—£,0n

Therefore, gy is Riemann integrable on A n [—¢,¢]" for all ¢ € N, and the Lebesgue theo-

rem (Theorem 6.32) implies that the collection of discontinuities of g in A N [—£,¢]" has
measure zero. By Theorem 6.26 and the fact that A = Cj (A n [—£,£]"), the collection of
discontinuities of g in A has measure zero; thus gy is Rié?nlann measurable.

For each k € N, define fi(z,y) = Lj_g gntm (2, y)(f AR) (2, y) and hi(z) = 1 () ge ().
Then {fr}7; and {hx};2; are non-negative monotone increasing sequences. Moreover, it is

clear that {f};°, converges pointwise to f (on A) and {hs}{_, converges pointwise to the
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function j f(-,y) dy. By the Fubini theorem for Riemann integrals again,
B

f fulary)d(z,y) = f (f A R) (@, y)d(x, )
AxB

(An[—k,k]")x (Bn[—k,k]™)

= J gr(x)de = J hi(x) dz
An[—k,k] A

thus the Monotone Convergence Theorem (Theorem 6.103) implies that

JA Bf(x,y)d(x,y) = lim fr(x,y)d(z,y) = lim | hy(x)dz

k= JaxB k= Ja

_ L (L Flay)dy ) da :

Now we can present the Fubini theorem.

Theorem 6.107 (Fubini). Let A < R" and B < R™ be Riemann measurable sets such that

A x B is Riemann measurable, and f : A x B — R be an integrable function.

1. If for allx € A, f(x,-) is integrable on B, and the functions f fG y)dy : A— R and
B
f £, y)‘dy : A — R are Riemann measurable, then
B

JjAXB flw,y)d(e,y) = JA (JB f(z, ?/)(ﬁ/) dx .

2. If for ally € B, f(-,y) is integrable on A, and the functions J f(z,)dx: B —> R and
A

J |f(z,")|dz : B— R are Riemann measurable, then
A

LXB f(w,y)d(z,y) = JB (L f(%?ﬁdx) dy .

Proof. Tt suffices to prove the first case.
Since f* = %(|f| + f), by assumption the functions f ff(,y)dy : A — R and
B

f f~(,y)dy : A — R are Riemann measurable functions. Therefore, the Tonelli theo-
B

rem implies that

LxB FHaydy) = L <L; fH(@,y) d?/>das;
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thus

LBf(:v,y)d(x,y)z j frapdey) - | F@ydey)

AxB AxB

— L <JB [z, y) dy)da: — L (JB F(z,y) dy)da:
— L (JB (@, y) dy — L JB f(z,y) dy)d:c = L <L f(z,y) dy>d$, .

Corollary 6.108. Let A € R" and B < R™ be Riemann measurable sets such that A x B
is Riemann measurable, and f : A — R and g : B — R be integrable functions. Then the

function h : A x B — R given by h(z,y) = f(x)g(y) is integrable, and

| reaten) = ([ s@ae)( [ stwran).

Proof. By Theorem 6.28, |h| is Riemann measurable. Moreover, by the integrability of g we
find that for each = € A the function |h(z,-)| : B — R is Riemann measurable. Since |f| is

integrable on A and

[ ety =11 [ Jotwlan,

the function f |h(-,y)|dy : A — R is Riemann measurable. In other words, h satisfies
B

conditions in the Tonelli theorem (Theorem 6.106); thus we have

f (@, y)ld(z,y) = f ( f [, y)|dy ) dz = ( f £ dz) ( fB 9] dy) < .

Therefore, h is integrable on A x B. Since h(z, -) is integrable on B for all x € A and h(-,y)
is integrable on A for all y € B, the Fubini theorem (Theorem 6.107) further implies that

LXB h(z, y)d(z,y) = L (JB P, y)dy)dz = (L fw)dz) ( JB 9(y)dy). -



Chapter 7

Uniform Convergence and the Space
of Continuous Functions

7.1 Pointwise Convergence and Uniform Convergence
(& Bhicac 395 Yz ar)

Definition 7.1. Let (M, d) and (N, p) be two metric spaces, A € M be a set, and f; : A —
N be a function for each k € N. The sequence of functions {fx};~, is said to converge
pointwise if { fk(a)}zczl converges for all a € A. In other words, {f};2, converges pointwise
if there exists a function f : A — N such that

lim p(fx(a), f(a)) =0 VaeA.
k—00
In this case, {fi}r; is said to converge pointwise to f and is denoted by fr — f p.w. or

fu 5
Let B < A be a subset. The sequence of functions {f;};~; is said to converge uni-
formly on B if there exists f : B — N such that

Jim sup p(fu(2), /(2)) = 0.
—X zeB

In this case, {fx}; is said to converge uniformly to f on B (or converge to f uniformly on
nif.

B) and is denoted by fr — f unif. or fi > f. In other words, {fx}?* , converges uniformly
to f on B if for every ¢ > 0, there exists N > 0 such that
p(fe(z), f(z)) <e Vk>NandzeB.

The sequence of functions {f;};~; is said to converge uniformly (to f) if {fx}{_, converges

uniformly (to f) on A.

210
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Example 7.2. Let fi, f : [0,1] — R be given by

0 if%gxé

)

0 ifze(0,1],

filw) = 1 ifz=0.

and  f(z) = {

= =

—kr+1 if0<z<
Then {fr}y; converges pointwise to f. To see this, fix z € [0, 1].

1. Case x # 0: Let € > 0 be given, take N > % fk=N,z> % so that fi(x) = 0; thus
| fu(z) = f(2)] = |fulz) = 0| =10-0] <e.

2. Case v =0: Forany e >0, k=1,2,3,..., |f.(0)— f(0)|=1-1]=0<e.
However, {fi}72; does not converge uniformly to f on [0, 1] because

lim sup |fi(z) — f(z)| = lim sup} |fe(z)| =1#0.

k=0 zef0,1] k=0 2e(0,1

Nevertheless, if 0 < a < 1, then by the fact that f; is decreasing for each k € N and {f}72,

converges pointwise to f,

lim sup |fi(z) — f(z)] = ]}1_{{)10 Sl[lpu | fu(2)| = 131_{1010 |fe(a)| =|f(a)] =0

k—co z€la,1]

which implies that {f};2; converges uniformly to f on [a, 1] for all a € (0,1).

Example 7.3. Let f; : [0,1] — R be given by

2
0 if -<w<l,
fr(x) = —k%x + 2k 1fl <x<g,
k k
kE2x 1f0<x<%.

Then similar to the previous example, we have
1. {fx}, converges pointwise to the zero function.
2. {fi}72, does not converge uniformly to the zero function on [0, 1].

3. {fr}r, converges uniformly to the zero function on [a, 1] for all a € (0, 1).
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Example 7.4. Let f; : [0,1] — R be given by fi(x) = 2. Then for each a € [0,1), fy(a) — 0
0 ifze|0,1),

] then
1 ifz=1,

as k — oo, while if a = 1, fy(a) = 1 for all k. Therefore, if f(z) = {

frx — f p.w.. However, since

sup |fi(x) — f(z)| = sup |fe(e)] =1,

z€[0,1] z€[0,1)

we must have
lim sup |fi(z) — f(z)]=1#0.

k=0 2e0,1]

Therefore, {f}72, does not converge uniformly to f on [0, 1].

On the other hand, if 0 < a < 1, then the fact that f; is increasing for all k£ € N implies
that

sup ‘fk(x) - f(x)‘ <a:

z€[0,a]
thus by the Sandwich lemma,
lim sup |fi(z) — f(z)| =0.

k—o0 z€(0,a]

Therefore, {f}72, converges to uniformly f on [0,a] if 0 < a < 1.

sin x

Example 7.5. Let f; : R — R be given by fi(x) = T

which converges to 0 as k — co. By the Sandwich lemma,

Then for each z € R, | fx(z)] <

S

lim |fr(z)] =0 VazeR.

k—o0

1

Therefore, fi; — 0 p.w.. Moreover, since sup ‘fk(a:)‘ < o klim sup |fk(a:)‘ = 0. Therefore,
zeR —0 zeR

{fr}72, converges uniformly to 0 on R.

Proposition 7.6. Let (M,d) and (N,p) be two metric spaces, A < M be a set, and
fr, [+ A— N be functions for k=1,2,---. If {fi}i2, converges uniformly to f on A, then

{fr}io, converges pointwise to f.

Proof. For each a € A, p(fi(a), f(a)) < sup,es p(fu(x), f(z)); thus the Sandwich lemma
shows that

lim p(fi(a), f(a)) =0

since {fx}7, converges uniformly to f on A. o
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Proposition 7.7 (Cauchy criterion for uniform convergence). Let (M, d) and (N, p) be two
metric spaces, A € M be a set, and f, : A — N be a sequence of functions. Suppose that
(N, p) is complete. Then {fr};>, converges uniformly on B < A if and only if for every
e > 0, there exists N > 0 such that

p(fe(@), fo(z)) <& Vk, (=N andz € B.

Proof. “=" Suppose that {fi}72, converges uniformly to f on B. Let ¢ > 0 be given. Then
there exists N > 0 such that
p(fu(z), f(2)) < Vk>Nandze B.

Then if k,¢ > N and x € B,

DO ™

9
+

p(Jil@), ful@)) < p(Jul@), [(@)) + p(f (@), fola)) < 5 + 5

= £&.

DO ™

“<7” Let b € B. By assumption, { fk(b)}zo:l is a Cauchy sequence in (N, p); thus is conver-
gent by the completeness of (N, p). Therefore, we establish a map f : B — N defined
by f(b) = klim fr(b). We claim that {fx}, convergence uniformly to f on B.
—00

Let € > 0 be given. Then there exists N > 0 such that

Mﬁ@%ﬂ@»<% Yk (>NandzeB.

Moreover, for each x € B there exists N, > 0 such that

p(fda). f@) <5 V=N,

Then for all Kk > N and z € B,

in which we choose ¢ > max{N, N,} to conclude the inequality. o

Theorem 7.8. Let (M,d) and (N, p) be two metric spaces, A < M be a set, and fr, : A —> N
be a sequence of continuous functions converging to f : A — N uniformly on A. Then f is

continuous on A; that is,

lim f(z) = lim lim fy(x) = klim lim fy.(x) = f(a).

T—a T—a k—o0 —00 T—a
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Proof. Let a € A and € > 0 be given. Since {fj}72, converges uniformly to f on A, there
exists N > 0 such that

p(fe(@), f(z)) <§ Vk>=Nandze A.

By the continuity of f,, there exists § > 0 such that

p(fy (@), fu(a)) <

whenever x € By(a,d) n A.

Wl M

Therefore, if z € Bys(a,d) n A, by the triangle inequality

thus f is continuous at a. =

k

Example 7.9. Let f; : [0,2] — R be given by fi(z) = . Then

1+ zk
1. For each a € [0,1), fx(a) — 0 as k — oo;

2. For each a € (1,2], fr(a) —» 1 as k — oo;

3. If a =1, then fi(a) =

Let f(z) = ifr=1, Then {fx}{., converges pointwise to f. However, {f}72,
if xe(1,2].
does not converge uniformly to f on [0, 2] since f; are continuous functions for all k € N but

f is not.

_ N = O

Remark 7.10. The uniform limit of sequence of continuous function might not be uniformly

continuous. For example, let A = (0,1) and fi(z) = Lforall ke N. Then {fi}72, converges
T

uniformly to f(x) = =, but the limit function is not uniformly continuous on A.
x

Theorem 7.11. Let I < R be a finite interval, fr : I — R be a sequence of differentiable
functions, and g : I — R be a function. Suppose that {fk(a)}zozl converges for some a € 1,

and {fi}{, converges uniformly to g on I. Then

L. {fe}, converges uniformly to some function f on I.
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2. The limit function f is differentiable on I, and f'(x) = g(z) for all x € I; that is,

lim f{(2) = lim  fi(a) = = lim fila) = f'(x).

k—o0 —w dx dx k—o

Proof. 1. Let ¢ > 0 be given. Since {fk }k | converges to f(a {fk )}Zozl is a Cauchy

sequence. Therefore, there exists N; > 0 such that

| fr(a) = fe(a)] < g Vk (>N,

By the uniform convergence of {f/}72; on I and Proposition 7.7, there exists Ny > 0
such that

|fi(x) = fl(2)] <

where || is the length of the interval.

9
m Vk,ﬁ)Ngandxe[,

Let N = max{Ny, No}. By the mean value theorem, for all £,/ > N and z € I,

there exists £ in between x and a such that

[felw) = o) = fila) + fu@)] = |£(€) = F(E)lle — a] < 6'2@@' <3
thus for all k,¢/ > N and x € [,
|fr(@) = fo(@)| < |fila) — fola)| + g < % + g .

Therefore, Proposition 7.7 implies that {fx}{_, converges uniformly on /.

2. Suppose that the uniform limit of {f;}72, is f. For any given point c € I, define

ful@) = Jule) iteel, z+#c, f@) = f(0) ifrel x+c,
o(w) = rt=c and ¢(z) = T —c
fi(e) ifz=c, g(c) ifx=c.

Then ¢y, is continuous on I for all k € N, and {¢;}72, converges pointwise to ¢.
Claim: {¢y}72, converges uniformly to ¢ on I.

Proof of claim: Let € > 0 be given. Since {f}}{_, converges uniformly on I, there
exists N > 0 such that

sup | fi(s) — f/(s)] < ¢ Vk, (= N.

sel
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Since
| fr(@) = fr(e) = fo(@) + fo(c)| o tener
|61 (2) — ¢e()| = |z — ] : :
‘fk/(c>_fe,<0)‘ if x =c,

by the mean value theorem we obtain that
|0x(x) — do(x)| < sup |fi(s) — fi(s)| <e Vk,>Nandzxel.
sel

Therefore, the Cauchy criterion shows that {¢x};2, converges uniformly to ¢ on I,
and Theorem 7.8 further shows that ¢ is continuous on I; thus

f'(e) = lim ¢(z) = ¢(c) = g(c) . .

Tr—C

Example 7.12. Assume that f; : I — Ris differentiable for all k € N, and { f/}2_, converges
uniformly to g on . Then {f;};2, might NOT converge. For example, consider fi(z) = k.
Then f; =0 but {f;};, does not converge.

sin(k?z)

Example 7.13. For each k € N, let f; : [0,1] — R be defined by fi(z) = — Then

{fr}r>; converges uniformly to the zero function on [0, 1] since

(12
sup |fi(z) — 0| = sup ‘M

1
< — = lim sup |fx(x) —0]=0.
€[0,1] €[0,1] k | k [fe(z) = 0]

k=0 ze(0,1]
However, note that f/(z) = kcos(k*r) so that {f/(0) = k which diverges to o (so that
{fi}7, does not even converge pointwise). Therefore, even if a differentiable sequence

{fr}7, converges uniformly, it does not implies that {f/}>, converges (pointwise).

Example 7.14. Assume that f; : I — R is differentiable for all £ € N, and {fx}72,
converges uniformly to f on I. Then f might NOT be differentiable. In fact, there are
differentiable functions fy : [a,b] — R such that f; converges uniformly to f on [a,b] but f

is not differentiable. For example, consider

b it < o
Ju(@) = 1 1
|x‘—% 1fE<|x‘<1.

Observe that fr(—z) = fr(x), so it suffices to consider x > 0.



§7.1 Pointwise Convergence and Uniform Convergence

217

1. Let f(z) =

sup | fi(x) —

|z|. Then fr — f uniformly:

f(z)

ze[—1,1]

= sup |fi(z) — x| ZmaX{ sup | fi(x) — [, sup \fk(af)—fﬂ\}

z€[0,1] z€(0,1] z€[,1]
—max{ sup k—ﬁ—x sup ‘x—i—x}}
xe[O,%] 2 ’xe[%,l] 2k
z? k1, 1 3
g <x —\ 7T - - > O k — OO .
s [l s g g g 0

2. To see if f;, are differentiable, it suffices to show fk(%) exists
1 1 1 .
oL RG R - ) 1] TR g gy R0
fk(E> = lim - = lim P ko
h—0 h—0 5(%4—]1)2—7]{ 1fh<o
1 (A if h>0
TR A Ene ith <o T
Example 7.15. Assume that f; : [-1,1] — R be given by
( 0 if ze[-1,0],
k2
. Exz 1fa:€(0,k]
BT =9 2 12
1—?(x— k) if x € <%,%}
2
\ 1 if ve (k’ 1]
( 0 if z e [-1,0],
B ifae (0],
Then f/(x) = 9 1 2. and {f/}72, converges pointwise to 0 but not
—k*(z—=) ifze (-, -],
k k' k
. 2
\ 0 ifre (E’ 1} ,
uniformly on [—1,1]. We note that {fx};2,; converges to a discontinuous function
0 if ze[-1,0],
f(gj)_{ 1 ifze(0,1],

so the convergence of {fi}7, cannot be uniform on [—1,1].

Y
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Example 7.16. There are differentiable functions fy : [a,b] — R such that f; converges
x

. . / : / _
uniformly to f on [a,b] but kh—>nolo fi # (kh_I)Iolo fr)'. For example, take fi(x) = T on
B gy = LR
[ 1a 1]' Then fk(m) — (1—1—]{32;%2)2.

- 0‘ = lim L 0, fx converges uniformly to 0 on [—1,1].

1. Since lim sup Hm o
—00

T
k—o0 $€[71,1] ‘ 1 “I’ k:2:L‘2

2. (lim fi(z)) =0 =0.

k—o0

22 1 ifz=0,
3. klim fi(z) = lim L=he { Note that f, does not converge
—00

koo (L+Kk222)2 | 0 ifz #0,

:L" <1
uniformly.

Theorem 7.17. Let f, : A — R be a sequence of Riemann integrable functions which

converges uniformly to f on A. Then f is Riemann integrable on A, and

lim L ful) dz = L lim fi(x) do = L f(a)de. (7.1.1)

k—0o0

Proof. Let R be a rectangle such that A € R and v(R) > 0, and £ > 0 be given. Since

{fr}72, converges uniformly to f on A, there exists N > 0 such that

5
4v(R)

| fu(z) — f(2)] < Vk>=Nandze A. (7.1.2)

Since f, is Riemann integrable on A, by Riemann’s condition there exists a partition P of

A such that
€

U(fN77D> - L(fz\m’P) < E :

By Proposition 6.8, we find that

U(f,P) = LU, P)=U(f = Iy + f,P) = LUf = fy + [y, P)
<U(f = [ P)+ Uy, P) = L = [y, P) = L(fy, P)

£ 9

< 4I/<R)U(R) + 41/(R)V(R) + U(fN7P) - L(fN?P)
€ 9 8_ .

< Z‘i‘ Z_l+§ = &3

thus by Riemann’s condition f is Riemann integrable on A.
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Now, if £ > N, (7.1.2) implies that

IECCERE da:—)f fil f(x))dx\<L\fk<x>—f<x>\dx

which shows (7.1.1). o

Example 7.18. In this example we provide a sequence of integrable functions converges
pointwise to a limit function which is not integrable. Let {gx};~; be the rational numbers
in [0, 1], and

0 ifwe{g, g at,

1 otherwise.

o) = |
Then f; converges pointwise to the Dirichlet function

(0 ifreQnl01],
f(“:)_{l it z e [0,1\Q.

It is well-known that the Dirichlet function is not integrable. However, {f;}7; does not

converge uniformly to f since fj, are Riemann integrable on [0, 1] for all k € N but f is not.

7.2 Series of Functions and The Weierstrass M-Test

Definition 7.19. Let (M, d) be a metric space, (V, | - |) be a normed space, A € M be a

0

subset, and gx, g : A — V be functions. We say that the series Y] g converges pointwise if
k=1

the sequence of partial sum {s,}> ; given by

= Z Jk
k=1

converges pointwise. We use Y. gx = ¢ p.w. to denote that the series > g converges

k=1 k=1
e}

pointwise to g. The series ), gy is said to converge uniformly on B < A if {s,}>_, converges
k=1
uniformly on B.

0
Example 7.20. Consider the geometric series Y. x*. The partial sum s, is given by
k=0

17xn+1
sp(x) = l—=z
n+1l ifz=1.

ifxr#1,

Then
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0
1
1. >} 2% converges pointwise to g(z) = : in (—1,1).
k=0 -

0
2. > 2¥ does not converge pointwise in (—oo, —1] U [1, o0).

k=0
o0
3. > a* converges uniformly on (—a,a) if 0 < a < 1 since
k=0
P+ |afmt
sup |sn(z) —g(x)| = sup < — 0 asn — .
ze(—a,a) ze(—a,a) -z l—a
0
4. x* does not converge uniformly on (—1,1) since sup |s,(z) — g(z)| = 0.
k=0 ze(—1,1)

The following two corollaries are direct consequences of Proposition 7.7 and Theorem
7.8.

Corollary 7.21. Let (M,d) be a metric space, (V,| - |) be a complete normed vector space,
0
A< M be a subset, and g, : A — V be functions. Then Y g converges uniformly on A if

k=1
and only if

V6>0,3N>09H Z gk(x)H<€ Vn>m>=Nandx e A.
k=m+1

Corollary 7.22. Let (M,d) be a metric space, (V,| -||) be a normed vector space, A < M
be a subset, and gi,g : A — V be functions. If gp : A — V is continuous for all k € N and

0
> gr(x) converges to g uniformly on A, then g is continuous.
k=1

Theorem 7.23. Let f : (a,b) — R be an infinitely differentiable functions; that is, f*(z)
exists for all k € N and x € (a,b). Let ¢ € (a,b) and suppose that for some 0 < h < 0,
|f®)(z)| < M for allz € (c—h,c+h) < (a,b) and k € N. Then

Q0

F® (e

fla)y=>" kf >(a:—c)k Vae(c—h,c+h)
k=0

and the convergence is uniform.

Proof. First, we claim that

n)
f@) =3 -k o |

k=0 ¢

Mﬂ““@)@ Vree(ab). (7.21)
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By the fundamental theorem of Calculus it is clear that (7.2.1) holds for n = 0. Suppose
that (7.2.1) holds for n = m. Then

Z f a— o)t + (-1 [—(‘zn; ?T; Fm () z: - J ) —(‘zﬂ; i):; f(m“)(y)dy]
mH k me1 [ (y —a)™* m—+2)
Z (x — )"+ (1) L mf( '(y)dy

which implies that (7.2. 1) also holds for n = m+ 1. By induction (7.2.1) holds for all n € N.

Define s,(z) = Z f ( c)®. Our goal is to show that {s,}*_, converges uniformly
k=0

to fon (¢c—h,c+ h). Nevertheless, note that if z € (¢ — h,c+ h),

T pn hn—i—l
|su(z) — fz)] < ’L dey’ < o M.

n+1
By the fact that lim h —M =0, we conclude that

n—oo M.

lim  sup |s,(z)— f(z)|=0. o
=P pe(c—h,c+h)

Remark 7.24. Assume the conditions in Theorem 7.23. Then applying Theorem 7.23 to
the function g = f’ shows that

0 £k ( ®O &) (¢
%ka!( )(I—C)’“—Z%[f k'( )(x_c)k] vee(c=heth).

This is a special case of Corollary 7.38.

0 2k+1
Example 7.25. The series > (—1) ﬁ converges to sin z uniformly on any bounded
k=0 :

subset of R.

Theorem 7.26 (Weierstrass M-test). Let (M,d) be a metric space, (V, | -|) be a complete

normed vector space, A = M be a subset, and g : A — V be a sequence Offunctions Suppose

that there exists My > 0 such that sup lge(2)| < My for all k € N and Z M. converges.
k=1

Then Z g converges uniformly and absolutely (that is, Z lgk|l converges uniformly) on A.
k=1 k=1

n
Proof. We show that the partial sum s, = . g, satisfies the Cauchy criterion. Let ¢ > 0
00 k=1 n
be given. Since >, Mj converges (which means > M converges as n — o0), the Cauchy

k=1 k=1
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criterion for the convergence of series of vectors (Theorem 2.65) implies that there exists
N > 0 such that

k=m+1 k=m+1

Therefore,
H Z gk(ﬁ)H < Z Hgk(x)H < 2 My <e Vn>m>=Nandzxe A
k=m+1 k=m+1 k=m+1
and the desired result follows from the Cauchy criterion for the uniform convergence of series

of functions (Corollary 7.21). o

Theorem 7.8 and 7.26 together imply the following

Corollary 7.27. Let (M,d) be a metric space, (V,| - |) be a complete normed vector space,

A < M be a subset, and g, : A — V be a sequence of continuous functions Suppose that

there ezists My, > 0 such that sup |gx(z)| < My for all k € N and Z My, converges. Then

0 €A =1
> gx is continuous on A.
k=1
& raky2 kN2 Rp2k
Example 7.28. Consider the series f(x) = >’ (ﬁ) . For all z € [-R, R], (k'> < W
k=0 \ K !
Moreover,
R2(k+1) R2k R2
li — ] —0-
msup o/ Gy s e = 0

0 kN 2
thus the ratio test and the Weierstrass M-test imply that the series >’ <%> converges
k=0

uniformly on [-R, R]. Theorem 7.8 then shows that f is continuous on [—R, R]. Since R is

arbitrary, we find that f is continuous on R.

Q0
Example 7.29. Let {a;}7, be a bounded sequence. Then Z Ok converges to a contin-

—o K!
uous function.
. . & cos(2k + 1)z
Example 7.30. Consider the function f(z — - =
p ider the function f(z) = Mzo (2k + 1)2

(later) that f(z) = |z| for all z € [—7, 7], and by the Weierstrass M-test it is easy to see

. We can in fact show

that the convergence is uniform on R.
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T 52 0 w2 & =

Figure 7.1: The graph of some partial sums

7.3 Integration and Differentiation of Series

The following two theorems are direct consequences of Theorem 7.11 and 7.17.

e e]
Theorem 7.31. Let g, : [a,b] — R be a sequence of Riemann integrable functions. If > g

k=1
converges uniformly on |a,b], then

Theorem 7.32. Let gy, : (a,b) — R be a sequence of differentiable functions. Suppose that
Q0

0

> g converges for some c € (a,b), and Y, g; converges uniformly on (a,b). Then
k=1 k=1

> 0l() = = gela)

Definition 7.33. A series is called a power series about c or centered at c if it is of
0

the form Y] ax(x — ¢)* for some sequence {a;}y € R (or C) and c€ R (or C).
k=0

Proposition 7.34. If a power series centered at ¢ is convergent at some point b # c, then

the power series converges pointwise on B(c, |b—c|), and converges uniformly on any compact
subsets of B(c,|b—c|).

0

Proof. Since the series > a(b— c)¥ converges, |a||b—c|¥ — 0 as k — oo; thus there exists
k=0

M > 0 such that |az||b— c| < M for all k.
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o0
1. z € B(c, |b— c|), the series Y ap(x — ¢)* converges absolutely since

0 k=0 ‘ 0 ’q: c‘ k
k kT —

E a ZB—C E apllz — ¢ E ai|lb — ME ( )

kzo’ k( | kH ‘ ‘ H ’ ) ’b— C‘

which converges (because of the geometric series test or ratio test).

2. Let K < B(c, |b— ¢|) be a compact set. Then
dist(K,0B(c,|b—c|)) = inf{|lz — y| |z e K,|ly — | = [b— |} > 0.

|b — c| — dist(K, 0B(c, |b—¢|))
|b— ¢
x € K. Therefore, |ay(z — ¢)¥| < Mr* if x € K; thus the Weierstrass M-test implies

Define r =

. Then 0 <r < 1, and |z —c| < r|b—] for all

that the series Y] ax(z — ¢)* converges uniformly on K. o
k=0

By the proposition above, we immediately conclude that the collection of all x at which
the power series converges must be connected and symmetric; thus is a disc or a point. This

observation induce the following

Definition 7.35. A non-negative number R is called the radius of convergence of the

Q0
power series Y. a(z—c)" if the series converges for all x € B(c, R) but diverges if x ¢ B, R].
k=0

In other words,

0
R =sup {7“ > O‘ Z ar(x — ¢)* converges in Blc, R] } :
k=0

The interval of convergence or convergence interval of a power series is the collection

of all x at which the power series converges.

Remark 7.36. A power series converges pointwise on its interval of convergence.

Q0
Theorem 7.37. Let {a;}, < C, c€ C, Y. ar(x — ¢)* be a power series with radius of
k=0

convergence R > 0, and K < B(c, R) be a compact set. Then

0¢]
1. The power series Y. ay(z — c)¥ converges uniformly on K.
k=0

a0
2. The power series Y. (k+1)agy1(z —c)* converges pointwise on B(c, R), and converges
k=0
uniformly on K.
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Proof. 1. It is simply a restatement of Proposition 7.34.

e @]
2. By 1, it suffices to show that the power series > (k+1)ag1(z—c)* converges pointwise
k_

on B(c, R). Clearly the series converges at © = ¢. Let x € B(c, R) and x # c¢. Since
|z — ¢| < R, there exists b € B(c, R) such that

R+ |z — |
b=l = =
Then1fr-| —d 0<r<1and
b=’
S (k > (k b =N S 1)
25k + Dlawsale = f* < 30k + Dloglfo - of (=) = 2,k + 1

0
for some M > 0. Note that the ratio test implies that the series Y (k+1)r* converges
0 k=0
if 0 <r < 1;thus > (k+ 1)|ags1]|x — ¢|* converges by the comparison test. o
k=0

e ¢]
Corollary 7.38. Let {a;}, € R and c € R, and Y, ar(x — ¢)* be a power series with

k=0
0

radius of convergence R > 0. Then Y. ai(x — c)¥ is differentiable in (c — R,c+ R) and is
k=0

Riemann integrable over any closed intervals [a, f] € (¢ — R,c+ R). Moreover,
—Z (x —c)" Zkzakx—c ! Vexe(c—R,c+ R)

and
© B
J Z ap(x — c)fdr = Z akf (z — c)Fdx
@ k=0 k=0 Yo

Example 7.39. Let {ax};>, be a bounded sequence. Then

i(zak k)_i Qg k—l_i%k
dr \ & 3] Skt AT

k=0

o0 k

t
Example 7.40. We show J e*dr = e' — 1 as follows. By Theorem 7.23, e* = Z % and
0 =0

the convergence is uniform on any bounded sets of R; thus Corollary 7.38 imphes that

OO tk—‘rl 0 tk .
Ty = Y ode = L
J d = J dx f & +1) kzl B C
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d o] l,k: 0 0
Example 7.41. —( > —) = Y bt =Y 2% for all v € (—1,1); thus
de \ ;= k k=1 k=0
d /< ak 1
— — ) = i -1.1).
dm(%k) 1—x ve(=1L1)

As a consequence,

09]

&t
o A ) ar = —tog(1—1)  Vie(=1,1). 7.3.1
3=y (X )= et (-1,1) (.3.)

Using the alternating series test, it is clear that the left-hand side of (7.3.1) converges at
t = —1. What is the value of

0 k
-1 1 1 1 1 1
—E( LA I Y
= 5 6

k 2 3 4
Consider the partial sum i( > xk) = nil xk = bz 1 & Integrating both
P de\ = k) =5 1-2 l-z 1-xa & &

sides over [—1,0],

_1k 0 n 0 1
‘Z( ) +log2)<f il da:éf (—x)"dr = —— —> 0 as n — w;
= k i 1l—= 1 n+1

thus

In other words,

ok
0
Example 7.42. It is clear that L _ S(—z?)F = > (=1)kz% for all z € (—1,1). So if
1+a2 = k=0
re(—1,1),
Tt r PO o T
tan 'z = J = f DIDkRdE = YT (1) *at
o L+ 0 k=0 k=00
:i (-1)kt2k+1t:x_$*x_3+x_5*w_7+
Skt 1 iz 35 7
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Mimic the previous example, we consider

X T 1 _ (__42\n+1 x (12 \n+1

o 14+82 ), 142 o 1+122

T (_t2)n+1

_ [ —1)*t*Fdt f—
Jy B [T
n T T ( 42\n+1 n _1k T (_ 12\n+1

:ZJ(—l)kt%dt+J (=1%) dt:Z( ) x2k+1+J (=1%) dt:
k=0

0 o 1412 =2k +1 o 1412

dt

thus plugging x = 1,

n _1 k 1 t?(n+1) 1 1
‘tan_ll—ZQ(k_i_)l‘éf dtéJtQ(”“)dt: — (0 asn — .
k=0

0 1+t2 0 2n+3
Therefore,
T
— — _— = ... = tan = — .
3 5 7 4

7.4 The Space of Continuous Functions

Definition 7.43. Let (M,d) be a metric space, (V,| - ||) be a normed vector space, and
A < M be a subset. We define € (A;V) as the collection of all continuous functions on A

with value in V; that is,
¢(A;V)={f:A— V| is continuous on A}.

Let %,(A; V) be the subspace of € (A; V) which consists of all bounded continuous functions
on A; that is,
Gy(A; V) = {f e €(A;V)|f is bounded} .

Every f € €,(A; V) is associated with a non-negative real number | f|, given by
[floe = sup {1 f(z)] |2 € A} = sup If ()] -
xTre

The number | f| is called the sup-norm of f.

Proposition 7.44. Let (M,d) be a metric space, (V,||-|) be a normed vector space, A < M

be a subset.

1. €(A;V) and 6,(A; V) are vector spaces.
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2. (6(A; V), |- ) is a normed vector space.
3. If K = M is compact, then € (K;V) = €,(K;V).
Proof. 1 and 2 are trivial, and 3 is concluded by Theorem 4.25. =

Remark 7.45. In general || - |, is not a “norm” on €(A;V). For example, the function
flz) = = belongs to €’((0,1);R) and | f|, = c0. Note that to be a norm | f||,, has to take
x

values in R, and o ¢ R.

Proposition 7.46. Let (M,d) be a metric space, (V,||-|) be a normed vector space, A = M
be a subset, and fr € €,(A;V) for all k € N. Then {fi.}{_, converges uniformly on A if and
only if {fr}i, converges in (€,(A; V), | - ).

Proof. (<) Suppose that {fi};2, converges in (4,(4;V),| - |x). Then there exists f €
(6,(A; V), | - |o) such that klim |fe — floo = 0, and by the definition of the sup-norm,
—00

lim sup | fi(x) = f(z)]| = 0.

k—0 zeA

Therefore, {fi}7, converges to f uniformly on A.

(=) Suppose that {fx}72, converges uniformly on A. Then there exists a function f: A —
V such that

lim sup | fx(z) — f(2)] = 0.

k=0 zcA

By the definition of the sup-norm, it suffices to show that f € %,(A;V) in order to
conclude the proposition. By Theorem 7.8, we obtain that f € % (A;V). Moreover,

the uniform convergence implies that there exists NV > 0 such that

Ifu(z) — f(x)| <1 Vk>=NandazeA.

In particular, the boundedness of f, provides M > 0 such that | f, (z)| < M for all
x € A; thus

[ f@)] < fy@]+f(z) - f@)|<M+1 VaeA.
This implies that f is bounded; thus f € €,(A; V). o

Theorem 7.47. Let (M, d) be a metric space, (V,||-|) be a normed vector space, and A < M
be a subset. If (V,| - ) is complete, so is (€,(A; V), ] - [)-
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Proof. Let {f,}7, be a Cauchy sequence in (¢,(A;V),| - |). Then
Ve>0,9N >0 3 |fx — fillo <& whenever k,{>=N.
By the definition of the sup-norm, the statement above implies that
Ve>0,3N >0 3| fi(x) — fo(z)| <e whenever k ¢> N andze A

which shows that {fi}{, converges uniformly on A because of the Cauchy criterion. Propo-
sition 7.46 then implies that {f,};2, converges in (€,(4; V), ] - |x)- D

Example 7.48. In this example we try to visualize a ball in %,(A,V). Note that if f €
¢»(A,V) and € > 0. Then

B(f,e) = {ge GAV)||f — glo <&}

In particular, if A = [a,b] and V = R, then g € B(f,¢) if and only if |f(x) — g(z)| < € for
all = € [a,b] which means that the graph of g lies between the graph of y = f(x) 4+ ¢ and
y=flz)-e

O x

Figure 7.2: g € B(f,¢) if the graph of g lies in between the two red dash lines

Example 7.49. The set B = {f € ¢([0,1];R)|f(z) > 0 for all z € [0,1]} is open in

Reason: Let f € B be given. Since [0, 1] is compact and f is continuous, by the extreme

f(xo)

value theorem there exists zo € [0, 1] so that iflf]f(l’) = f(z9) > 0. Take ¢ = 5 Now
z€(0,1
if g is such that [g — | = sup |g(z) — f(z)] <e = f(;co), we have for any y € [0, 1],
z€[0,1]

f(xo) |

I

9() = FW) < sup lole) — )] < =5
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thus

Therefore, g € B; thus B(f,¢) < B

Example 7.50. Find the closure of B given in the previous example.

Proof. Claim: cl(B {f € ([0, 1], ‘f }
Proof of claim: We show that for every f € { f e ¢(]0,1], ‘ f(x 0}, there exists fy € B
such that || fx — flleo — 0 as k — 0. Take fx(z) = f(x)+ %, then fk € B (" fr(x) > 0), and

1 1
|fx = flloo = sup |fi(z) - \\supk:EHOask—mo. 0
zel0 z€(0,1]

7.5 The Arzela-Ascoli Theorem

hip- & ¢ o A 'FW‘Z"Eﬂi" HFRT o N S| iR BT a3 g Jrar BFenE R L
BLimo L EMBE S APFZAHI- BiEE - @ FEEca ] > 2153
Jeacls & l% FIRIEE A2 o i BIEE ?J 'J ] i’la LA R BT RTE AR o Ao B
Fulig i o B Rt (23 k) o  Fle AR RS AR  Skr B ARG h
Qi???

7.5.1 Equi-continuous family of functions

The first part of this section is devoted to the investigation of the difference between the

pointwise convergence and the uniform convergence of sequence of continuous functions.

Definition 7.51. Let (M,d) be a metric space, (V.| - |) be a normed vector space, and
A < M be a subset. A subset B € %,(A;V) is said to be equi-continuous ( % & 3 § ) if

Ve>0,30 >0 3| f(z1) — f(z2)|]| <e whenever d(z1,z3) <, 1,220 € A, and f € B.

Remark 7.52. 1. If B € %,(A;V) is equi-continuous, and C' is a subset of B, then C' is

also equi-continuous.

2. In an equi-continuous set of functions B, every f € B is uniformly continuous.
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Remark 7.53. For a uniformly continuous function f, let d;(¢) (we have defined this
number in Remark 4.47) denote the largest § that can be used in the definition of the
uniform continuity; that is, d;(e) has the property that

|f(z) — f(y)| <& whenever d(z,y) <d,z,yec A < 0<09<(e).

Suppose that every element in B < %(A;V) is uniformly continuous on A. Then B is

equi-continuous if and only if ]icng dr(e) > 0.
€

Example 7.54. Let B = {f € €,((0,1); V) ||f'(z)| < 1 for all z € (0,1)}. Then B is equi-

continuous (by choosing § = € for any given e, and applying the mean value theorem).

Example 7.55. Let f; : [0,1] — R be a sequence of functions given by

-

1
kx o<z < <o
fu(z) =% 2—kx if%< %

0 if x>

o H

\

and B = {fx}7>;. Then B is not equi-continuous since the largest ¢ for each k is % which

converges to 0.

Lemma 7.56. Let (M, d) be a metric space, (V,|-|) be a normed vector space, and K < M

be a compact subset. If B < € (K;V) is pre-compact, then B is equi-continuous.

Proof. Suppose the contrary that B is not equi-continuous. Then there exists € > 0 such
that

1
VkeN,Jxp,yp € K and fr € B 3 d(xp, y) < e but | fr(xk) — fr(yr)| =€

Since B is pre-compact in (€' (K;V),| - |lx) and K is compact in (M,d), there exists a
subsequence { Tx; } and {zy, };2, such that { Tr; } converges uniformly to some function

fe (€K V), | o ) and {zy,;}72, converges to some a € K. We must also have {y,}%
converges to a since d(zy;, y,) < k:l
J

Since f is continuous at a,

35 >0 3 |f(z) — fla)] <§ if v € B(a,d) n K.
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Moreover, since { fkj} converges to f uniformly on K and wy;,yx, — a as j — o0, there

0
j=1
exists N > 0 such that

| fi, () — f(2)] <§ ifj>Nandze K

and
d(xp;,a) <6 and  d(ye,,a) <0 ifj=N.

As a consequence, for all j > N,
e < | fa; () = fo (ury) | < | oy (ony) = flany) | + | f () = fla)]
4
£ ) = F@] + £ = i )] < £
which is a contradiction. o

Alternative proof of Lemma 7.56. Suppose the contrary that B is not equi-continuous. Then

there exists € > 0 such that

1
VkeN,Jap, yp € K and fr € B ad(xy, yix) < z but || fu(ze) — fe(ye)] = €.

Since B is pre-compact in (‘K(K V), | - Hoo)» there exists a subsequence { fkj} converges

o0
j=1
to some function f in (CK(K; V), |- Hoo) By Proposition 7.46, {fkj }jil converges uniformly
to f on K; thus there exists N; > 0 such that

kaj(x) —f(x)” < Z Vi=N andrxe K.
Since f € €(K;V), by Theorem 4.49, f is uniformly continuous on K; thus

36>03|f(x)— fly)] < Z if d(z,y) <dand z,ye K.
Let N = max {Nl, [%} + 1}, and j = N. Then d(zx,,yr;) < ¢ and this further implies that
3
e < | i, @r,) = fr, (r,) | < | fi, @ny) = f@w,) | 4 | @r,) = Fl,) | + | f i, = Fiy )| < Ze :

a contradiction. o

Corollary 7.57. Let (M, d) be a metric space, (V, ||-|) be a normed vector space, and K < M

be a compact subset. If {fi.}{, converges uniformly on K, then {fi}y, is equi-continuous.
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Example 7.58. Corollary 7.57 fails to hold if the compactness of K is removed. For

example, let {fx}72,; be a sequence of identical functions fi(z) = L on (0,1). Then {fr}7,
T

converges uniformly on (0, 1) but {f}?2, is not equi-continuous since none of fj is uniformly

continuous on (0, 1) which violates Remark 7.52.

We have just shown that if { f},°; converges uniformly on a compact set K, then {fi}7;
must be equi-continuous. The inverse statement, on the other hand, cannot be true. For
example, taking {fi}>; to be a sequence of constant functions fi(xz) = k. Then {fi}72,
obviously does not converge, not even any subsequence. Therefore, we would like to study
under what additional conditions, equi-continuity of a sequence of functions (defined on
a compact set K) indeed converges uniformly. The following lemma is an answer to the

question.

Lemma 7.59. Let (M,d) be a metric space, (V,| -|) be a Banach space, K < M be a
compact set, and {fi}72, € €(K;V) be a equi-continuous sequence of functions. If {fi}7,
converges pointwise on a dense subset E of K (that is, E € K < cl(F)), then {fi}i,

converges uniformly on K.

Proof. Let € > 0 be given. By the equi-continuity of { fx},
35> 0 3 | fulz) — fo(v)] < % if d(z,y) <0, 7,y K and ke N.

Since K is compact, K is totally bounded; thus

" 5
j=1

By the denseness of E in K, for each j = 1,--- ,m, there exists z; € E such that d(z;, y;) < g
Moreover, B(y;, g) < B(zj,0); thus K < UIB(Z]‘, 9). Since {fi};2, converges pointwise on

J:
E, {fi(2;)}2, converges as k — oo for all j =1,--- ,m. Therefore,

€
AN; >0 3 fu(z) = fulz)l <5 VE L= N;.
Let N = max{Ny,---, Ny}, then

8 .
ka(zj)_ff(zj)\|<§ Vk,{>Nandj=1,--- ,m.
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Now we are in the position of concluding the lemma. If x € K, there exists z; € E such
that d(z, z;) < 0; thus if we further assume that £,/ > N,

| fie(w) = fele) | < [ fele) = fulz) |+ [e(z) = fe(z) + 1elz5) = fulz)] < e

By Proposition 7.7, {fi};2, converges uniformly on K. o

Remark 7.60. Corollary 7.57 and Lemma 7.59 imply that “a sequence {fi}i2, € € (K;V)
converges uniformly on K if and only if {fi};2; is equi-continuous and pointwise convergent

(on a dense subset of K)”.

7.5.2 Compact sets in ¢ (K;V)

The next subject in this section is to obtain a (useful) criterion of determining the compact-
ness (or pre-compactness) of a subset B < %(K;)) which guarantees the existence of a

convergent subsequence { fi, }?:1 of a given sequence {fi}i2; € Bin (€(K; V), | [x)-

Lemma 7.61 (Cantor’s Diagonal Process). Let E be a countable set, (V.| -|) be a Banach
space, and f : E—V be a sequence of functions. Suppose that for each x € E, {fk(x)}zo:l

is pre-compact in V. Then there exists a subsequence of { fi};2, that converges pointwise on
E.

Proof. Since E is countable, E = {x,},.

1. Since {fk(xl)}zo:l is pre-compact in (V, || |), there exists a subsequence { fj, };Ozl such
that {fx, (a:l)};il converges in (V, | - ).

2. Since {fk<{[‘2)}20:1 is pre-compact in (V, |- |), the sequence {fk].(xQ)}j,ozl - {fk(xg)}]zo:l
has a convergent subsequence { s, (:@)}Zl

Continuing this process, we obtain a sequence of sequences Sy, Ss, - -+ such that
1. Sk consists of a subsequence of {fx}{_; which converges at zj, and
2. S, 2 Sk-Jrl for all k € N.

Let gi, be the k-th element of S;. Then the sequence {g;};”, is a subsequence of {fi},

and {gx}7_, converges at each point of E. o
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The condition that “{ fk(a:)}zozl is pre-compact in V for each x € E” in Lemma 7.61

motivates the following

Definition 7.62. Let (M,d) be a metric space, (V,| - |) be a normed vector space, and

compact
A € M be a subset. A subset B € %;(A;V) is said to be pointwise pre-compact if the
bounded
compact
set B, = {f(x) ‘ fe B} is pre-compact in (V.| -|) for all x € A.
bounded

Example 7.63. Let f; : [0,1] — R be given in Example 7.55, and B = {f;};~;. Then B
is pointwise compact: for each x € [0,1], B, is a finite set since if fx(0) = 0 for all k € N,

while if z > 0, fy(z) = 0 for all k large enough which implies that # B, < 0.

ARiE™ kg €(K;V) & 1 compact sets 3 #AEFiFEET o gARAPLGw
P BC 9% (K;V) n\compact set o X T - 1B S0 gF {fk}k L S B A AT A A oRe 35 3
- ¥ & sup-norm T T a i subsequence { Jx; } ( #* sequentially compact ) ° ¢ Dlagonal
Process (Lemma 7.61) v 2P F & K * - B+ & FE 7 {fi}lL, = B}

#_ pointwise pre-compact (i& BN T %HE 1 ¥ 1135 F) subsequence RELITRC) » AR {8 4
4 Lemma 7.59 n§le4 > B F deig 4v b equi-continuity 7if i 2. {5 5 iR By ar € ¥ ;Hg kS
B o F|Pt oo fp AR AP E & K B & & pointwise pre-compact :E # equi-continuous i

BixiEkEF N B IC(K;V) ® ¢ compact set ° @ - B compact set K ® it # it 35 ¥
- BREBFEENLD T o 2B Lemma 7k ik o

Lemma 7.64. A compact set K in a metric space (M,d) is separable; that is, there exists
a countable subset E of K such that cl(F) = K.

Proof. Since K is compact, K is totally bounded; thus Vn € N, there exists E,, < K such

that

#E, <o and Kc || B(y,%).

yeEn

0
Let E = |J E,. Then FE is countable by Theorem 0.20. We claim that cl(£) = K.
n=1

To see this, first by the deﬁmtlon of the closure of a set, cl(E) € K (since K is closed).
Let z € K. Since K < B(y, ) x e B(y, ) for some y € E,,. Therefore, B(a: l) NE #

yEER

& for all n € N. This implies that z € E = cl(E). o



236 CuHAPTER 7. Uniform Convergence and the Space of Continuous Functions

Theorem 7.65. Let (M,d) be a metric space, (V.| -|) be a Banach space, K < M be a
compact set, and B < € (K;V) be equi-continuous and pointwise pre-compact. Then B is
pre-compact in (€ (K; V), || |x)-

Proof. We show that every sequence {f;};2; in B has a convergent subsequence. Since K is
compact, there is a countable dense subset E of K (Lemma 7.64), and the diagonal process
(Lemma 7.61) implies that there exists { Jr; };Ozl that converges pointwise on E. Since E is
dense in K, by Lemma 7.59 { Tk, }30:1 converges uniformly on K; thus { Tk, }30:1 converges in

(€¢(K;V), | - ) by Proposition 7.46. o

Remark 7.66. Lemma 7.56 and Theorem 7.65 imply that “a set B < %(K;V) is pre-
compact if and only if B is equi-continuous and pointwise pre-compact”. (That B is pre-

compact implies that B is pointwise pre-compact is left as an exercise).

Corollary 7.67. Let (M,d) be a metric space, and K < M be a compact set. Assume that
B <€ €(K;R) is equi-continuous and pointwise bounded on K. Then every sequence in B

has a uniformly convergent subsequence.

Proof. By the Bolzano-Weierstrass theorem the boundedness of { fk(a:)}zozl implies that
{ fk(x)}zozl is pre-compact for all z € E. Therefore, we can apply Theorem 7.65 under the
setting (W, || - |) = (R,]| - |) to conclude the corollary. D

The following theorem provides how compact sets look like in €' (K; V).

Theorem 7.68 (The Arzela-Ascoli Theorem). Let (M,d) be a metric space, (V,| - ||) be
a Banach space, K < M be a compact set, and B < €(K;V). Then B is compact in

(%(K; V), | - Hoo) if and only if B is closed, equi-continuous, and pointwise compact.
Proof. “<" This direction is conclude by Theorem 7.65 and the fact that B is closed.

“=" By Lemma 7.56 and the fact that compact sets are closed, it suffices to shows that
B is pointwise compact. Let 2 € K and { fk(ac)}zo:l be a sequence in B,. Since

B is compact, there exists a subsequence { Jx; }jozl that converges uniformly to some
function f € B. In particular, { fkj(:r)}j.o:l converges to f(x) € B,. In other words, we
0

find a subsequence {fi,(z)}._ of { fk(x)}zo:l that converges to a point in B,. This

j=1
implies that B, is sequentially compact; thus B, is compact. n

Example 7.69. Let f; : [0,1] — R be a sequence of functions such that
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(1) |fr(z)| < M forall ke Nand z € [0,1]; (2) |fi(z)] < My for all k e N and x € [0, 1].

Then {fi}72; is clearly pointwise bounded. Moreover, by the mean value theorem
’fk<x)_fk<y)|<M2’x_y’ V:U,yE[O,l],/{;EN

which implies that {f;}72; is equi-continuous. Therefore, by Corollary 7.67 there exists a
subsequence { fi, };O:l that converges uniformly on [0, 1].

Question: If assumption (1) of Example 7.69 is omitted, can { fx};~; still have a convergent
subsequence?

Answer: No! Take fi(z) = k, then {f}72, does not have a convergent subsequence (note

that fi is continuous and f;(x) = 0; that is, Assumption (2) is fulfilled).

Example 7.70. We show that Assumption (1) of Example 7.69 can be replaced by f(0) = 0
for all k € N.

Proof. (a) If f,(0) = 0, then by the mean value theorem we have for all z € (0,1] and k € N,
fr(z) — fx(0) = fi.(cx)(x — 0). Then Assumption (2) of Example 7.69 implies that

i) = fu0)] = | Filen)|] < Mafa| < M,

which shows that {f};2, is uniformly bounded by M.

(b) {fx}i2, are equi-continuous (same proof as in Example 7.69). o

7.6 The Stone-Weierstrass Theorem

Theorem 7.71 (Weierstrass). Let f : [0,1] — R be continuous. Then for every e > 0, there
exists a polynomial p : [0,1] — R such that |f — p|w < €. In other words, the collection of
all polynomials is dense in the space (€([0,1;R), || - ||x)-

Proof. For a fixed n € N, let ry(x) = CPa*(1 —

with respect to x of the identity (z +y)" = >. Crafy"* we find that
k=0

x)"*. By looking at the partial derivatives

LY re(z)=1; 2. ) krg(x) =nx; 3.
k=0 k=0 k

Z k(k — 1)re(x) = n(n — 1),

0
As a consequence,

n n

Z(k —nx)ry(z) = Z [k(k —1) + (1 — 2n2)k + n’2*|re(z) = na(l — ).

k=0 k=0
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Let € > 0 be given. Since f : [0,1] — R is continuous on a compact [0,1], f is uniformly
continuous on [0, 1] (by Theorem 4.49); thus there exists 0 > 0 such that

f(x) = fly)] < g whenever |z —y| <4, z,y € [0,1].
Choose n € N such that TJ;’;O < ¢, and define the Bernstein polynomial p(x) =

> f(ﬁ)rk(x) Then p is a polynomial. Moreover, for x € [0, 1] we have
k=0 T

10) -5t = | 3 (10) — 1))t < @) = (Gt
o+ Y )@ -G

|k—nz|<dn  |k—nz|=dn

Sy, Y B

)2
2 |k—nz|=6n (k n.CC)
€ 2Hf”oo e 2| f]w
5 252 Z — na) 7y )<§+ 52 z(l — )
Since sup z(1—z) = 1, we find that
z€0,1] 4
_ L
If = plee = s [F@) —p)] <5 +5 5 <e. .

Remark 7.72. A polynomial of the form p,(z) = Z Byri(x) is called a Bernstein poly-

nomial of degree n, and the coefficients g are called Bernstein coefficients.

Figure 7.3: Using a Bernstein polynomial of degree 350 (the red curve) to approximate a
“saw-tooth” function (the blue curve)

Corollary 7.73. The collection of polynomials on [a,b] is dense in (€([a,b];R), | - |x)-
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Proof. Let g € €([a,b];R). Define f(x) = g(x(b—a)+a). Then f e €([0,1];R); thus there
exists a sequence p, € €([0,1]; R) such that

lim sup |f(y) —pa(y)| = 0.

=90 yel0,1)

—¢ (or x =y(b—a)+a),

Therefore, with the change of variable y = gg

limy sup |g(a) ~ pu(3—2)| = lim sup |(y) = puly)| = 0:

=% rela,b] =% 4el0,1]

thus by the fact pn(%) is a polynomial in x for all n € N we conclude that there exists

a sequence of polynomials converging to ¢g uniformly on [a, ). =

Definition 7.74. Let (M, d) be a metric space, and E < M be a subset. A family A of

real-valued functions defined on E is called an algebra if
1. f+ge Aforall f,ge A,
2. f-ge Aforall f,ge A;
3. af e Aforall fe Aand aeR.

In other words, A is an algebra if A is closed under addition, multiplication, and scalar

multiplication.

Example 7.75. A function g : [a,b] — R is called simple if we can divide up [a, ] into
sub-intervals on which ¢ is constant except perhaps at the end-points. In other words, g is

called simple if there is a partition P = {zg, 21, -+ ,xn} of [a,b] such that

g(x) = g(xl*le) if e (xiq,2;).

Then the collection of all simple functions is an algebra.

Proposition 7.76. Let (M,d) be a metric space, and A < M be a subset. If A< 6,(A;R)

is an algebra, so is A.

Proof. Let f g € A. Then there exists {f.}?°,, {gx}?, € A such that {f,}?_, converges
uniformly to f on A, and {gx};2, converges uniformly to g on A. Since A is an algebra,
fe + gk, fx - g and afy belong to A for all kK € N. By Theorem 2.48 and Proposition 7.46,
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the limit of {fi + gz}, and {af}?>, belong to A which implies that f + ¢ and o f belong

to A. Moreover,

I i g6 = f - gloo < e = Flloollgrlloo + [f oo llgr = glloo

which converges to 0 as k — o0; thus f - g is the limit of {fy - gx}:>, so that f-g € A.

Therefore, A is an algebra. O

Corollary 7.77. Let (M,d) be a metric space, K < M be a compact set, and A < € (K;R)

be an algebra.
1. If fe A, sois|f|.
2. If f1,---, fn € A, then max{fi, -+, fu} € A and min{fy, -, fu} € A, where

max{fi, -, fu}(z) = max{fi(z), -, fu(v)},
min{fl;“' 7fn}(33) = min{fl(x)ﬂ"' >fn(x)}

Proof. 1. Let f € A. Then f is bounded so that M = sup |f(x)| € R. By Corollary 7.73,
zeK

there exists a sequence of polynomial {p,};; such that lim sup |p.(y) —|y|| = 0.
n—® ye[_MvM}

Since A is an algebra, A is also an algebra; thus g, = p,(f) € A. Moreover,

sup g (z) — | f(2)]| = sup [pa(f(2)) = [f(@)]| < sup  [paly) — |||
zeK zeK ye[—M,M]

which shows that {g,}°_; converges uniformly to |f| on K; thus |f| € A=A

2. It suffices to show that max{f, g} and min{f, g} both belong to A since

max{fla"' :fn} = max{maX{flv"' 7fn71}>fn}7
min{fla"' >fn} = min{min{fla"' 7fn—l}7fn}'

Nevertheless, note that max{f, g} = / ;_ g4 f ; d and min{f, g} = ! ;_ g_|\f g g|’
we find that if f,g € A then max{f, g} € A and min{f, g} € A. o

Definition 7.78. Let (M,d) be a metric space, and E < M be a subset. A family .# of

real-valued functions defined on F is said to

1. separate points on E if for all x,y € E and = # y, there exists f € .%# such that
flx) # fy)

2. vanish at no point of E if for each x € E there is f € % such that f(x) # 0.
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Example 7.79. Let Z([a,b]) denote the collection of polynomials defined on [a,b] is an
algebra. Moreover, Z([a,b]) separates points on [a,b] since p(z) = x does the separation,

and Z([a,b]) vanishes at no point of [a, b].

Example 7.80. Let Poven([a,b]) denote the collection of all polynomials p(z) of the form

p(z) = Z arpz® = ap2® 4+ ap_ 12714+ +ao.
k=0
Then Peven([a, b]) is an algebra. Moreover, Peven([a, b]) vanishes at no point of [a, b] since the
constant functions are polynomials (since constant functions belongs to &(|a, b]). However,
if ab < 0, Peven([a, b]) does not separate points on [a, b]. On the other hand, if ab > 0, then

Peven([a, b]) separates points on [a, b] since p(z) = z? does the job.

Lemma 7.81. Let (M,d) be a metric space, and E < M be a subset. Suppose that
A < 6,(FE;R) is an algebra, A separates points on E, and A vanishes at no point of E.
Then for all x1,x9 € E, 1 # X9, and ¢y, ¢ € R (1, ¢y could be the same), there exists f € A
such that f(x1) = c¢1 and f(x2) = ca.

Proof. Since A separates points on E, there exists g € A such that g(z1) # g(x2), and since
A vanishes at no point of E, there exists h, k € A such that h(z;) # 0 and k(x2) # 0. Then

[9(x) — g(22)] h(x) [9(z) — g(a1)
g(x1) — g(x2)| h(21) [9(22) — g(1)] k(2)

has the desired property. =

o
—

&
N

f(x):cl[ + ¢

Theorem 7.82 (Stone). Let (M,d) be a metric space, K < M be a compact set, and
A < € (K;R) satisfying

1. A is an algebra. 2. A separates points on K. 3. A vanishes at no point of K.

Then A is dense in € (K;R); that is, for every f € €(K;R) and € > 0, there ezists g € A
such that | f — gl < €.

Proof. We first show that for any given f € €(K;R), a € K and £ > 0, there exists a
function g, € A such that

ga(a) = f(a) and ga(x) > f(x) —€¢ YVreK. (7.6.1)
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Let f € €(K;R), a e K and £ > 0 be given. Since A is an algebra, so is .A; thus Lemma 7.81
implies that there exists h, € A such that hy(a) = f(a) and hy(b) = f(b). Note that every
function in A is continuous (by Theorem 7.8); thus the continuity of h;, provides § = d, > 0
such that

ho(z) > f(z)—e  VYae [B(bd) uB(a,d)| nK.

Let Uy = B(b, 5b) U B(a, 5&;). Then Uy is open. Since K < | J Uy and K is compact, there ex-
be K
b#a

ists a finite set {b1,--- , by} S K\{a} such that K < [ U,,. Define g, = max{hbl, e hbm}.
j=1

Then g,(a) = f(a), and Corollary 7.77 implies that g, € A. Moreover, if z € K, x € U,, for

some j; thus
ga(x) = hy(x) > f(x) — ¢
which implies that g satisfies (7.6.1).
Let f € €(K;R) and £ > 0 be given. For any a € K, let g, € A be a function satisfying

ga(@) = fla) and gu(2) > f(x) —g VeekK. (7.6.2)

By the continuity of g,, there exists 6 = J, > 0 such that

ga(®) < f(z) + g VaeB(a,6,)nK. (7.6.3)
By the compactness of K, there exists {ai, -+ ,a,} S K such that
K < | JB(aj,da,) -
j=1

Define h = min {ga,, - , ga, }. Corollary 7.77 implies that h € A, and (7.6.2) shows that
h(x)>f(x)—% Vee K.
Moreover, if x € K, there exists j such that z e B(aj, 5aj) and (7.6.3) further shows that
<.
2 Y

h(z) < ga;(7) < f(z) +
thus
h(:v)<f(:c)+% Ve K.

Therefore, we establish the existence of h € A such that

h) - f(z)] <5 VaeK.
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On the other hand, since h € A, there exists p € A such that
p(x) — h(z)| < g VeeK:

thus
p(z) — f(2)| < |p(x) = h(z)| + |h(z) — f(x)| <e VzeK

which concludes the theorem. o

Example 7.83. Let K =[—1,1] x [-1,1] € R% Consider the set 2 (K) of all polynomials
p(z,y) in two variables (z,y) € K. Then & (K) is dense in € (K;R).

Reason: Since K is compact, and &?(K) is definitely an algebra and the constant function
p(z,y) = 1 € P(K) vanishes at no point of K, it suffices to show that Z(K) separates
points. Let (aq,b1) and (ag, be) be two different points in K. Then the polynomial

p(z,y) = (x — a1)* + (y — br)?
has the property that p(aj,by) # p(ag, by). Therefore, 2 (K') separates points in K,

Example 7.84. Consider Peyen([0,1]) = {p(az) = Y apa? ‘ ay € R} (see Example 7.80).
k=0

Then A = Peuen([0,1]) satisfies all the conditions in the Stone theorem, s0 Peven([0, 1]) is
dense in ([0, 1]; R).

On the other hand, if K = [—1,1], then Peyen([—1,1]) does not separate points on K
since if p € Poven(|—1,1]), p(x) = p(—x); thus the Stone theorem cannot be applied to
conclude the denseness of Peven([—1,1]) in €([—, 1];R). In fact, Peyen([—1,1]) is not dense
in €([—1,1];R) since polynomials in Peyen([—1,1]) are all even functions and f(z) = =

cannot be approximated by even functions.

Corollary 7.85. Let €(T) be the collection of all 2w-periodic continuous real-valued func-
tions, and 2, (T) be the collection of all real-valued trigonometric polynomials of degree n;

that is,
&

Z,(T) = {50 + 2 cp cos kx + spsin kx| {cx}r_os {Sk}rey S R} :
k=1

a0

Then Z(T) = | Z.(T) is dense in €(T). In other words, if f € €(T) and € > 0 is given,
n=0

there exists p e P(T) such that

|f(z) —p(x)] <e VazeR.
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Proof. We note that € (T) can be viewed as the collection of all continuous functions defined
on the unit circle S! in the sense that every f € €(T) corresponds to a unique F € € (S*; R)
such that f(z) = F(cosx,sinz), and vice versa. Since S' < [—1,1] x [—1,1] is compact,
Example 7.83 provides that Z(S'), the collection of all polynomials defined on S!, is an
algebra that separates points of S' and vanishes at no point on S'. The Stone-Weierstrass
Theorem then implies that there exists P € Z(S') such that

|F(z,y) = P(z,y)| < e Y (x,y) e S' (that is, 2* + 5 = 1).

Let p(z) = P(cosx,sinz). Note that

ix ix
cos” r = € +€ Z n zka: —zn k)x Z Cm i(2k—n)x
2” 2n

= Z 2%0,?(008(219 —n)z + isin(2k — n)z) = Z 2%0,? cos(2k — n)x € 22,(T),
k=0

k=0

and similarly, sin™z € 22,,(T). Therefore, if P(x,y) = > ap2*y’, then P(cosz,sinz) €
o f=0
P9, (T) because of the product-to-sum formulas

cos 0 cos p = % :COS(Q — ) + cos(0 + 90)] ,
sinf cos p = % :sin(Q + ) +sin(f — gp)] :
sin f sin p = % :COS(@ — ) — cos(0 + 90)] .
As a consequence, we conclude that
|f(z) — p(z)| = |F(cos z,sinz) — P(cosz,sinx)| < e VreR. o

7.7 Exercises

§7.1 Pointwise and Uniform Convergence

Problem 7.1. Let (M,d) and (N, p) be metric spaces, A € M, and f : A — N be a
sequence of functions such that for some function f : A — N, we have that for all x € A, if

{zp}, € A and x — = as k — o0, then

lim fu(ar) = £(v).

Show that
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1. {fr};>, converges pointwise to f.

2. If { fkj}jozl is a subsequence of {f};_,, and {z;}72, < A is a convergent sequence

satisfying that lim x; = z, then
j—00

lim fi (7;) = f(7).

J—©

3. Show that if in addition A is compact and f is continuous on A, then { f;}7~; converges

uniformly f on A.

Remark. Using the inequality

p(fr(ze), f(2)) < p(f(xx), f(x)) + sup p(fe(2), f(2))

€A

we find that if {fi}72, converges uniformly to a continuous function f, then klim fr(xg) =
—00

f(z) as long as klim xr = x. Together with the conclusion in 3, we conclude that
—00

Let (M,d), (N, p) be metric spaces, K € M be a compact set, f : K — N be

a function for each k € N, and f : K — N be continuous. The sequence {fg}r=1

converges uniformly to f if and only if klim fr(xr) = f(x) whenever sequence
—00

{z}, < K converges to .

Problem 7.2. Let (M,d) be a metric space, A € M, (N, p) be a complete metric space,
and fr : A — N be a sequence of functions (not necessary continuous) which converges
uniformly on A. Suppose that a € cl(A) and
lim fi.(z) = Ly
exists for all £ € N. Show that {L;}}2, converges, and
lim lim fi(x) = lim lim fy(z).
r—a k—oo k—o0 x—a

Problem 7.3. Prove the Dini theorem:

Let K be a compact set, and f; : K — R be continuous for all £ € N such that
{fr}r=1 converges pointwise to a continuous function f : K — R. Suppose that

fr < fry1 for all k€ N. Then {fi}72, converges uniformly to f on K.

Hint: Mimic the proof of showing that {c;}{_,; converges to 0 in Lemma 6.64.
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Problem 7.4. Let (M,d) and (N,p) be metric spaces, A < M, and f, : A — N be
uniformly continuous functions, and {f};2; converges uniformly to f : A — N on A. Show

that f is uniformly continuous on A.

Problem 7.5. Let (M,d) be a metric space, (V,| - |) be a norm space, B € A < M,
fr: A V be bounded for each k € N, and {g,}>_, be the Cesaro mean of {f;}{,; that is,
Gn = — Z fr. Show that if {f;};>, converges uniformly to f on B, then {g,}> , converges
uniformklylto fon B.

Problem 7.6. Complete the following.

1. Suppose that fi, f, g :[0,00) — R are functions such that

(a) VR >0, fr and g are Riemann integrable on [0, R];

(b) |fr(z)] < g(x) for all ke N and z € [0, 20);

(c
R

(d J g(@)de = Jim | g(a)de < oo

R—o0 0

VR >0, {fr}, converges to f uniformly on [0, RJ;

)
)
)
)

o0 o0
Show that klim Je(x)de = J f(z)dz; that is,
—>00 0

R
p o [ et = ot [ e
1 itk-1<z<k,

Find the (pointwise) limit f of
0 otherwise.

2. Let fx(z) be given by fix(z) = {

0 o0
the sequence {f};2;, and check whether klim fr(z)dr = J f(z)dz or not. Briefly
—® Jo 0
explain why one can or cannot apply 1.

Q0
3. Let fi :[0,20) — R be given by fi(x) = Y Find lim J fr(x)dz

+ k$4 k—o0 0

§7.2 Series of Functions and The Weierstrass M-Test

Problem 7.7. Show that the series

LT+ k
2(_1) k2

k=1

converges uniformly on every bounded interval.
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§

Problem 7.8. Consider the function

= 1
f(x):kleJrk?x'

On what intervals does it converge uniformly? On what intervals does it fail to converge

uniformly? Is f continuous wherever the series converges? If f bounded?

ee}

Problem 7.9. Determine which of the following real series ). g converge (pointwise or
k=1

uniformly). Check the continuity of the limit in each case.

1 (z) = 0 ifxr <k,
A N O

k
2. gr(x) = |
22

(=D*
Vk

§7.3 Integration and Differentiation of Series

3. gr(x) =

Problem 7.10. In the following series of functions defined on R, find its domain of con-
vergence (classify it into domain of absolute and conditional convergence). If the series is
a power series, find its radius of convergence. Also discuss whether the series is uniformly
convergent in every compact subsets of its domain of convergence. Determine which series

can be differentiated or integrated term by term in its domain of convergence.

&© T

a5 «=0,6>0;
2 ke + kBa?

o0

1
(2) ﬁ\/ 1 — x2k;

k=1

© 1.3 (2k — 1) 1 1\ o
®) X g@m (gt

& (=t M.
= klog(k+1)" 7
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\x}
(5) > agx®, where {a;}?_, is defined by the recursive relation a;, = 3ax_; — 2ay_o for
k=1

k=2 and ap =1, a; = 2.

Also find the sum of the series in (5).

Problem 7.11. In this problem we investigate the differentiability of a complex power
a0 a0
series. This requires a new proof of di M oagz® = > kapa® ! instead of making use of
x

k=0 k=1
Theorem 7.11.

o0
Let {ax}", < R be a real sequence, and f(z) = Y. axz” be a (real) power series with
k=0

radius of convergence R > 0. Let s,(z) = apr® be the n-th partial sum, R,(r) =

k=0
e}

f(x) = s,(x), and g(x) = > kapa* 1. For x, 20 € (—p, p) € (—R, R), where x # x4, write
k=1

R(7) — Ry (20)

f(.il?) — f(wo) —g(ZL‘) _ STL(:U) — Sn($0>

T — X T — X _Sn(l'o)—f— (3,“(130)—9({[‘0)) + T — g . (771)
1. Show that
Ry (x) — Rn(xo)’ - i Flag o
=0 k=n+1 ’
f(a) = f(zo)

and use the inequality above to show that lim
T—x0 r — X

= g(o).

2. Generalize the conclusion to complex power series; that is, show that if {ax}2, < C

6]
and the power series Y| axz* has radius of convergence R > 0, then
k=0

d o0 e @]
e Z apz® = Z ka2 Vi|z| < R.
k=0 k=1

d o d .
Assume that you have known 7 Sagz® = Y kapz*! for all n € N U {0} (this can
k=0 k=1

be proved using the definition of differentiability of functions with values in normed

vector spaces provided in Chapter 5).

o0 o0
Problem 7.12. Suppose that the series > a, = 0, and f(z) = > a,2™ for —1 < =z < 1.
n=0

= n=0
Show that f is continuous at = 1 by complete the following.
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1. Write s, = ag+ay; + -+ a, and S, (x) = ap + a1z + - - - + a,x™. Show that

Sp(z) = (1 —z)(s0+ 812+ + 812" ") + 52"

0

and f(x) = (1 —xz) D] spz™.

n=0

2. Using the representation of f from above to conclude that lim f(z) = 0.

r—1—

o0
3. What if }] a, is convergent but not zero?
n=0

Problem 7.13. Construct the function g(x) by letting g(x) = |z| if = € [—%,; and
extending ¢ so that it becomes periodic (with period 1). Define

1. Use the Weierstrass M-test to show that f is continuous on R.
2. Prove that f is differentiable at no point.

(So there exists a continuous which is nowhere differentiable!)
Hint: Google Blancmange function!

§7.4 The Space of Continuous Functions

Problem 7.14. Let 6 : (¢(|—1,1];R),|| - |») — R be defined by 6(f) = f(0). Show that §

is linear and uniformly continuous.
Problem 7.15. Let (M, d) be a metric space, and K < M be a compact subset.

1. Show that the set U = {f € €(K;R)|a < f(z) < bforallz€ K} is open in
(G (K;R),| - |0) for all a,beR.

2. Show that the set F' = {f € €(K;R)|a < f(z) < bforallze K} is closed in
(€(K;R), | - |o) for all a,b e R.

3. Let A € M be a subset, not necessarily compact. Prove or disprove that the set
B={fe%(AR)|f(z)>0forall e A} is open in (G(A;R),] - [u).
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§7.5 The Arzela-Ascoli Theorem

Problem 7.16. Which of the following set B of continuous functions are equi-continuous

in the metric space M? Are the closure B compact in M?

1. B={sinkz|k=0,1,2,---}, M = €([0,7}; R).
2. B={sinva+4k2r? |k =0,1,2,--- }, M = %[0, 0); R).
2
X
3. B:{M_kx)Q‘k:O,l,Q,---},M:%([O,l},R).
4. B={(k+1)2¥(1 - z)|ke N}, M =£([0,1];R).

Problem 7.17. Let (M,d) be a metric space, (V, | - |) be a normed space, and A < M be
a subset. Suppose that B € %,(A;V) be equi-continuous. Prove or disprove that cl(B) is

equi-continuous.

Problem 7.18. Let f : [a,b] — R be a sequence of differentiable functions such that fi(a)
is bounded and |f/(z)] < M for all x € [a,b] and k € N. Show that {f}{2, contains an

uniformly convergent subsequence. Must the limit function differentiable?

Problem 7.19. Let ¢°%([0,1];R) denote the “space”

€([0,1;R) = { f € ([0, 1;R)| sup /@) = FW)l _ <),

z,y€[0,1] |-Cl7 - y|a

where « € (0,1]. For each f e ¢%%([0,1];R), define

| flgo.a = sup |f(z)] + sup M

2€[0,1] svel0n] T —Y|*
TFEY

1. Show that (€°*([0,1];R), | - [l50.«) is a complete normed space.
2. Show that the set B = {f € €([0,1];R) | | f0.. < 1} is equi-continuous.
3. Show that cl(B) is compact in (€'([0,1;R), | - =)

Problem 7.20. Given f : R — R a continuous periodic function of period 1; that is,
f(x+1) = f(x) for all z € R, and z4,--- , 2, € [0,1] arbitrary m points, define a new
function

1

I(fi21,- - 2n)(2) :E[f(ﬂf+$1)+-'-+f(x+zm)} VreR.
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Prove that the set
B = {](f;x17--~ ,:z:m)|x1,~-~ T € [O,l],meN}

is uniformly bounded and equi-continuous in the space €(]0, 1]; R). Moreover, show that the

1
derived set B’ = {J f (.’L’)d.’l)}; that is, the derived set of B consists of one single function
0 1

which is a constant function y = | f(x)dz.
0

Problem 7.21. Let (M,d) be a metric space, (V,| -|) be a Banach space, K < M be
compact, and {fi}>,; € F(K;V) be a sequence of continuous functions. Suppose that
for all z € K, if {xp}7 1, {yr}ie, € K and kh_IEO T = kh_r)rolo yr = x, the limits kh_{go fr(xy) and
klgl(r)lo fr(yx) exist and are identical. Show that { fx}2, converges uniformly on K. How about

if K is not compact?

Problem 7.22. Assume that {f};” is a sequence of monotone increasing functions on R
with 0 < fr(x) < 1 for all x € R and k € N.

oo]

1. Show that there is a subsequence { fi,}72; which converges pointwise to a function f

(This is usually called the Helly selection theorem).

2. If the limit f is continuous, show that {f} }72, converges uniformly to f on any

compact set of R.

§7.6 The Stone-Weierstrass Theorem

Problem 7.23. Define B to be the set of all even functions in the space €([—1, 1]; R); that
is, f € B if and only if f is continuous on [—1,1] and f(x) = f(—z) for all z € [-1,1].
Prove that B is closed but not dense in € ([—1,1]; R). Hence show that even polynomials
are dense in B, but not in € ([—1, 1]; R).

Problem 7.24. Let f : [0,1] — R be a continuous function.

1. Suppose that
1
J f(z)z"dx =0 VneNu{0}.
0

Show that f =0 on [0, 1].
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2. Suppose that for some m € N,
1
f f(z)z"dx =0 Vne{0,1,---,m}.
0

Show that f(z) = 0 has at least (m + 1) distinct real roots around which f(z) change

signs.

Problem 7.25. Let f :[0,1] — R be continuous. Show that

lim 1 f(z)cos(nz)dx =0 and lim 1 f(z)sin(nz)dx =0.

Problem 7.26. Put py = 0 and define

JDACH(J:):pk(a:)JrM VkeNu{0}.

Show that {py};~; converges uniformly to |z| on [—1,1].
Hint: Use the identity

2| = praa(z) = [|2] — pr(z)] [1 ;

to prove that 0 < pi(x) < prt1(z) < |2z if |z] < 1, and that

\xl)’f 2
— < 1= -
o = pu(a) < ol (1-5) <
if |z| < 1.

Problem 7.27. Let f : [0,1] — R be continuous and ¢ > 0. Prove that there is a simple
function ¢ (defined in Example 7.75) such that |[f — g/, < €.

Problem 7.28. Suppose that p,, is a sequence of polynomials converging uniformly to f on
[0,1] and f is not a polynomial. Prove that the degrees of p, are not bounded.
Hint: An Nth-degree polynomial p is uniquely determined by its values at N + 1 points

Zo, - , oy via Lagrange’s interpolation formula
p(z) = i () p(wy)
k=0 ()
where 7, (z) = (x —zo)(z —21) - (. —an)/(x — ) = [] (z—x;).

1<j<N
j#k
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Problem 7.29. Consider the set of all functions on [0, 1] of the form
h(z) = Z a;e’”
=1

where a;, b; € R. Is this set dense in € ([0, 1]; R)?

Problem 7.30 (True or False). Determine whether the following statements are true or

false. If it is true, prove it. Otherwise, give a counter-example.

1. Let f, : [a,b] — R be an uniformly convergent sequence of continuous functions. Then

the sequence of the indefinite integrals g, (z) defined by

€T
gn(z) = J falt)dt V€ |a,b
converges uniformly to a continuously differentiable function.

2. Let f,, : [0,1] — R be a equi-continuous sequence of functions such that the sequence

1 . . .
{ f”(i)}le is bounded in R. Then {f,}*_; contains a convergent subsequence.
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Fourier Series
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8.1 Basic Properties of the Fourier Series

Let f € €(T) be given. We first assume that the trigonometric polynomials used to approx-

imate f can be chosen in such a way that the coefficients does not depend on the degree of
approximation; that is, c,(c") = ¢ and s,(cn) = sg. In this case, if p, — f uniformy on [—7, 7],

by Theorem 7.17 we must have

™

lim pn(x) cos kx dx = f(x) cos kx dz Vke{0,1,-- ,n}

—
n—w J__

and
lim pn(z)sinkz de = f(z)sin kx dz Vke{l,--- ,n}.
n—00 —r —r
Since
J cos kx coslx dr = f sin kx sin fx dz = Ty Vk (eN
and
J sin kz cos bz dx = 0 VkeN, /e Nu{0},
we find that
1 (" 1 (" _
ce=—1| f(z)coskxdz and S = —J f(z)sinkzdz . (8.1.1)
TJ_, TJ)_,

This induces the following

Definition 8.1. For a Riemann integrable function f : [-m, 7] — R, the Fourier series
of f, denoted by s(f,-), is given by

s(f,x) = —+Z (¢ coskx + s sin kx)
k=1
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whenever the sum makes sense, where sequences {c¢}7, and {s;};>, given by (8.1.1) are
called the Fourier coefficients associated with f. The n-th partial sum of the Fourier

series to f, denoted by s,(f,-), is given by
S —50 Z (cr coskx + sg sinkx) .

We note that for the Fourier series s(f,z) to be defined, f is not necessary continuous.

Our goal is to establish the convergence of Fourier series in various senses.

Remark 8.2. Because of the Euler identity e = cosf + isin 6, we can write

1 N . 1 ,
_— RY —tky d d _ iky  —iky d
k=5 f( )™ +e™)dy and sy = o f( )(e™ —e™™)dy
thus
n ikx —ikx ikx —ikx
_ Co et +e e e
sn(f,x) = 2—1—2(% 5 + Sk 5; )
k=1
1r - -
=3[+ ];1 ((cr —isk)e™ + (cp + isp)e 7””)}
1r n —1
=5 + Z(Ck —isp,)e T 4 Z (c_p + Zs_k)e”m’}
k=1 k=—n
Lr 1 C " —ik ikx < —ik ik
= —leo+ = fly)e™™dye™™ + = Z fy)e ™dye
2L T _
k=1 0 k*—n -
r_ 1 (" ik 2 _ Ol sy _
Define fi, = P f(y)e ™¥ dy. Then f, = — (here we treat sop = 0), and
™ —Tr

k=—n

The sequence { ﬁ}f:_w is also called the Fourier coefficients associated with f, and one can

0 oA
write the Foruier series of f as >, fre™®.
k=—

Remark 8.3. Given a continuous function g with period 2L (or a function g which is

Riemann integrable on [—L, L]), let f(x) = g(g) Then f is a continuous function with
T
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period 27 (or f is a Riemann integrable function on [—m, 7]), and the Fourier series of f is

given by
c - .
s(f,x) = 50 + Z(ckcoskx—i-sksmkx),

where ¢ and sy, are given by (8.1.1). Now, define the Fourier series of g by s(g,2) = s(f, %)

Then the Fourier series of g is given by

o0
__0 krx
g,x) = 5 ; ckcos —i—sksm—L ),

where {ci}72, and {s;};2, is also called the Fourier coefficients associated with ¢ and are
given by

T L kmx

1
g(%) cos kx dx = 17 J g(x) cos — dx

g 1
Ck B f(z)cos kx dx WJ . 7

7T —T
. L . kmx . . .
and similarly, s = LJ g(x)sin A dz. Similar to Remark 8.2, the Fourier series of g can
~L
o0
~ imkx
Z gre L,

L k=—0o0
717rky
dy.

also be written as

~ 1
where g, = 5T Lg(y)

Example 8.4. Consider the periodic function f : R — R defined by

r if0<z<m,

)=

—x if—nm1<2x<0,

and f(z + 27) = f(z) for all z € R. To find the Fourier representation of f, we compute

the Fourier coefficients by

1 (" . L/ (™ . o
S = — f(:x)smk‘:vdx:—< xsinkx dr — :vsmkxdx) =0
T™Jn ™ 0 —T
and
1 T 1 T 0 2 T
Cp = — f(w)coskxda::—< xcos kx dr — wcoskxda:) =— | xzcoskzdx.
T™J—x ™ 0 - T Jo

Ifk:O,thencoz2J:cdx:7r,whileifkeN,
™ Jo

2 rxsinkx
o= (5

T _2(-)F-1)

0 mk?

W_J“ Sinkxdm) _zcosk;x
o Jo k o k2
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Therefore, cop, = 0 and cop_1 =

for all k € N. Therefore, the Fourier series of f
(2k — 1)2
is given by

cost—l
s(f: :___Z (2k — 1)

Example 8.5. Consider the periodic function f : R — R defined by

1 if—g<x<g,
f(aj) T T
0 if -7 < x<—§or§<x<7r,

and f(x +27m) = f(z) for all z € R. We compute the Fourier coefficients of f and find that
sy =0 for all ke N and ¢y =1, as well as

1 (2
Ck:—f
™ J_

us
2

2 (2 2sin =& k”
coskxdxr = — coskxdx = .
T Jo 7rk

kL
Therefore, cop, = 0 and cop_1 = 22%1)1) for all k € N; thus the Fourier series of f is given
7T fe—
by

cos(2k — 1)z

[\
o
—

Example 8.6. Consider the periodic function f : R — R defined by

flx)==z if

— T <IT<T

and f(x + 2m) = f(z) for all x € R. Then the Fourier coefficients of f are computed as

follows: ¢, = 0 for all ke N u {0} since f is (more or less) an odd function, and

g 2 (™ 2 kx|™ T k
sk——f xsinkxdm——J a:sinkxdxz—(—xcos a +J o xdm)
) T Jo s ko o Kk

_2(_1)k+1
ok

Therefore, the Fourier series of f is given by

k+1

sin kx .

s(f,x) =2 Z (=
k=1
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8.2 Uniform Convergence of the Fourier Series

Before proceeding, we note that Remark 8.2 implies that

T n

n 1 i ik(z— — 1 ik(x—
()= 3 oo | sty = er(y)(%k;nek( ") dy.

n
_ 6 e’** Then D, is 2m-periodic, and
2m =,

Define D, (x)
salfia) = [ D —y)dy.

For 27-periodic Riemann integrable functions f and g, we define the convolution of f and

g on the circle by
(f*9)(x) = [flyglz—y)dy.

—T

Then s,(f,z) = (D, * f)(x).

Note that D,,(0) = 2n + 1, and if e # 1,

s
1 e—inx [ei(2n+1)z _ 1] 1 ei(n+1/2)x _ e—i(n+1/2)m sin(n + %)l’
Dy(z) = o— iz — 5 iz)2 —iz)2 - P
T e —1 2 e —e 27 sin 3

so that we have the following
Definition 8.7. The function D,, : R — R defined by

- 1
w if o ¢ {2k7|keZ},
27 sin § (8.2.1)

2n +1 :
5 if ve{2kr|kelZ},

Dn(x) =

is called the Dirichlet kernel.

By the fact that D, (z) = L > €% we immediately conclude the following
T k=—n

Lemma 8.8. For eachn e N and z € R, D,(x—y)dy =1.

In the following, we first consider the uniform convergence of the Fourier series of 27-

periodic continuously differentiable functions.
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Definition 8.9. The normed vector space (¢*(T), | - |¢1(r)) is a vector space over R con-
sisting of all 2m-periodic real-valued continuously differentiable functions and is equipped

with a norm
[florm = 1o + 17l = max |f (@) + max[f'(2)] ¥ fe@HT).

Theorem 8.10. For any f € ¢*(T),the Fourier series of f converges uniformly to f on R;

that is, the sequence {s,(f, )}s, converges uniformly to f on R.

Proof. By Lemma 8.8, we find that for all = € R,

™

o) = £@) = (Dyx f = @) = [ Dale =) (1) — 7)) dy
— [ Duw) (e —y) — f(2))dy.

—T

We break the integral into two parts: one is the integral on |y| < § and the other is the
integral on ¢ < |y| < 7. Since f € €Y(T),

[f(@—y) = f@)] < [yl

thus by the fact that

z for 0 <z < T Wwe obtain that
sinx 2 2’

Daly) (f(x =) = f(x))dy|

<f5U@—w—f@mw<IWMJ5 Lody <[]0 (8.2.2)

_5 27| sin 4| 27 ssin g

‘ ly|<o

Now we take care of the integral on § < |y| < 7 by first looking at the integral on 6 <y < .
Integrating by parts,

i b flz—y) - f(=z)
| P (e = - 5 f sin 1+ )y =2
1 cos(n+ )yf(a:— )— +i cos(n+%)yif(x—y)—f(x)d
— 27T n—|—% Sin% y:5 2 5 n+% dy sin% Yy .

For the first term on the right-hand side,

1 —
Leos(ntg)yfe—p) = f@ P o Afle M g eg
21 n+3 sin § y=0 27msing nsing
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For the second term on the right-hand side,
L J cos (n+ 3)y d flw—y) - f(x)dy‘
27

n—l—% dy sin%
cos y f(x— COS y COS 5 (f(f’? -y) — f(»””))
27r UJ sin § ‘_'—’J n+2 2sin® ¥ dy)
[Hf ”OO( +%) sin HfHOO( +2) s1n25] = n51n25 '

Similarly,

-5
| f D) — 1) - f)y] < ey Ve,

-9 ;
’I’lSlIlE n sin b}

thus for all z € R,

st~ 1@< | ([ 4 [+ [ )pawse - - ) a

2| f 2[ £l 4| fllgr
< od + 2L ZEED 4 SLOD.
ns S T S11 bl

11’12 n1n2

Let € > 0 be given. Choose a fixed § > 0 such that ||f'|0 < g For this fixed ¢, choose
N > 0 such that

A flerry e
—_— << =
Nsian 2
Then if n > N and z € R, we have
4] fller () 4 fler(m
sn(f,x) — flx)| < = +7\ —|—7<€.
’ (f,2) = £ )‘ 2 nst‘s 2 Nsian :

Next we consider the convergence of the Fourier series of less regular functions. The
functions of which we prove the convergence of the Fourier series belong to the so-called

Holder class continuous functions.

Definition 8.11. A function f € ¢'(T) is said to be Holder continuous with exponent

€ (0, 1], denoted by f € €%*(T), if sup W < 0. Let || - [4o.a(r) be defined by
z,y€E
TF#yY
/(@) = f()]

o = su x)| + su
||fH‘gO (T) xe']IT) ’f( )’ ZZ;EID)Q |.CU — y|a
TFY

Then | - |4o.e(r) is & norm on ¢**(T), and

¢0(T) = {f € €(T)| | flwoem < x}.
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In particular, when o = 1, a function in €%!(T) is said to be Lipschitz continuous on T;

thus €%!(T) consists of Lipschitz continuous functions on T.

The uniform convergence of s,(f,-) to f for f € €%*(T) with a € (0,1) requires a lot

more work. The idea is to estimate || f — s,(/, )HOO in terms of the quantity glf?r) If = plw-
PEPn

Since s,(f, ) € Za(T), it is obvious that

pEPn (T

The goal is to show the inverse inequality

If = sa(f, )], < C”pe%f(m If = ploo (8.2.3)

for some constant C,, and pick a suitable p € &,(T) which gives a good upper bound for

H f—sa(f, )Hoo The inverse inequality is established via the following

Proposition 8.12. The Dirichlet kernel D,, satisfies that for alln € N,

fﬂ | Dy (2)|dz < 2+ logn. (8.2.4)

—Tr

Proof. The validity of (8.2.4) for the case n = 1 is left to the reader, and we provide the

- 1
proof for the case n > 2 here. Recall that D, (z) = sinn + )z if x € (0, 7]. Therefore,

iz
27 sin 5

JW | Dy () |da = 2 Lﬂ | Dy (2)|dx = LTIL 2| D, (z)|dz + Jﬂ M‘dw

_W 1
n

T
7'['Sln2

Since | D, ()] < 2L o all 0 < 2 < %, the first integral can be estimated by
n 12n+1
2|Dy(x)|de < — 8.2.5
| 2Du)fie < -2 8.2
Since ¥ <sinw for 0 < 7 < g, the second integral can be estimated by
s
T sin(n + 5 ™1
J w‘dxé J —dx = logm+logn. (8.2.6)
1l wsing 1
We then conclude (8.2.4) from (8.2.5) and (8.2.6) by noting that logm + 2nt 1 < 2 for all

nm
n = 2. o
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Remark 8.13. A more subtle estimate can be done to show that

J }Dn(:v)‘dx>cl+cglogn VneN
for some positive constants ¢; and cy. Therefore, the integral of | D,,| on [—m, 7] blows up as

n — 0.

With the help of Proposition 8.12, we are able to prove the inverse inequality (8.2.3).

The following theorem is a direct consequence of Proposition 8.12.

Theorem 8.14. Let f € €(T); that is, f is a continuous function with period 2r. Then
|f=su(f, )], < B+ logn) mf Hf Do - (8.2.7)

Proof. Forne Nand xz €T,

™

sa(fo2)]| < j D)@ — )|y < 2+ logn)|].c

—Tr

Given € > 0, let p e &,(T) such that
If =2l < __inf If =Pl te.
Then by the fact that s, (p,z) = p(z) if p e £,(T), we obtain that

|f = salf ) <1 =2l + 2= salf ), <[ =2l + [5a(f = 2.,
<||f=p|,+ ©2+logn)|f - pleo
< (3+ logn)[ mf Hf Plloo + 5} ,

and (8.2.7) is obtained by passing to the limit as & — 0. o

Having established Theorem 8.14, the study of the uniform convergence of s,(f,) to f
then amounts to the study of the quantity glf |f—p|ow- The estimate of 1nf Hf Pl
Ez

for f € €%*(T), where a € (0,1), is more difficult, and requires a clever ChOlce of p. We

begin with the following

Lemma 8.15. If f is a continuous function on [a,b], then for all 61,05 > 0,

up [1(0)— fo)] < (1+3) s |@) 7o)

lz—y[<d1 |z —y[<d2
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The proof of Lemma 8.15 is not very difficult, and is left to the readers.

Now we are in position to prove the theorem due to D. Jackson.

Theorem 8.16 (Jackson). There exists a constant C' > 0 such that

inf |f=ple<C sup [fx)=fly)l Vfe?(T).
Proof. Let p(x) = 1+4c¢; cosx+ - -+ ¢, cosnz be a positive trigonometric function of degree
n with coefficients {c¢;}!_; determined later. Define an operator K on & (T) by

(Kf)(2) = — f " bW —y)dy.

2m J_,
Then Kf € #2,(T). Lemma 8.15 then implies

KD)() = 5@ < - | p)lfe =) - Fe)dy

2
< fﬂp@)(umyo sup | f(x) — f(y)|dy

lo—yl<3
=[ege | ] o 17— st)

71_2

Since 3? < 7(1 — cosy) for y € [—m, x|, by the Cauchy-Schwarz inequality (Corollary 2.27)
we find that

1

% ‘: it < [% J_: O [% J_:p(y) dy];

< E J:(l — cos y)p(y) dy] = g\/ﬁ

Therefore,

Kf = flo < (14 55va=0r) sup |f(2) = fy)].

2 1
le—yl<

To conclude the theorem, we need to show that the number ny/2 — ¢; can be made bounded
by choosing p properly. Nevertheless, let

p(x):c‘zsmwem 3 S DT (D

k=0 n+2 k=0 (=0 n+2 n+2

- k+1 N k+1 (+1
:CESiIlQu-f-QC 2 sin( + Ur Sin( + Ur cos(k — 0)x

= n+ 2 o n+ 2 n+ 2
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and choose ¢ so that p(x) =1+ ¢ cosxz + - - + ¢, cosnx. Then

i Z Gin? (k+1m 1 [1 s 2k + 1)m

= n -+ 2 2 = n -+ 2
:n+1_sm(2’;§i§)”—sinn%2 n+2
2 4sin 75 2
and
= (k+1)m km < T (2k+ 1)m
c1 = 2¢ sin =c [ S — CoS
! kz:l n—+ 2 n -+ 2 kZ:l n n -+ 2
. (2n+2)7 . 2
sin — sin =&
— c[n cos —— — nt? "J“Q}
n-+ 2 ZSmn—+2
: 27
sin =%
= c[n cos —~ . n+2} = ¢(n + 2) cos = 2cos )
n—+2 sin "5 n + n -+ 2

n+2

As a consequence,

nv2 —ac :77J(2—2cosniz>5 = 2nsinm
T T
=2 2)sin ———— — 4sin ———
(0 2)sin g0y ~ 40 00
2(n+2) | T . ™
= sin —4sin ——
T 2(n+2) 2(n+2)

which is bounded by ; thus
2

inf |f = plo < [Kf = flo < (1+ %) sup |f(2) = f(v)].

peZn(T) le—y|<L
n

Finally, since lim n™%logn = 0 for all a € (0, 1], we conclude the following
n—a0

Theorem 8.17. For any f € €%%(T) with a € (0,1], the Fourier series of f converges

uniformly to f on R.

Remark 8.18. The converse of Theorem 8.16 is the Bernstein theorem which states that

if f is a 2m-periodic function with the property that there exist a constant C' (independent

of n) and « € (0, 1) such that

inf |f—ple<Cn™® VneN,
egi(ﬂl‘)”f Pl < Cn ne

(8.2.8)

then f € €%%(T). In other words, (8.2.8) is an equivalent condition to the Holder continuity

with exponent « of 27-periodic continuous functions.
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8.3 Cesaro Mean of Fourier Series

While Corollary 7.85 shows that the collection of trigonometric polynomials

{02—0 + Z (¢ coskx + spsinkx) | {cx} e, {Skrey S ]R}
k=1

is dense in %'(T), Theorem 8.17 only implies the uniform convergence of the Fourier se-
ries of Holder continuous functions. To approximate continuous functions uniformly, the
coefficients of the trigonometric polynomials should depend on the order of approximation.

The motivation of the discussion below is due to the following observation. Let {ax}{,

be a sequence. Define a new sequence {b,}_;, called the Cesdro mean of the sequence
{ak}kzlv by
a4t a, 1 ¢
n n Z g

If {ax};2, converges to a, then {b,}>_; converges to a as well. Even though the convergence
of a sequence cannot be guaranteed by the convergence of its Cesaro mean, it is worthwhile
investigating the convergence behavior of the Cesaro mean.

Let 0,(f,-) denote the Cesaro mean of the Fourier series of f given by

1 < 1 < 1 <
Un(f?')En+1’§3k(fv'):n+1Z(Dk*f):(n—_H];)Dk)*

k=0

We note that the coefficients of the Cesaro mean o, (f, ) depend on the order of approxima-

tion n since

n-+1 n+1
[

n) — (n)
7:’/&‘

Y41 — n+1—k
__0 , k.
f,x —2 Z_:( (kcoskx+7=sk51nkx).

_ (n
=c,

sin(k + 3)z

Recall that Dy(x) = sz By the product-to-sum formula, we find that if x €
T S1n b}
(0,7),
n n 1
Dy ( 2sin — sin(k
Z Kl T 2rsing kzzosm T sm2 kZ:O sm sin(k + 2)
1 n
= — Z (cos ka — cos(k + 1)z)
dmsin® § =
1 sin? 2H g
=—7—(1— 1 2.
4m sin2§< cos(n + 1)z ) 27 sin® 2

This induces the following
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Definition 8.19. The Fejér kernel is the Cesaro mean of the Dirichlet kernel given by

1 = 1 sin? —("”;1):”

FTL — _D =
(z) n+1 kZ:o k() 2m(n+1) sin®%

™

We note that o,,(f, ) = F,* f, where F,, > 0 and has the property that F.(x)dr =1

(since the integral of the Dirichlet kernel is 1). Moreover, for any 6 > 0,

lim F.(z)dx =0 (8.3.1)

n—w o< |z|<

= 5 if 0 < |z[ < 7. Inequality (8.3.1) allows us to show that

)
2m(n + 1) sin” §

{Un(f ; ')}le converges uniformly to f.

since |F,(z)| <

Theorem 8.20. For any f € €(T), the Cesaro mean {o,(f, ‘)}:3:1 of the Fourier series of

f converges uniformly to f.

Proof. Let ¢ > 0 be given. Since f € €(T), f is uniformly continuous on R; thus there
exists ¢ > 0 such that

’f(ﬂf) - f(Z/)| < g whenever |r —y| <d.

Therefore, by the fact that F,(z)dx =1 and F,, > 0,

s

Fu(y)f(x) dy|

—Tr

rulfoa) = 1) =| [ Fuwste -y - |
< f Fa)| (@ — ) — f(2)|dy
- f Bl =) )]y + f Fu)|f(@ — ) — f(@)|dy

Iyl

<e| mwaran.] R

N
€

<
2

Lol [ Ry
N
Using (8.3.1), there exists N > 0 such that
2”wa F.(y)dy <  whenever n=N.
N 2

Therefore,

on(f.x) — f(x)| < € whenever n > N and z € R; thus we conclude that the

Cesaro mean {o,(f, -)}:):1 converges uniformly to f. o
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8.4 Convergence of Fourier Series for Functions with
Jump Discontinuity

In previous sections we discussed the convergence of the Fourier series of continuous func-
tions. However, since the Fourier series can be defined for bounded Riemann integrable
functions, it is natural to ask what happen if the function under consideration is not con-
tinuous. We note that in this case we cannot apply Corollary 7.85 at all so no uniform
convergence is expected.

In this section, we focus on the convergence behavior of Fourier series of functions with

only jump discontinuities.

Definition 8.21. A function f : [-m, 7] — R is said to have jump discontinuity at a €
(—m,m) if

L lim f(z) and lim f(z) both exist.

r—a Tr—a

2. lim f(z) # lim f(x).

Now suppose that f : [-m, 7| — R is piecewise Holder continuous with exponent o €
(0,1]; that is, there exists {a1, -+ ,an} S (—m,m) such that f € €°*((aj,a;41);R) for all
j€{0,---,m}, where ap = —7 and a,,,1 = 7, and f € €%*(I;R) if and only if

f(z) = f(y)]

sup ——— < 0.
zyel ,x#y ’SL’ - y‘a

Then for all a € (—m,m), the limits lim f(z) and lim f(x) exist since if {zx};2, is a
sequence in (—m, ) which approaches to a from the right/left, then for some 0 < j < m we

must have zj, € (aj, a;41) for all large k so that the Holder continuity implies that
|f(xk) — f(:z:g)} < Mxg — x0® Yk, { large

which shows that {f(zx};2, is a Cauchy sequence (converging to mlirg f()). In other words,
if f:[—m ] —> R is piecewise Holder continuous and a € (—m, ) is a discontinuity of f,
then f has either removable discontinuity at a (which means xlirﬁ f(z) = xliglf f(z) # f(a))
or jump discontinuity at a. In the following, we always assume that f is piecewise Holder
continuous with exponent « € (0, 1] and has only jump discontinuities at {a, -, a,,} in

(—m, ).
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Let f(a)) = lim, f(x), fa;) = lim f(x), and define ¢ : R — R by

—a’ —a.
T—a; T—a,

b(x) = %(m _x) Vael2m) (8.4.1)

and ¢(x + 27) = ¢(x) for all x € R. Since f has jump discontinuities at {ai,- -, a.}, with

ay denoting a,, . the function g : [—m, 7] — R defined by

f@)+ D (faf) = flay)) oz — a;) if 2+ ay, for all k,

M + Z (f(aff) - f(aj_))qb(ak —a;) if x=aqy for some k,

is Holder continuous with exponent o and g(af) = g(ag) = g(—m). Let G be the 27-
periodic extension of g; that is, G = g on [—m, 7] and G(x + 27) = G(z) for all z € R. Then
G € €%*(T); thus Theorem 8.17 implies that s, (G,-) — G uniformly on R. In particular,
Sn(g,-) — g uniformly on [—m, 7].
Using the identity
" bz — a)e** dp = eike J” S(x)e ™ do = Gpeike

we obtain that

sa(0(-—a),2) = Y e = s,(p,x —a); (8.4.3)
thus (8.4.2) implies that the Fourier series of f is given by

sn(f, ) = sulg, @) = i ))sn((- = aj), )

[z
~
s
—~
S
+
S~—
|
=
S
<

<.
Il
o

NgE

= su(g.) = 3 (f(ah) = f(a;))suldyx —ay) (8.4.4)

<.
Il
o

Therefore, to understand the convergence of the Fourier series of f, without loss of generality

it suffices to consider the convergence of s, (¢, -).

8.4.1 Uniform convergence on compact subsets

In this sub-section, we show that the Fourier series of a piecewise Holder continuous func-
tion whose discontinuities are all jump discontinuities converges uniformly on each compact

subset containing no jump discontinuities.
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Based on the discussion above, we first study the convergence of s,(¢, ). Since ¢ is an
odd function, for k € N,

1 (" 1 ("
sp=—| o(z)sinkzdr = —2J (x — m)sinkx dz
TJ) . 2 ),
1 1—(z —7) cos kx |z=n ™ cos kx 1
— do| = ——.
w2[ k 2=0 +L kYT Tk

Therefore, the n-th partial sum of the Fourier series of ¢ is given by

snl0h,7) = —% i sin ke (8.4.5)
k=1

k

sin ki converges uniformly on [—m, —6] U [§, 7] for all0 < § <

o0
Lemma 8.22. The series ),
k=1

.

Proof. Let 0 < § < m be given, and S,(z) denote the sum »; sin kx. Using the identity
k=1

2sin 2

n + Ly — z
Z sin kz = cos(n + )z — cos ; Vze|-m,—0lulon],
k=1 2

we find that |S,| < M < o for some fixed constant M. For m > n,

m

1 . 1 1 1
k;ﬂ 7 o ko = E(Sm — Sm-1) + m(smq — Sm—2) + -+ m(SnH —Sy)
_E_n+1+m(m_1)sm—1+(m_l)(m_z)Sm—Q‘l“"‘mSn—&—l;
thus
1, 1 1 — 1 1 1
- < -4+ — — ) < —+ ).
lkzzn;rlksmka:‘ M(m—i-n_i_l%—kzzn;rzk(k_l)) 2M<m—|—n)

Since the right-hand side converges to 0 as n, m — oo, the Cauchy criterion (for the conver-

gence of series of functions) implies that the series

0

sin kx
2,

k=1

converges uniformly on [—7, —d] U [0, 7]. o

Lemma 8.22 provides the uniform convergence of s, (¢,-) in [—m, —0] U [0, 7]. To see the

limit is exactly ¢, we consider an anti-derivative ® of ¢ and establish that &’ = s(¢, -).
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2
Let ¥ : R — R be 27-periodic and ¥ (z) = i— for z € [, 7]. Then ¥ € €%(T) is an
s
even function and the Fourier coefficients of ¥ is

1 us 2

~ x T
Uy = — —dr = —
T o) w12
and for k£ # 0,
o 1 g ik . 1 " 2 A _ (_]‘)k
‘I;k—% _WEe da:—S? _Wa: (coskx + isinkx) dr = TERE

Therefore, using (8.4.3) we find that the Fourier series of ® = W(- — ) is

(©,2) = s(¥ J= b D) Bkt L > o
S ,ZE =S 7:1; — ) = — ke —_ — _ 3
12 keZ,k#0 12 2n keZ,k#0
oo N 1 cos kx
T 99 T 2
12 Ak

Since ® € €%(T), s,(®,-) converges uniformly to ® on R. Moreover, s,(®,-)" = s,(¢,")
which converges uniformly on [—m, —d] U [0, 7]. Therefore, Theorem 7.11 implies that s(¢,-),
the uniform limit of s, (¢, -), must equal ®’ on [—m, —d] U [J, 7|. Finally, we note that ¢ = ®’
on [—m,—0] U [0, 7], so we establish that s,(¢, ) — ¢ uniformly on [—m, —d] U [, 7].

Since a discontinuity of a piecewise Holder continuous function f is either removable
or a jump discontinuity, and the value of the function at removable discontinuities does
not change the value of the Fourier series of f, the uniform convergence of s,(¢,-) to ¢ on

[—7,—0] u [0, 7] for all 0 < § < 7 implies the following

Theorem 8.23. Let f : (—m,m) — R be piecewise Holder continuous with exponent o € (0, 1].
If f is continuous on (a,b), then the Fourier series of f converges uniformly to f on any

compact subsets of (a,b).
By Remark 8.3, we can also conclude the following

Corollary 8.24. Let f : (—L,L) — R be piecewise Hélder continuous with exponent a €
(0,1]. If f is continuous on (a,b), then the Fourier series of f converges uniformly to f
on any compact subsets of (a,b) (where the Fourier series of f is given in Remark 8.3). In
particular, 7}1_1)210 sn(f,x0) = f(xo) if f is continuous at xy. In other words, the Fourier series

of f converges pointwise to f except the discontinuities.
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8.4.2 Gibbs phenomenon

In this sub-section, we show that the Fourier series evaluated at the jump discontinuity
converges to the average of the limits from the left and the right. Moreover, the convergence
of the Fourier series is never uniform in the domain including these jump discontinuities due
to the famous Gibbs phenomenon: near the jump discontinuity the maximum difference
between the limit of the Fourier series and the function itself is at least 8% of the jump. To

be more precise, we have the following

Theorem 8.25. Let f : R — R be 2L-periodic piecewise Hélder continuous with exponent

a € (0,1]. Then

flxg) + flxg)
2

Moreover, if xqg is a jump discontinuity of f so that

flag) = flzg) =a#0,

1 (7 si 1
then there exists a constant ¢ > 0, independent of f, xo and L (in fact, c = = J MY e~ A

™ Jo x 2
0.089490), such that

lim s,(f,z0) = VageR. (8.4.6)
n—a0

i L
7}2}0 sn(f, @0+ ;) = f(zg) + ca, (8.4.7a)
: L _
nh_r)xolo Sn(fy @0 — 5) = f(zg) —ca. (8.4.7b)
Proof. By Remark 8.3, W.L.O.G. we can assume that L = 7. Let {a1, -+ ,a,,} S (—m,7) be
the collection of jump discontinuities of f in (—m, 7), ag = —7, a;e1 = 7 (S0 by periodicity

f(ag) = f(a,,,,) automatically), and define g by (8.4.2). Then g € €%*(T). Suppose that
xg is a jump discontinuity of f in [—m,7) (so ag could be a possible jump discontinuity of
f). Then x = ay, for some k € {0,1,--- ,m}. Therefore, by the fact that ¢ is continuous at
xo — a; if j # k and s,(¢,0) = 0 for all n € N, Corollary 8.24 implies that

2. (f(a)) = £(a))) lim s,(6, 20 — ay)

7=0
= Z (f(aj) - f(a;)) nlg{)lc sn(b, 10 — a;) = 2 (f(a;r) - f(a;))ﬂl’o —aj).

On the other hand,

xg Ty
tin s (9,20) = glan) = LTI S () - plag)oten - 0.
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Identity (8.4.6) is then concluded using (8.4.4).
Now we focus on (8.4.7a). Since g € €%*(T), s,(g, ) — g uniformly on R; thus

lim s, (g, To + %) = g(zo) .

n—o0

Similarly, since s,(¢,-) — ¢ uniformly on [—7, —d] U [4, 7] for all § > 0, if j # k,

] T
T}I—{Ic}osn((b’ To + w @j) = ¢($0 - aj)'

On the other hand,

As a consequence,

nli_r}[}osn(f7x0 + %) = 731_1;1010 [Sn(gwxo + %) - Z (f(a;_> - f(aj_))sn(qs7x0 + % - aj)i|

j=0
—gleo) = X (Fa)) = F(a))olwo — aj) + (4 3) (flai) — flag))
= f(zg) +e(f(x5) — fl=q)) -

Identity (8.4.7b) can be proved in the same fashion, and is left as an exercise. o

Remark 8.26. Let f be a function given in Theorem 8.25, xy be a jump discontinuity of
f,and I = (xg,zo+r) for some r > 0 so that f is continuous on /. By the definition of the

right limit, there exists 0 < § < r such that
|f(:1:)—f(m6r)‘<— Ve (zg,x0+9).
L L .
Choose N > 0 such that N < 0. Then z + ~ € (20, xo + 0) for all n > N; thus if n > N,

sup s, (£,2) = F(@)] = Jsa(f.0+ ) = Flao+ )

> [sa(foo + 1) = FG@)] = [ £+ ) = f(a)]
cla|
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which implies that

liminfsup |s,(f, ) — f(z)| = cla| — clal = M.
n—00 o7 2 2
Therefore, {sn( f ~)}ZO:1 does not converge uniformly (to f) on I, while Corollary 8.24 shows
that {sn( 1 ')}20:1 converges pointwise to f on I. Similarly, if xy is a jump discontinuity of
f and f is continuous on (zo — 7, o) for some r > 0, then {s,(f, -)}Z):l converge pointwise
but not uniformly on (zg — r, zo).
For a function f given in Theorem 8.25, let f be defined by

N f(x) if f is continuous at x,
@) =1 1)+ 1)

5 if x is a discontinuity of f .

~

Then s, (f, ) = su(f,-) for all n € N, and Corollary 8.24 and Theorem 8.25 together imply

that {sn( f, -)}:):1 converges pointwise to f However, the discussion above shows that

{sn( f, -)}le cannot converge uniformly on [ as long as I contains jump discontinuities of
f

8.5 The Inner-Product Point of View

FOER RN fear Bk v B - B R GRIERF A T ) RRT T kg
Fourier series o 24 * ¥ M §= € & & [—7, 7] 9975 square integrable e (T & T ) #F
N E g - BRI RE e LE- BP Rl - BY A Sdk (4
VAL L — B e £ ) 0 Fourier series ¥ 14 'ﬁ TP E - BIARD E MM EL o
Let L*(T) denote the collection of Riemann measurable, square integrable function on
[—7, 7] modulo the relation that f ~ g if f — ¢ = 0 except on a set of measure zero (or

f = g almost everywhere). In other words,

7

L*(T) = {f : [=m, 7] = C| f is Riemann measurable and |f(z)] do < oo}/ ~ .

—T

Here we abuse the use of notation L?*(T) for that it indeed denotes a more general space.
We also note that the domain [—7, 7| can be replaced by any intervals with —m, 7 as end-
points for we can easily modify functions defined on those domains to functions defined on

[—7, m] without changing the square integrability.
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Define a bilinear function (-, ) on L*(T) x L?(T) by
1 (™ —
G = [ frgtara

Then (-, -) is an inner product on L*(T). Indeed, if f, g belong to L*(T), then the product fg
is also Riemann measurable, and the Cauchy-Schwartz inequality as well as the monotone

convergence theorem imply that

|(f, 90| = lim ;f_ (f A B)(@)||(g A k) ()| da
< lim 1([; ‘(f/\k)(:v)’2 dx)é<£; ‘(g/\k)(ﬂc)}2 dm)é

k—oo 27

= (4 f; }f(z)\%zxf(;ﬂ f_: \g(gc)}?dgc)é = 1l gl emy < o0

thus the definition of the inner product (-, -) given above is well-defined. The norm induced
by the inner product above is denoted by | - | z2(r).

For k € Z, define e : [—m, 7] — C by ex(z) = ¢*®. Then {e;};>
set in L*(T) since

_ 1 T _ 1 T i(k—0)z 1 ifk=¢,
<ek>e€>_27rf_ﬂe e div—%f_we dx = 0 ikl

_, i1s an orthonormal

n
Let V,, = span(e_,,e_, i1, - ,€0,€1," - ,€,) = { > akek‘{ak}zzw c (C}. For each
k=—n

vector f € L?(T), the orthogonal projection of f onto V), is, conceptually, given by

D feer= ), (% r f(l’)e_ikmdx)ek = > frer.
k=—n n - k=—n

By the definition of e, we obtain that the orthogonal projection of f on V, is exactly s,(f, -).

We also note that V,, = Z,,(T).
Now we prove that s,(f,-) is exactly the orthogonal projection of f onto V,, = Z,(T).

Proposition 8.27. Let f € L*(T). Then
(f=salf,)pp =0 Vpe Z(T).
Proof. Let pe &,(T). Then p = s,(p, -); thus

<f_3n(f;')7p>:<f7p>_<3n(f;');p>:<f7 zn: ﬁkek>_< zn: .]?kekap>

k=—n k=—n
n

= M At~ D A=Y i > Ade=0. o

k=—n k=—n k=—n k=—n



276 CuAPTER 8. Fourier Series

Theorem 8.28. Let f € L*(T). Then
If = plZey = 1f = salfy )Ty + Isn(fo) = pliamy Ve Zu(T). (8.5.1)
Proof. By Proposition 8.27, if pe Z,(T), s,(f,") —p = su(f —p,) € Z,(T); thus

If = plize = <f —p,f —p> ={f =salfs ) +sulfs) =0 f = sul(fs) +5u(fs) =)

- Hf - ”L?(T + 2Re(<f —sn(f, ), 8a(f50) = p>) + HS" _pHiQ('ﬂ‘)
- Hf —snlf,- ”L?(T) + HS" ’’ _pHL2('ﬂ‘)
which concludes the proposition. =

We note that (8.5.1) implies that

IF = sulf. Moz < IF — Pl Vpe Pu(T). (85.2)

Since s,(f, ) € Zn(T), we conclude that

If = sn(fs )Lz :peglf If = pllz2cm

Moreover, letting p = 0 in (8.5.1) we establish the famous Bessel’s inequality.

Corollary 8.29. Let f € L*(T). Then for allne N,

[sn(fs ez < | flrzer - (8.5.3)
In particular,
e} - 1 T .
2 |ful? < o |f(2)|" dz. (Bessel’s inequality)
s
k=—00 -7

H>|<::1\>
l\DI»—t
s
O
ERN
_|._
CD
=

3 ! r} (@) de.
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Next, we prove that the Bessel inequality is in fact an equality, called the Parseval

identity. Using (8.5.1), it is equivalent to that {s,(f, )}OO

converges to f in the sense of
n=1

L?-norm; that is,
lm s, (f,) = f| oy =0 VfeLXT).
Before proceeding, we first prove that every f € L?(T) can be approximated by a sequence

{gn}>_; < €(T) in the sense of L2-norm.

Proposition 8.31. Let f € L*(T). Then for all € > 0 there exists g € € (T) (here €(T)
denotes the collections of 2m-periodic complex-valued continuous functions on R) such that
|f = gllzzm) <e.

In other words, €(T) is dense in (L*(T), || - ||lz2(r))-

Proof. W.I..O.G., we can assume that f is real-valued and non-zero. Let ¢ > 0 be given.

Since f € L*(T), the monotone convergence theorem (Corollary 6.105) implies that

Jim 1 = (k) v (A By = Jim | Lo @l @) de = 0;

thus there exists NV > 0 such that
£
If =RV (fAk)lzm <5 VE=N.
Let h = (=N) v (f A N). Then h is bounded and Riemann measurable; thus A is Riemann

integrable on [—m, 7|. Therefore, there exists a partition P = {—m =2y <13 < -+ < x,, =
2

7} of [—m, 7] such that U(h,P) — L(h,P) < T Define

SN
n—1 n—1
S(z) = Z sup W)l (x) and  s(z) = Z inf A&y 2,0 (2)
k=0 €[k, Tht1] oo SElzR Tt

where 14 denotes the characteristic/indicator function of set A. Then

I. - N<s<h<S<Non |[—mn)\{z1,29, + ,Tp_1};

o " S@yde=UhP): 3. f s(x)de = L(h, P).

The properties above show that

™

fr |h(z) — s(z)| dz = fr h(z) — s(x) dx < J (S(z) — s(x)) d

—Tr —Tr —Tr

me?

=U(h,P) = L(h,P) < o=
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Now, similar to the construction of g and A in the proof of Lemma 6.63, for the step function
s defined on [—m, 71| we can always find a continuous function g € €'(T) such that

T 7T€2

o < V. . — -
L |glrem < N. 2 4]8(3@) g(z)| dx < N

Therefore,

f |h(x)_g(x)\dx<f

—T —Tr

T 2

|h(z) — s(z)| dx +J |s(z) — g(z)| doz < —

—T

7

which implies that

1 (™ 2

2 N 9
o ‘h(m) - g(x)| dr < — f[_mﬂ ’h(az) - g(x)‘ dr < R
thus |k — g|2(m) < g The proposition is then concluded by the triangle inequality. =

Theorem 8.32. Let f € L*(T). Then

JE{}O ”f = sn(/f, ')HLZ(T) =0 (8.5.4)
and ;
L[ 2, _ 2 , . )
o). f ()] dz = k;oo | fl” - (Parseval’s identity)

Proof. Let € > 0 be given. By Proposition 8.31 there exists g € € (T) such that

<

3

By the denseness of the trigonometric polynomials in €(T), there exists h € Z(T) such

that sup |g(z) — h(z)| < % Suppose that h € Zy(T). Using (8.5.2),
zeR

If = 9glz2r) <

2 2 - 1 T 2 1 T g2 . g2
lg = 5509, )2y < g = AllZeemy = ) |9(x) — h(z)|" dz < 5| g¥&E=7"
Since sy(g, ) € Z,(T) if n > N, using (8.5.2) again we must have

3

Hg — 5n(9; ')HL2(T) S Hg —sn (9, ')HL2(T) < 3 Vnz=N.

Therefore, for n > N, inequality (8.5.3) and the triangle inequality yield that

|f = sul/, ')HL2(T) < [|f=glzza) + g = sn(g, ) r2ery + [sulg = £, ) z2()
<2[f = gllzzmy + |9 = snl9, ) r2m) <€
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thus (8.5.4) is concluded. Finally, using (8.5.1) with p = 0 we obtain that

[ r@Pae= [ lsrafdes [ I - s(faf o

—T

Using the fact that ;J ‘sn(f, x)|2 de = > ‘fAk‘z and passing to the limit as n — o0, we
T J—n

conclude the Parseval identity. =

Example 8.33. Example 8.6 provides that f 2?dr =7 Z ; thus ] 1_T

—T

Remark 8.34. The Parseval identity implies that

fopremy =Y. fdr Y fgeLXT) (8.5.5)

k=—00

since the polarization identity shows that

1 . . . .
. @uaen = —[Hf 4 9laqry = IS = ol3ace) + il + gl — 1F = iglaco)]

S [ e+ 1k i — e~ ]
k__
oe}

= LS [0RE +2Re(FF0) + ) — (i = 2Re(FiFs + [5:F)
k=—00

(| Fol? + 2m(fie) + [917) = i (1l — 21m(fidi) + [36f?)]

— Z [Re(fkgk)+zlm fkgk Z il

k=—0o0 k=—0o0

8.6 The Discrete Fourier “Transform” and the Fast
Fourier “Transform?”

Let f: R — R be a periodic function with period L and f is bounded Riemann integrable
n [0, L). Similar to Remark 8.2, the Fourier series of f, defined in Remark 8.3, can be

written as
o0

s(fa)= 3 e T

k=—00
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271'7,ky

dy; thus f;c can be approximated by the Riemann sum

~ 1 L
where fu = 7 | #(u)e

1 - e 7271'11@2_[/ 1 = M
L I N—Ng -

In other words, the values of f at N evenly distributed points can be used to determine an
approximation of the Fourier coefficients of f.

Lf) . —2mike

N—1
There is another point of view of finding the sum % > f(ﬁ Even though
(=0

sn(f,x) will be a good approximation of s(f,z) for large n, the computation of the ex-
act Fourier coefficients will be expensive (and probably impossible). Therefore, instead of

compute the exact Fourier coefficients, we look for a Fourier-like series of the form

1S 2
LS xet
k=0
. . . LjyN-1 N1
so that it agrees with the value of f at points {F} . Therefore, we look for {Xj},
§=0
satisfying that
[ 1 1 1 e 1 1r 7 - .
2mi 4mi 2m(N—1)i XO f<0)
1 enN eN ... e N X, f(£)
i 1 e% e% e 64’”(1;7\7_1)1 X2 fod N
N .
‘ _ _— 2 ' N—1)L
I 1 627r(]>fv—1)1 6477(1;7\7—1)1 o eQTr(N]\;l)Q'L | _XN—I_ _f(( ~ ) )_
Let v, = [Ul(ﬂl),v,(f), e v,g ] denote the k-th column of the N x N matrix F' on the

) 2m(k—1)(j=1)i

left-hand side of the equation above. Then v =e N so that

27 (j—1)(b—k)i
N

N
" —2n(j—1)(k=1)i 2nx(j—-1)(—1)i
’U@"Uk:’vk’l)g:Ze N e N =

=

e
7j=1 7j=1
N— N-1 . .
275 ( E 2rj(l—k) | . . 2mj(0— k)i
Z +1 Z Sin T
j=0 j=0

which shows that

{N ifk=1¢,
Uy - Vg

0 iftk#1.
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Therefore, F*F = Nlyyy; thus

i 7 1 1 1 e 1 B T
Xo omi ami _ 2n(N—1)i £(0)
X, 1 e~ N e N e N f (£)
X, | =1 % e~ F s N
' ' . . Y N —1)L
_XN—l_ ] 1 eizﬂ(zyv—m 674ﬁ(1]\;—1)z e*%(NJ\Fl)QZ | _f(( ¥ ) )_

The discussions above induce the following

Definition 8.35. The discrete Fourier transform, symbolized by DF'T, of a sequence

of N complex numbers {zg, x1, -+ ,xy_1} is a sequence { X} }xez defined by
Nl —2mikl
Xk = Tee N VkeZ.
=0

We note that the sequence {Xj}rez is N-periodic; that is, Xy ny = X for all k£ €
Z. Therefore, often time we only focus on one of the following N consecutive terms

{Xo,Xl, s ,XNfl} of the DFT.

Example 8.36. The DFT of the sequence {xq,x1} is {zo + z1, 20 — 1}.

8.6.1 The inversion formula

Let {X;}2 " be the discrete Fourier transform of the sequence {z,};'. Then {x,})" ' can

be recovered given { X}, by the inversion formula
R
= D Xpe w (8.6.1)
k=0
. N-1 —2mikyj 2mwikl .
To see this, we compute Y| ( Z rje N )eT and obtain that
k=0
N-1 N-1 g ame N7 N-1 imi Nl N
- 7I"L 7rz e J uxd —J
Z( zje J) Z(x] e >:N$E+Z<$j26 N >
k=0  j=0 =0 k=0 i=0 k=0
j#e
N-1 627ri(27]) 1
=Nz, + (xj e} > = Nux,
e v —1

The map from {X;}n ' to {z,} ;" is called the discrete inverse Fourier transform.
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We note that the inversion formula (8.6.1) is an analogy of
O ~ .
@)= 25 Jee'™
k=—0

for all piecewise constant function f and x € R at which f is continuous.

Remark 8.37. Given a sample data [zg, 1, -+ ,xy_1] which is the values of a function f on
N evenly distributed points on [0, L) (for some unknown L > 0), the DFT [X¢, X1, , Xn_1]

can be thought as Fourier coefficients which provides the approximation

N-1 . —1 ‘ [5H] .
f(z) ~ Z Xpe 1 = Z Xppne T+ Z Xpe L
k=0 k:,[%] k=0
. L¢ N-—-1 .
where ~ becomes = if z = N 0 < ¢ < N — 1. Therefore, for 0 < k < [T] each Xy is

the coefficient associated with the wave with frequency % To determine L, we introduce
the sampling frequency F; which is the number of samples per unit time/length. Then

N . . ) . . F.
F, = T 80 that X, is the coefficient associated with the wave with frequency ﬁsk

8.6.2 The fast Fourier transform

Let M = [my] be an N x N matrix with entry my, defined by

—2mikl
Mgy =€ N Oék},féN—l,

and write = [xg,z1,- - ,xn_1|T and X = [Xo, -, Xy_1]". Then X = Mz and it requires
N? multiplications to compute X. The fast Fourier transform, symbolized by FFT, is

a much faster way to compute X. In the following, we show that when N = 27 for some
v € N, then there is a way to compute the DFT with at most N log, N multiplications.
With NV = 27, suppose that (zg, - ,2x_1) is a given sequence, and {X;}~ ' is the DFT

of {zp ). Let w = e, and
Leven = [l’o Ty Ty - foz] and Lodd = [$1 T3 s - fol}

Then

N-1
X, = Z zowlt = Z Tt + W Z 2w Y
=0

OSISN—1 0<U<N—1
£ is even ¢ is odd
. . . _ i ) 1 ) B

= Teven - [WO W Wt I 2)] + W Todq - [wo WH WML N 2)} )
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. . N
In particular, for 0 < j < 5~ 1,
N | - N - N -
XNy i = Teven * [wo wH2 ) G+ L w(?ﬂ)(N*Q)]
2
T Wiy - [ W2 AT L u)(%+j)<N—2)]
= Been - [0 ¥ WY WD) i [ W W W]

N
2

where we have used the fact that wz = —1 to conclude the equality. We note that

0 25, 4j -2 | V2
{meven. [w W o (N )]}
7=0
is exactly the DFT of the sequence {xg,zs,- -+ ,zx_2} and
—y (N N/2
{modd- [w® W Wt "1)}}
§=0
is exactly the DFT of the sequence {1, x5, -+ ,xy_1}. In other words, to compute the
DFT of {zg, - ,zn_1}, where N = 27, it suffices to compute the DFTs of the sequence
{xo, T2, -+ ,xN_o} and {z1,x3, -+ ,xn_1}. If the DFTs of the sequences {xg, s, - ,xy_2}
. . N e
and {x1,z3, -+ ,xN_1} are known, it requires another 5 multiplications to compute the

DFT of {zg, 1, -+ ,xn_1}-

Now we compute the total multiplications it requires to compute the DF'T of the sequence
{xk}igl using the procedure above. Suppose that to compute the DFT of {mk}ilgl requires

f(~) multiplications. Then
f(y)=2f(y—-1)+20 1.

It is easy to see that it requires no multiplication to compute the DFT of {x¢, x;} since it is
simply {xo+ x1, 20 —x1}; thus f(1) = 0. Solving the iteration relation above, we obtain that

f(v) = 2771(y — 1) which implies the total multiplications requires to compute the DFT of
(e} where N = 27, is 2 (log, N — 1),

Example 8.38. To compute the DFT of {zg,x1, -, 27}, we first compute the DFT of
{xo, x2, 24,6} and {x,x3, 25,27}, and it requires another 4 multiplications (to compute
the multiplication of w’ and the j-th term of the DFT of {z;, s, x5, 27} for 0 < j < 3).
Nevertheless, instead of computing the DFT of {xq, zs, x4, 26} and {1, x3, x5, x7} directly
using matrix multiplication X = Ma, we again divide the sequence of length 4 into further

shorter sequence {zg, x4}, {2, 26}, {1, 25} and {x3,27}. Once the DFT of those sequence of
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length 2 are computed, it requires another 2 x 2 = 4 multiplications to compute the DFT of
{xo, X2, 24,6} and {x1, x3, x5, x7}. By Example 8.36, it does not require any multiplications
to compute the DFT of sequences of length 2; thus the total multiplications required to
compute the DFT of {xg, 21, - , 27} is4+4=38.

8.7 Fourier Series for Functions of Two Variables

In this section we briefly introduce the Fourier series of complex-valued functions defined
on Q = [—Ly, L] x [—Lo, Ls|. Let

2@ ={s:2-c| L [F(ar, @) dlwz, 22) < 0} [ ~

equipped with the inner product

—L T1,T T1,T T1,T
<f’g>:1/(Q) Lf( 1,T2)g(21, x2) d(21, 22)

where v(2) denotes the area of € and ~ again denotes the equivalence relation defined by
(e L.

f ~ g if and only if f — ¢ = 0 except on a set of measure zero. Let ey (x) = ™1 1y) .

here & = (x1,22). Then {eg}r ez is a complete orthonormal set in L*(Q2); that is, for each

f € L?(Q), by defining the partial sum

Snm(f, T) = Z Z (fsere) ere(x)

k=—n{l=—m

we have
n}}ono |f = snm(f, ')HL2(Q) =0,
where | - [12(q) is the norm induced by the inner product (-,-). The limit of s, ,,(f,-), as

n,m — oo, in the inner product space (L?(2),(-,-)) is denoted by

s(f,-) = Z Z (fere) exe

k=—00 f=—0
and is called the Fourier series of f.
Given a collection of data {Z,mn}o<n<ir—10<n<n—1, the discrete Fourier transform (or
simply DFT) of {z,,}o<n<m—1,0<n<n—1 is & double sequence { X}y ez defined by

M—-1N-1

o mk, nt
ka— Z Z xman WN 9

m=0 n=0
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wherew,, = e~ and Wy = e~*% . The double sequence { Xy }x ez is doubly periodic satisfy-
ing Xyt eqn for all k, £ € Z; thus we usually only focus on the terms { Xy }o<k<rr—1,0<e<n—1-
The discrete inverse Fourier transform of a double sequence { Xy }o<k<rr—1,0<e<n—1 is a dou-

ble sequence { T }m.nez defined by

M—-1N-1

LTmn = ﬁ Z Z Xkéw_Mmk("Tvne7

k=0 ¢=0

where w,, and w, are complex conjugate of w,, and w, defined above.



Chapter 9

Fourier Transforms

Before introducing the Fourier transform, let us “motivate” the idea a little bit. In Section

8.5 we show that {e,}*_ __ . where e,(z) = ™", is a complete orthonormal set in L?*(T).

Similarly, let L?([— K, K]) denote the inner-product space
L*([-K,K]) ={f : [-K,K] — C| f is square integrable} / ~
equipped with the inner product

.99 = 5 | f@a@d

where ~ denotes the equivalence relation f ~ ¢ if and only if f — g = 0 except on a

; o
set of measure zero. Then the set {exp (Z?Zx)} is a complete orthonormal set in
n=—0o0

L*([-K, K]); that is, any functions f € L*([~K, K|) can be expressed as

i f(n)emfgl, where f QKJ fly

n=—a

wmy

(9.0.1)

0 ~ K
Moreover, >. |[f(n)|* = % f | f(z)|? dx. In other words, there is a one-to-one correspon-
-K

n=—a

dence between f € L2([—K, K]) and f € €y, where 2 is the collection of square summable

sequences; that is,
0

{{an}n,_oo ‘ Z la,|* < oo} .

n=—o0
We look for a space X so that there is also a one-to-one correspondence between the square
integrable functions on R and X. Intuitively, we can check what “might” happen by letting
K — oo in (9.0.1).

286
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Suppose that K » 1 and K € N. Making use of the Riemann sum to approximate the
integral (by partition [—K7, K7] into 2K? intervals), we find that

/(@) T 2K ZJ 1y e dy ~ 2[( Z J fly eXp ( y)}dy

n=—au

(Z fly eXp[ (:U—y)]%)dy
1 K Kr

~ oo _K< _Kﬁf(y)exp(if(x— Y)) df) dy = — J f fly)ety) dy) dg

S JOO [\/—2? JO:O f(y)e—ffydy] e .

Therefore, if we define f(§) = )e ™ dy, then the formal computation above

1
Wor fR fy
suggests that

f(z) = £)erde . (9.0.2)

1 ~
= 7
In the rest of this chapter, we are going to verify the identity above rigorously (for functions

f with certain properties).

9.1 The Definition of the Fourier Transform

For notational convenience, we abuse the following notion from real analysis.

Definition 9.1. The space L'(R™) consists of all complex-valued functions that are inte-

grable on R™ and whose integrals are absolutely convergent. In other words,
LR ={f: R"—><c” v)|dz < o}

that is, f € L'(R"™) if the limit lim |f(x)| dz = | f|l L1 (rn) exists.

R—w JB(0,R)
Remark 9.2. Even though we have not defined the integral for complex-valued function,
the definition of L!'(R") should be clear: when f is complex-valued function, the absolute

integrability of f is equivalent to that the real part and the imaginary part of f are both
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absolutely integrable, and

Rnf(m)dm:JnRe(f)( dm—HJnIm )(z) dz

fl@) + f(@) f(@) — f(z)
5 +JRn 5 dx

Rn

where f(z) is the complex conjugate of f(x).

Definition 9.3. For all f € L'(R"), the Fourier transform of f, denoted by .Z f or f, is a
function defined by

flx)e™™Sdx  VEeR™,

9.2 Some Properties of the Fourier Transform
Proposition 9.4. .7 : L'(R") — %,(R";C), and
|-7 fllee = Sup\ FHE)| < flerny - (9.2.1)

Proof. Let £ € R™, and {£;}7, be a sequence converging to £. Define

L f@)e S and g(x) = o f(2)e.

B 1
gr(z) = ﬁ Nl

Then {gi(z)}, converges to g(z) for all {x € R"||g(z)| < oo}, and for each k € N, g

is integrable and |gx| < |f|; thus the Dominated Convergence Theorem (Theorem 6.102)
implies that

(FNO = | s@do=lim | gla)ds = lin (F1)(&).

k—o0 R»

Therefore, (.Z f) is continuous on R™. The validity of (9.2.1) should be clear, and is left as

an exercise. o

Definition 9.5. A function f on R™ is said to have rapid decrease/decay if for all integers
N = 0, there exists ay such that

lz|V|f(z)| <ay as x— ©.
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Definition 9.6. The Schwartz space .7 (R") is the collection of all (complex-valued) smooth

functions f on R™ such that f and all of its derivatives have rapid decrease. In other words,
S (R") = {ue €*(R") || |YD*u is bounded for all k, N € Nu {0}}.
Elements in .7 (R") are called Schwartz functions.
The reader is encouraged to verify the following basic properties of . (R™):
1. .Z(R") is a vector space.
2. (R") is an algebra under the pointwise product of functions.
3. pue L (R") for all u e . (R™) and all polynomial functions p.
4. . (R"™) is closed under differentiation.
5. Z(R") is closed under translations and multiplication by complex exponentials €.

Remark 9.7. Let 2 € R™ be an open set, and €°(€2) denote the collection of all smooth

functions with compact support in € (or equivalently, compactly supported in 2); that is,

€2 (Q) = {ue €™ (Q) | {x e Q| f(z) # 0} =},

[

then €°(R") < . (R") . The set cl({z € Q| f(z) # 0}), where the closure is taken in the
metric space (€, |- |), is called the support of f and is denoted by supp(f).
The prototype element of #(R") is e~17” which is not compactly supported, but has

rapidly decreasing derivatives.
The following lemma allows us to take the Fourier transform of Schwartz functions.
Lemma 9.8. If f € #(R"), then f e L'(R").

Proof. If f € #(R"), then (1 + |z|)"*|f(x)| < C for some C > 0. Therefore, with w,

denoting the the surface area of the (n — 1)-dimensional unit sphere,

< nl
fRn}f(x)\dx J(1+|x| —d LJ 1+ Wyt drds

< Cwnlf (147)2dr = Cw,_1
0

which is a finite number. o
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Next we show that f is differentiable if f € .#(R"). Note that if f € #(R"), then the
function y; = z, f(z) belongs to .(R") for all 1 < j < n.

Lemma 9.9. If f € Z(R"), then f is differentiable, and for each j € {1,--- ,n}, % is
given by j
af —ix-§ 1
7 = \/% f i) (@)™ = S (2)] (6). 9.2.2)

Proof. Let £ e R" and 1 < j < n be given, and {h;};>; be a non-zero sequence converging

to 0. Define

u(a) = ) e
Note that the mean value theorem implies that
leixj;:: — 1’ _ ‘cos(xjhzi —cos0 iSiH(Zth) <%
thus
‘gk(x)|<%]xjf(x)| VxeR"and ke N.
Moreover, the fact that f € (R"™) implies that the function y = \/22771‘% f (:v)‘ is integrable

on R™. Therefore, by the fact that

~

J, mioras = HEBRIIE it i (o) = it

we conclude from the Dominated Convergence Theorem (Theorem 6.102) that

fin B =t [ ooyt = [ e i

Corollary 9.10. If f € ./ (R"), then fe ¢*(R™). Moreover, if a = (v, ,ap) is a

multi-indez,
N 1
DEF(E) = g Pl -2 f(@)](©).

1('}f

7 amj

Lemma 9.11. If f € Z(R"), then for j € {1,2,--- ,n}, Z, [
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Proof. W.L.O.G., we assume that j = n. Write z = (2, z,,). Since f € #(R"), there exists
C > 0 such that

(14 2'))"wnl| f (2, 20)| < © Vo= (2 2,) e R".
Then
1. For each 2/ e R"™| f(2/,+R) —» 0 as R — .

2. The function g : R" ! — R defined by g(z2') = is integrable on R"! (see

(1 +[=")"
the proof of Lemma 9.8), and |f(2', +R)| < g(«’) for each 2/ € R"™! and R > 1.

Therefore, the Dominated Convergence Theorem (Theorem 6.102) implies that

lim f(, iR)e’i(x,’R)f dx' =0;
R— [—R,R}"fl

thus Fubini’s Theorem and integrating by parts formula imply that
1 1 of

10f |
ag |- e —zacfd
1 1 R oof :
- = 1 ) —ix-& /
/i 27Tn RI—I}})O [—R,R]n71 (J\_R axn (aj)e dxn) dx
— l;n lim [(J f@ ) @) dx’) o ifnf f(x)e_”'gdx]
1 27 R—© [-R,R]"—1! rn=—R [-R,R]"
1 , ~
=& —5 lim f(x)e ™ Sdr = & f(€). 0
27T R—0 [—R,R]n
Corollary 9.12. P&y, &) f(€) = 7 [P(la 16);?@:)} (€) for all f e (R
) ySn T i 0351’ ) i 0z,

and polynomial P.

Corollary 9.13. The Fourier transform of a Schwartz function is a Schwartz function; that
is, F : L (R") - L (R").

Proof. Let P be a polynomial and o = (ay,- -+, ;) be a multi-index. By Corollary 9.10
and 9.12,

~ ol ¥
POD T = Pler &) s (€
1 1o 10

= T PGar ) [yl f@)] | (©):
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thus PDO‘f is the Fourier transform of a Schwartz function ¢g defined by

1 10 10 ar o o
g(r) = i|_a|73<287x1’ IR ;E) [$11$22 Ty f(a:)} :
By Proposition 9.4 and Lemma 9.8, PDa]? is bounded. =

Remark 9.14. There exists a duality under A between differentiability and rapid decrease:

the more differentiability f possesses, the more rapid decrease f has and vice versa.

Definition 9.15. For all f € L'(R"), we define operator .Z* by

or* _; ei:p-
(F* 1)) = o | SOl

The function .Z#* f sometimes is also denoted by f

The operator .#*, indicated implicitly by the way it is written, is the formal adjoint of
Z . To be more precise, we have the following

Lemma 9.16. {Fu,v)r2rn) = (U, F V) 2rny for all u,v € L (R"), where (-, -)r2wn) is an
inner product on . (R™) given by

(U, V) p2(rny = J u(z)v(z) de.

n

Proof. Let u,v € #(R") be given, and define f(z,y) = u(z)v(y)e” Y. By Tonelli’s Theorem
(Theorem 6.106), f is absolutely integrable on R™ x R"; thus Fubini’s Theorem (Theorem
6.107) implies that

(Fu,v)p2mn) = ( fRn u(x)e*im-ﬁdx>@ dé

1
Vor" Jgn
= ﬁ J ) J ) u(z)e™ v (§) d€ dx
= ﬁ f ) u(z) fRn ety (&) d§ dx = (u, F ) r2mny - D

9.3 The Fourier Inversion Formula

We remind the readers that our goal is to prove (9.0.2), while having introduced operators
Z and #*, it is the same as showing that .% and .#* are inverse to each other; that is, we

want to show that
FF=F*F =1d on Z(R").
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2
For a given t > 0, let P, : R — R be defined by P(z) = iexp (*%) Note that

Vi
P, e Z(R) for all t > 0, and P is normalized so that

mf e =1,

Now we compute the Fourier transform of P,. By Lemma 9.9, we find that
P, —i f
ey = P,
TS &) =7 | =A
P,(x) cos dx —
mf zhi(@) cos(Cz) do m

Since the functions y = xP,(x) is absolutely integrable on R for each fixed ¢ > 0, the integral

x)e” " dy

J xP(x)sin(x) dx

J Py () cos(€x) dx converges absolutely; thus by the fact that = cos(€x) are odd functions
R

in x, we have
R
J xP,(x) cos(éx) dr = lim J xPy(x)cos(éx)dx = 0.
R R—w J_p

As a consequence,

dP, 1 2
d_g(€> = —\/ﬁ J;R.Ie_m Sll’l(.ﬁlff)dl’
Integrating by parts,
dP, f e
= o = — 1 2t d
T — (&)= \/ﬁ xre~ sm (x€)dx ot Lim » xe 2 sin(z)dx

R 22
ool + f_R Ete™ 2t cos(xf) dx}
&g e 2

:_\/Tml%lil—l}go _Re 2 cos(xg)dx:—\/fmél_r)réo _Re 2 [ cos(x€) — isin(zf)] do
&t

_\/27Tt R

thus P,(¢) = Ce™ . By the fact that P,(0) = 12 J P,(xz)dz = 1, we must have
7T R

1 o2
=— lim [ — te™ 2 sin(

22 ~
B ey = —€tB(¢),

&) =e 2 (9.3.1)
For z € R", if we define Py(z) = [] Pi(xy) = (i)n -5 , then (9.3.1) and Fubini’s
k=1 Vi
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Theorem imply that F?t(f) = ¢3! Therefore,

~

which, together with the fact that f(z) = f(—x), further shows that
< 1 N~ 1 n 1 n
Pi(x :(—> Pi(—x :(—) (—> Pi(—z) = Py(x) .
(2 = () Frt=0) = (55) (55) Pel=) = Puto)
Similarly, ﬁt(f) = P4(&), so we establish that
F*FPy) = FF*(P,) =Py. (9.3.2)
The proof of the following lemma is similar to that of Theorem 8.20.

Lemma 9.17. If g € (R"), then P, x g — g uniformly on R™ as t — 0%, where the

convolution operator * is given by

(P 0)(@) = < | Pilo =)o) dy = —= | Piale—w)dy. (033

Proof. Let € > 0 be given. Since g € .(R"™), g is uniformly continuous; thus there exists
0 > 0 such that
l9(z) — g(y)| < g whenever |z —y| < 4.

Since \/21?" o Pi(z)dx = 1, for all x € R™ we have
1
e+ )(e) 9w = <] | sw =P du— | o@Piln)
1
== | e =)~ s@] P ay
e 1 J 2] gl
< 5= Piy)dy + —=—== P.(y) dy,
2V2m Jyj<s W V2m o Jypzs )
so we obtain that
€, 2|glle
sup |(Py*xg)(x) —g(2)| < = + —= P dy .
sup |(Pi + g)(z) — 9(2)]| < 5 Nord i(y) dy

Note that
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which, by the Dominated Convergence Theorem, approaches 0 as t — 07; thus there exists
h > 0 such that if 0 <t < h,

2H9Hoo £
Py(y)dy < .
\/27‘[‘ ly|=5 2

Therefore, we conclude that

sup |(P; * g)(z) — g(z)| <&  whenever 0<t<h
zeR™

which shows that P; x ¢ — ¢ uniformly as t — 0F. o

Lemma 9.18. If f and g € /(R™), then

- 1 e
(f*g)(x)ZW F(&)e™<g(¢) de.

Proof. By definition of f and the convolution,

= | Fa—meway = (5)' | (], roeteegt) de)ay.

By Tonelli’s Theorem (Theorem 6.106), the function h(£,y) = £(€)g(y)e’®¥)¢ is absolutely
integrable on R™ x R™; thus Fubini’s Theorem (Theorem 6.107) implies that

(f xg)(x) =

Frow = () | (| st ay)as

1 1T 1 —1y- o 1T g
| 10 (e | et dn) e —— [ e de.

Theorem 9.19 (Fourier Inversion Formula). If g € .(R"), then §(§) = 3(5) =g(&). In
other words, 7 * = 7*.% = Id.

Proof. Applying Lemma 9.18 with f(§) = ﬁt(g) = ¢ 2% and using (9.3.2), we find that

(Py* g)(z) = (f* g)(x) = e 2P e (€) de .

1
Vor" Jga
Passing to the limit as ¢ — 07, by Lemma 9.17 and Dominated Convergence Theorem
(Theorem 6.102) we obtain that

o) = = | ale)e S = G,
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~

Let ™ denote the reflection operator given by f(z) = f(—z). Then the change of variable

formula implies that

9(&) = (w)e”" 4 da

oo | gty =

- x)e T = —

27T n g 27’(’ Rn g
1

— o | gcae =),

or"

ﬁ

On the other hand,

1) = < | alw)e 0 = 3(-6) = (6)
thus §(€) = 5(6) = (&) = 9(©) .

Corollary 9.20. .7 : ./ (R") — .Z(R") is a bijection.

Remark 9.21. In view of the Fourier Inversion Formula (Theorem 9.19), .#* sometimes is

written as .Z !, and is called the inverse Fourier transform.

Remark 9.22. In most of the engineering applications the Fourier transform of a function
f is defined by

FNO = | fwe <,

In this case, the corresponding inverse Fourier transform .# ~! and the adjoint Fourier trans-

form Z* are given by

FAE) = (271r)” . (z)e'™* dx and F*[f)(€) = 5 Fl2)e™ da

so that .Z ~! # .Z*. Insome applied fields such as the signal processing the Fourier transform

of a function f is defined by

FUNO = | fae e,

In such a case, the inverse Fourier transform and the adjoint Fourier transform are identical

and are given by
FUIIE) = FF(f1(€) = . fla)e*™ ™ du .

The proof of this fact is left as an exercise.
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Theorem 9.23 (Plancherel formula for . (R")). If f, g € .#(R"), then
<f, g>L2(R”) = <J?, §>L2(Rn) .

Proof. Recall that {f, g)r2(mn) f f(z)g(z) dz. By Fubini’s theorem,

L gbraan = - [ wege|g(a) d
Fpn = | Fapg@ie = | [ | r@e=ao@iar
= | 5O o | oG] de = e
Therefore, (f, g>L2(]R") = <f» g>L2(R”) = <J?7 §>L2(Rn)- o

Remark 9.24. The Plancherel formula is a “generalization” of the Parseval identity in the
following sense. Define the ¢ space as the collection of all square summable (complex)
sequences; that is,
a0
2 = {{ak},;'o:_oo c C‘ Z lax|? < oo}
k=—o0

with inner product
e}

<{ak}koozfoo7{bk}zozfoo>gz = 2 aka-

k=—00

Define F : LA(T) — (2 by F(f) = {fi}?_... Then (8.5.5) shows that
e =<F(f), Flg)e ¥ fgeLT)
so that we obtain an identity similar to the Plancherel formula.

Remark 9.25. Even though in general an square integrable function might not be in-
tegrable, using the Plancherel formula the Fourier transform of L2-functions can still be
defined. Note that the Plancherel formula provides that

|flze@ey = 1 flre@ey ¥ fe S (RY). (9.3.4)

If f e L*(R"); that is, |f| is square integrable, by the fact that .#(R") is dense in L?(R"),
there exists a sequence {f};2, < . (R") such that khm | fr = flz2@ny = 0. Then {fi}7, is
—0

a Cauchy sequence in L?(R"); thus (9.3.4) implies that {ﬁ}le is also a Cauchy sequence
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in L?(R™). By the completeness of L?*(R") (which we did not cover in this lecture), there
exists g € L*(R") such that

B [ fy = gl 2@n) = 0.
We note that such a limit g is independent of the choice of sequence {fi}72, used to ap-

proximate f; thus we can denote this limit g as f. In other words, % : L*(R") — L2(R™).
Moreover, by that f; — f and fk — fin L*(R™) as k — oo, we find that

|flz2@ny = [ flr2@ny ¥ fe L*(R"),

and the parallelogram law further implies that {f, g)r2@n) = <]?, Gyr2wn) forall f, g e L*(R™).
Similar argument applies to the case of inverse transform of L2?-functions; thus we conclude
that

o @re@ny = <J?, G)r2(rn) = <f, J)r2(mn) Y f,ge L*(R™). (9.3.5)

We will talk about how to define the Fourier transform of L?-functions in another way in
Section 9.4.

Theorem 9.26. If f,g € ./ (R"), then Z(f xg) = fﬁ In particular, f*g e L (R") if
fr9e SR

Proof. By the definition of the Fourier transform and the convolution,

Frat©) = =7 (| 1= uotdv)(e)

g L[] s - wat an] e

1 )
— iz +Y)€ 1 ) 4
@n) fR g(y)( Rnf(ﬂf)e I) y
1 —ix- 1 —1y-
(e [ ) (e [ )
which concludes the theorem. o

Corollary 9.27. F*(f+g) = f§, F(fg) = f*§ and F*(fg) = f*§ for all f,g e S (R").

We have established the Fourier inversion formula for Schwartz class functions. Our
goal next is to show that the Fourier inversion formula holds for a larger class of functions.

Motivated by the Fourier inversion formula, we would like to show, if possible, that

sz ]%\: f V f e L'(R™) such that fe LY(R™).
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The above assertion cannot be true since f and f are both continuous (by Proposition 9.4)
while f € L'(R™) which is not necessary continuous. However, we will prove that the identity
above holds at points of continuity of f.

Before proceeding, we establish a lemma which is very similar to Lemma 9.16.

Lemma 9.28. Let f € LY(R") and g € .Z(R"). Then {f,g> = (f,§) and {f,q) = {f, D),
uhere (f.g) = | f(@)gla)da.

Rn
Proof. We only prove <f, gy ={f,q)if f e LY(R") and g € .(R"). By Proposition 9.4, f

is bounded and continuous on R"; thus fg is an absolutely integrable continuous function.

By Fubini’s Theorem,

Fr=| (oo | s@ean)oepie =—= | (| rae=<ar)ae
- = | (] r@e©esa)an = | @) (o | o ta)as
which is exactly {f, ). O

Recall that our goal is to show that

~
A~

if f, f e LY(R™), then f(z) =

x) = f(x) whenever f is continuous at x.

This amounts to treat f and f in the same vector space and check if f— f is the zero vector

in that vector space. This underlying vector space is introduced in the following

Definition 9.29. The space L _(R"™) consists of all functions (defined on R") that are

loc

absolutely integrable on all bounded open balls of R™. In other words,

Ly (R") = {f R"— C ‘ fB( ) f(z) dz is absolutely convergent for all « € R" and r > 0} :

Again, we emphasize that we abuse the notation Li (R") which in fact stands for a

larger class of functions. We also note that L'(R") < L] (R") and %,(R";C) < L (R™).

How do we determine if an locally integrable function h is the zero vector in L (R™)?
Our goal is to establish an equivalent condition of that A = 0 (or to be more precisely,
h(xz) = 0 if h is continuous at x) stated briefly as follows (the precise statement is given in

Lemma 9.35):

If he L

loc

(R™), then h = 0 if and only if (h,g) = 0 for all g € .#(R"). (9.3.6)
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We note that the difficulty here is that A and g belongs to different space so that we cannot
simply let g = h to conclude that J |h(z)|? dz = 0.
RTL

A special class of functions that will be used as the role of ¢ in (9.3.6) is called the
standard mollifiers. Let ( : R — R be a smooth function defined by

1 .
() = exp (x2—1) if |[z| <1,
0 if |z| > 1.

For z € R™, define n; (x) = C((|z|), where C' is chosen so that f m(z)dz = 1. The change
RTL

of variables formula then implies that 7.(z) = ¢ "n,(z/¢) has integral 1. We remark that
ne is smooth and 7.(z) # 0 if and only if x € B(0,¢); thus 7. € ./ (R") for all € > 0.

Definition 9.30. The collection of functions {1.}.~¢ is called the standard mollifiers.

Definition 9.31. Let f, g be functions defined on R™. The convolution of f and g, denoted
by f % g, is a function defined on R™ given by

(f*g)(x) = . flx—y)g(y)dy

whenever the integral makes sense for all x € R™.

We note that the change of variables formula implies that f % g = g * f whenever the

convolution makes sense.
Remark 9.32. Let {1.}.~¢ be the standard mollifiers.

1. Since 1.(y) # 0 if and only if y € B(0,¢), for each z € R™,

n

(n. % f)(x) = f ne(e — y)f(y) dy = f ne(e — ) f(y) dy

B(z,e)

and the integral exists if f e L (R").

loc

2. By the fact that 7. is smooth, the Dominated Convergence Theorem (Theorem 6.102)
shows that n. % f is smooth for each € > 0, and

D (. % f)(x) = f (Dn) (& — ) f () dy

n

where oo = (o, -+ , @) is a multi-index. The detail proof is left as an exercise.
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Example 9.33. Let f = 1j,;), the characteristic/indicator function of the closed interval

[a,b]. Then for ¢ « 1, the function 7. % f is smooth and has the property that

1 ifrxelateb—egl,
0 ifxefa—eb+el,

(% ) = |

and 0 < f < 1. Moreover, n. % f converges pointwise to f on R\{a, b}.

The following lemma shows that 7. % f converges to f at points of continuity of f if
fe Ll (R).

loc

Lemma 9.34. Let f € L}, (R™) and xq be a continuity of f. Then

loc

lim (n. % f)(xo) = f(x0) -

e—0t+

Proof. Let € > 0 be given. Since f is continuous at xg, there exists 6 > 0 such that

[f(y) = f(xo)| <

whenever |y — x| < 6.

DO | ™

Therefore, by the fact that n-(y) dy = 1, for 0 < ¢ < ¢ we find that

% £)w0) — Sl =| [ n) =)y — | nrteo) o

n

€

< JB(O’E) 77a(?/)|f($0 —y) - f($0)| dy < 2 JB(O’&:) n(y)dy <e. o

Lemma 9.35. Let f € LL _(R"). If{f,g) =0 for all g € S (R"), then f(xo) = 0 whenever

loc

f is continuous at xg.

Proof. Let {n.}.~¢ be the standard mollifiers, and zo be a point of continuity of f. Then
for all € > 0,

(= * f)(z0) = J n-(wo —y) f(y) dy = . Fn-(y — zo) dy = {f, Tuoe)

n

where 7, is the translation operator defined by (7,,6)(y) = ¢(y — xo). Since 7. € .7 (R")
for all ¢ > 0, the function 7,,n. € 7 (R"™) for all ¢ > 0; thus (7. * f)(z¢) = 0 for all ¢ > 0.
By Lemma 9.34, we conclude that

o) = lim(n. * £)(z) = 0. :
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Remark 9.36. The reverse statement of Lemma 9.35 is also true: if f € LL _(R") has the
property that f(zq) = 0 whenever f is continuous at xq, then (f, gy = 0 for all g € Z(R")
since if f € L} _(R™), the collection of discontinuities of f has measure zero which shows
that f(x) # 0 only on a set of measure zero. Therefore, {f,g) = 0 for all g € Z(R"). In

other words, if f € L] _(R™), then

loc
(f,g) =0 for all g e .#(R") if and only if f(z¢) = 0 whenever f is continuous at x.
Lemma 9.35 establishes the non-trival direction “=".

Now we are in position of showing the Fourier inversion formula for functions of more

general class.

Theorem 9.37 (Fourier Inversion Formula). Let f € L'(R") such that f € L'(R"). Then

x) = f(z) = f(z) whenever [ is continuous at x.

Proof. Let f: R™ — C be such that f, fe L'(R™). By the fact that f(f) = f(=¢) for all
¢ € R, the change of variables formula implies that f e LY(R™).
Let g € .7 (R") be given. By Lemma 9.28 and the Fourier inversion formula for Schwartz

class functions (Theorem 9.19),
F=Fp=UH=Ue wd  Fo=F5H=U0d= U0,
In other words, if f, f € L'(R"),
G-t p=U-Fp=0 Vges(®".

By Proposition 9.4, f, f € €,(R™; C); thus the collection of points of continuities of f — f

and f— f is identical to the collection of points of continuities of f; that is,

f is continuous at z if and only if f— f and f— f are continuous at x.

loc loc

f— f f— f e LL (R™). Therefore, the theorem is concluded by Lemma 9.35. O

loc

Moreover, by the fact that €,(R";C) < LL_(R") and L'(R") < L{.(R") we find that

Remark 9.38. Since an integrable function f : R® — R must be continuous almost

everywhere on R", Theorem 9.37 implies that if f : R — R is a function such that f,
fe L'(R™), then f: f: f almost everywhere.
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9.4 The Fourier Transform of Generalized Functions

It is often required to consider the Fourier transform of functions which do not belong to

L'(R™). For example, the normalized sinc function sinc : R — R defined by

SI(TL) e 20
sinc(z) = s ’ (9.4.1)
1 ifx =0,

does not belong to L}(R) but it is a very important function in the study of signal processing.

—6m —4x —27 0 27 4 6m

1.0

0.8

0.6

041

0.2

NSV AR/AY O\
AL ARS AR

—-0.2

| 1
—-20 —15 -10 =5 0 5 10 15 20

Figure 9.1: The graphs of unnormalized and normalized sinc functions (from wiki)

Moreover, there are “functions” that are not even functions in the traditional sense. For
example, in physics and engineering applications the Dirac delta “function” ¢ is defined as

the “function” which validates the relation
| swowdr=o0)  voewm)

In fact, there is no function (in the traditional sense) satisfying the property given above
(reasoning later). Can we take the Fourier transform of those “functions” as well? To
understand this topic better, it is required to study the theory of generalized functions/
distributions.

To understand the meaning of distributions, let us turn to a situation in physics: measur-
ing the temperature. To measure the temperature 1" at a point z, instead of outputting the
exact value of T'(x) the thermometer instead outputs the overall value of the temperature
near x. In other words, the reading of the temperature is determined by a pairing of the

temperature distribution with the thermometer.
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In mathematical point of views, to evaluate the function value of a locally integrable

function f at a point of continuity xy, we apply Lemma 9.34 and obtain that

f(ﬂ?o) = [}i}%&(né: * f) (Io) = El_i,I(I)lJr <f7 Tmon5>7 (942)

where 7., is the translation operator given by (7,,¢)(z) = ¢(z—x¢). Here 1. can be viewed as
a meter that can measure the function value of locally integrable functions, ¢ is a parameter

that corresponds to the accuracy of this meter, and 7,,7. is a meter that locates at position

1
loc

the form ¢ = 7,,7m. but also on ¢ € Z(R"), where

xg. Nevertheless, for f € L; (R"), the “pairing” {f,®) is defined not only on functions of

2(R") = {q5 R" - C | ¢ € €°(R") and supp(¢) = {x € R ¢(z) # 0} is compact} .
This pairing induced a (continuous) linear functional 7y : Z(R") — C defined by

Ty(d) =<{f, 0. (9.4.3)

Moreover, if T : 2(R") — C is a continuous linear functional, and there exists f € L} _(R™)
such that T'(¢) = (f, ¢) for all ¢ € Z(R™), then f is uniquely determined except perhaps
on a set of measure zero (or to be more precise, f is uniquely determined at all points of
continuity of f). Therefore, with Z(R")" denoting the collection of all (continuous) linear
functionals defined on Z(R"), there is a natural injection ¢ : Ll (R") — Z2(R") (given by
() = T)).

On the other hand, a (continuous) linear functional defined on Z(R™) might not take

the form of (9.4.3). For example, there exists no locally integrable function f such that

T(0)= | fwewdy=0(0) voe 2@, (944)

To see this, suppose the contrary that there exists f € Ll _(R") such that (9.4.4) holds.
Then

(ne % f)(z) = . JW)(man)(y) dy = ne ()

which vanishes if # ¢ B(0,¢). This implies that f = 0 almost everywhere so that {f,¢) =0
for all ¢ € Z(R™), a contradiction. Therefore, ¢ : Li. . (R™) — Z(R™)’ (given by «(f) = Ty) is
not surjective; thus (continuous) linear functionals on Z(R") defines more “functions” than

Ll

loc

(R™). Such kind of linear functionals are called generalized functions or distributions.
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The Fourier transform can be defined on a smaller class of generalized functions, the
space of tempered distributions. A tempered distribution is a continuous linear functional
on . (R™). In other words, 7" is a tempered distribution if

T:R") - C, T(cp+ ) =cT(p)+ T () for all ce C and ¢, € L (R"),
and lim 7(65) = T(9) if {6,}2, = F#(R") and 6, — ¢ in F#(R").

The convergence in . (R") is described by semi-norms, and is given in the following

Definition 9.39 (Convergence in .(R")). For each k € N u {0}, define the semi-norm

pr(¢) = sup {(o)*|D¢(x)],
zeR™ |a|<k
where (z) = (1 + |2[%)2. A sequence {¢;}52, € ' (R") is said to converge to ¢ in ./ (R") if
pr(¢; — @) — 0 as j — oo for all ke N u {0}.

We note that pp(¢) < pri1(e), so {¢;}52, < (R") converges to ¢ in .7(R") whenever
pr(¢j — @) — 0as j — o for k » 1. We also note that if {¢;}72, converge to ¢ in ./(R"),

then {¢;}72, converges uniformly to ¢ on R".

Definition 9.40 (Tempered Distributions). A linear map 7" : .(R") — C is continuous if
there exists N € N such that for each £ > N, there exists a constant '} such that

T(9)] < Chpi(9)  Voe s (R").

The collection of continuous linear functionals on .(R") is denoted by . (R™)". Elements

of Z(R")" are called tempered distributions.

Example 9.41. For 1 < p < oo, let LP(R™) denote the collection of Riemann measurable

functions whose p-th power is integrable; that is,

LP(R") = «{f :R" - C ‘ f is Riemann measurable and |f(2)] dz < oo} )

Rn
and let L*(R™) denote the collection of bounded Riemann measurable functions. Every

LP-function f : R™ — C can be viewed as a tempered distribution for all p € [1, c0]. In fact,

the tempered distribution 7% associated with f is defined by

Tr(¢) = . f(z)p(x)dx Ve S(R"). (9.4.5)
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Now we show that Ty given by (9.4.5) is indeed a tempered distribution. Let pe SR

be given. Then || romn) < pr(¢) for all k € N, while for 1 < ¢ < o0 and £k > 5

< < Rn<x>_kq dx) %pk(qﬁ)

olueer = ([ lo@as)” = ([ @ ltiow] )’

< (s [ @ B o)

Q0
Note that (1+ 7“2)_%7“"’%{7’ <wif k> g; thus for all ¢ € [1, 0], there exists C 4, > 0
0
such that
[¢la@n) < Crgmpr(¢) — VE>1. (9.4.6)

Therefore, if f € LP(R™), by the Holder inequality we have
[KFs ) < 1Fler@n)| 0l @ny < Crprnl Fls@mpr(e) ¥ > 1,

where p’ € [1,0] is the Holder conjugate of p satisfying ; + ;, = 1; thus Ty € ./ (R")" if
f € LP(R™). Note that the sinc function belongs to L*(R) so that Ty, € % (R)'.

Example 9.42. Let f : R — R be a 27-periodic, Riemann measurable function such that
f |f(z)]dx < o0, and ¢ € .#(R). By the definition of the p; semi-norm,

|z[?|¢(x)| < pa(9) Ve S (R") and x € R".

Therefore,
T+2km
f, 0] = ) kZOO fﬂﬁkﬂ r)dr| < kzoo f (2)||¢(z + 2k)| da
:J | Hﬁb |d$+z [ ‘ H¢ZE+2]€7T)‘CZ$
- lkj=17Y ™
T 1
SP f )| dz + “;1 f }f(x)\mpz(cb) dx

< (J: £ ()| dx) (1 + 2;1 ﬁ)pg(aﬁ)

which implies that Ty is a tempered distribution. In particular, T, € ./(R)’ for all constant
ceR.
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From now on, we identify f with the tempered distribution 7% if f is an ordinary function
(or a function defined pointwise). In other words, if 7" € .(R™)" and f : R™ — C is a function,
we say that 7' = f in /(R")" if T' = T, where T is the tempered distribution associated
with the function f. Moreover, if T € .#(R")" and ¢ € L (R"), T(¢) is also expressed as

(T, ).

Example 9.43 (Dirac delta function). Consider the map 0 : € (R™) — R defined by d(¢) =
¢(0). Then [5(¢)| < po(¢) < pr(¢) for all ¢ € .#(R") and k € N U {0}; thus 6 € .7 (R")".
Therefore, we also write §(¢) as (J, ¢). This explains why the Dirac delta function has the
property that

since the integral above is an informal expression of {0, ¢).
Similarly, the Dirac delta function at a point w defined by {(d,,¢) = ¢(w) is also a

tempered distribution.

Remark 9.44. Not all ordinary functions are tempered distributions. For example, the
function f(x) = e is locally integrable (since it is continuous), but f f(x)e ™ de = .
R

1
loc

requires that |f(z)| < C(1 + |z|V) for any N € N. In such a case, Ty € (R") is well-
defined.

!/

Therefore, being in L (R") is not good enough to generate elements in .%(R")’, and it

As shown in the example above, a tempered distribution might not be defined in the
pointwise sense. Therefore, how to define usual operations such as translation, dilation, and
reflection on generalized functions should be answered prior to define the Fourier transform
of tempered distributions. For completeness, let us start from providing the definitions of

translation, dilation and reflection operators.
Definition 9.45 (Translation, dilation, and reflection). Let f : R" — C be a function.
1. For h € R™, the translation operator 7, maps f to 7, f given by (7, f)(z) = f(z — h).

2. For A > 0, the dilation operator dy : .#(R") — (R™) maps f to d\f given by
(drf)(@) = f(A ).

3. The reflection operator ~ maps f to f given by f(z) = f(—x).
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Now suppose that T € .#(R")". We expect that 7,7, d)\T and T are also tempered
distributions, so we need to provide the values of (7, T, ¢), (d\T, ) and (T, ) for all ¢ €
S (R™). If T = Ty is the tempered distribution associated with f € L'(R™), then for
g € ./ (R"™), the change of variable formula implies that

(tnf,9) = . flx = h)g(x) dz = . f(@)g(x+h)de = (f,7-ng),
fo=] fA2)g(x) do = S @O da = (f, Xdy-1g)
Fp= [ feog@rde= [ fg(-o)de =15
The computations above motivate the following

Definition 9.46. Let h € R", A > 0, and 75, and d, be the translation and dilation operator
given in Definition 9.45. For T' € ./ (R™), 7,7, d,\T and T are the tempered distributions
defined by

(T, ¢y = (T, 7-10), (diT,¢) = (T, \'dy-1¢) and (T',¢)=(T,¢) Ve .7 (R").

We note that 7,7, d\T and T are tempered distributions since

pr(T_p®) < sup <x>k‘Da¢($ — h)‘ < sup {x+ h>k|D“¢(:E)|

zeR™ |a|<k zeR™ |a|<k
x4 h)2\ 5
< (sup MY p(0) < (1 4+ B pa(o),
reR™ <$>

Pe(N'dy-19) < A" sup  {a)"Al|(DY¢)(Az)| < A" max{\*, \F}pi(6),

zeR™ |a|<k

pk(ﬁg) = pi(9)

so that by the fact that ‘(T, gz5>| < Cipr(9) for k> 1, for all ¢ € #(R") we have

[T, ¢y = KT, 72| < Cr(1 + |h])*pr(9) = Crpr(9)
(AT, 6| = [T, A"dy-16)] < Cud™ max{\*, \"*}pi(¢) = Cipi(9),
KT, )| = (T, &)] < Cipi(9).

Example 9.47. Let w, h € R™ and A > 0.

L. Th(Sw = Ow+h since if ¢ € y(Rn)’ <Th5¢m ¢> = <5w7 Tfh¢> = (b(w + h) = <5w+h7 ¢> :
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2. d)\éw = )\”5/\0_} since if d) € y(Rn)v <d)\6wa ¢> = <(5wa Andl/z\¢> - )\n¢<)\w) = <)‘n5/\w> ¢>

3. &, = 0_,, since if ¢ € L (R"), (5, ¢ = (0, &) = H(—w) = (5_, 9 .

From the experience of defining the translation, dilation and reflection of tempered distri-
butions, now we can talk about how to defined Fourier transform of tempered distributions.
Recall that in Lemma 9.28 we have established that

Fop=9) ad (F=5 Vfgel'R").

Since the identities above hold for all L!-functions f (and L!-functions corresponds to tem-
pered distributions 7y through (9.4.5)), we expect that the Fourier transform of tempered
distributions has to satisfy the identities above as well. Let T' € .#(R")’ be given, and define
T:.7(R") — C by

T(¢) =(T,¢)=(T.¢py VeI R"). (9.4.7)
Let k > 2 and k is a multiple of 4. Then

p(d) = s DG = s (©F|F[a0(@)](€)]

EeR™ |al<k EeR™ |a|<k

< swp (DN 6 )| F 0] (6)

geR™ Jol<k

< (n+ 1)5_1 sup ‘ﬁx [(1 + 6’;1 + -4 5];)($a¢(37))} (f)‘ .

£eRn |a|<k

Since

sup
€eR™ al<k

< T M gy SR (@) < [T gy gy Prsrn (9)

and for 1 <7 <n

Zulao@)(@)) < s [ Jaota)|do < | @Ho(o)]ds

lo|<k JR

k
Z[0, @ o@)] ()] < D CF sup | T [0 a3k 0(@)](€)

sup
£eR™ ol <k — &R, \a|<k
k—t ¢ oo —k+¢
ZO‘iﬁL%f 51l = 3 g G420 e

2 Ce k! SUP H< >4Dﬁ¢ HLI R7) < k! Z C?H<'>7n71HLI(Rn)pTL+Z+1<¢>

/=0 18l= =0

S k!H<.>_n_1HL1(]RTL) pn+k+1(¢) Z Céf = k!Qk}‘<'>_n_1‘|Ll(Rn) pn-i—k—i—l(gb) )
=0
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we conclude that

~

Pe(@) < (n+ DE (L4 0k29) 4 g Pk (6) = Ol posana (6) . (9-48)
Therefore,
(T, o) = (T.6)| < Copr(9) < Chl(n, k)promsa(6) Yk > 1 (9.4.9)

which shows that 7' defined by (9.4.7) is a tempered distribution. Similarly, 7" : .%(R") — C
defined by (T, ¢) = (T, ¢ for all ¢ € .#(R") is also a tempered distribution. The discussion

above leads to the following

Definition 9.48. Let T' € .(R")’". The Fourier transform of 7" and the Fourier * transform
of T', denoted by T and T respectively, are tempered distributions given by

(T.¢)=(T.¢) and (T.¢)=(T,¢) VeI (R,
In other words, if 7' € (R"™), then f,f e Z(R™) as well and the actions of IA”, T on

¢ € Z(R™) are given in the relations above.

Example 9.49 (The Fourier transform of the Dirac delta function). Consider the Dirac
delta function § : .(R") — C defined in Example 9.43. Then for ¢ € .7 (R"),
L o | @) de = (,0):
\/7 mn - mn ) )
thus the Fourier transform of the Dirac delta function is a constant function and & (&) =
\/2%71. Similarly, (5v(§) = \/2%,1, S0 8 = 9.

Next we consider the Fourier transform of ¢, the Dirac delta function at point w € R™.
Note that for ¢ € ./ (R"™),

(8,6) = 6(0) = aﬁ(sv)e*””‘o de =

~ ~ 1 . fz:vw
0 0) = (W) = = | d(@)e  doe = (E—.0) = (0,0
o 9) = ¢w) = = . () NG Ous 05
thus the Fourier transform of the Dirac delta function at point w is the function 5;(5) =
—i&-w
f/27n' The inverse Fourier transform of ¢, can be computed in the same fashion and we
Y
> i€-w v x ~
have ¢,(§) = 6771‘ We note that d, = d,, = 9d,,.
€)==

Symbolically, “assuming” that {4, ) = ¢(w) for all continuous function ¢,

Je "t dy = L e _ e

1
— 0w m m
vV o fn (x V2T T=w V2T

~

5W<€) =
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and "
~ 1 . 1 . e’L W
o (&) = —— | Su(x)e™Cdy = ¢ =
(g) VvV 27 Rn (I)e * vV 27 ¢ T=w vV 27

Example 9.50 (The Fourier transform of ). By “definition” and the Fourier inversion

formula, for ¢ € . (R™) we have

<6iac-w7 g/Z;> _ eiz-wég(l‘) dr — mn . 1 &5(17)61'35.9.) dr — m”;(w) = mngb(w) ;

- Var" Jan
thus
(e, ¢y = V2" p(w) = (V21 "8, 0.

Therefore, the Fourier transform of the function s(z) = €®* is v/27 "8, where §,, is the
Dirac delta function at point w introduced in Example 9.49. We note that this result also
implies that R

5Vw = VweR".
Similarly, (wa = ¢, for all w € R™; thus the Fourier inversion formula is also valid for the
Dirac ¢ function.

Example 9.51 (The Fourier Transform of the Sine function). Let s(z) = sinwz, where w

1w —lwx
— €

5 , we conclude that the

denotes the frequency of this sine wave. Since sinwz =

Fourier transform of s(x) = sinwz is

o)

since if 17, Ty are tempered distributions, then T' = T} + T, satisfies
(T,6) = Ty +To, ) = (Th,0) + (T, 6) = (T1, ) + (T, 6) = (T + Tr, ¢ Ve S (R")
which shows that T = ’_ZA’l + TAQ.

Theorem 9.52. Let T'e .(R")'. Then T=T=T.

Proof. To see that T and T are the same tempered distribution, we need to show that
(T, ¢y = (T, ¢ for all ¢ € .(R"). Nevertheless, by the definition of the Fourier transform

and the inverse Fourier transform of tempered distributions,
(T.¢)=(T,$)=(T.d)=(T.¢) VeI R").

The identity T =T can be proved in the same fashion. =
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Example 9.53 (The Fourier Transform of the sinc function). The rect/rectangle function,

also called the gate function or windows function, is a function II : R — R defined by

() = 1 if x| <1,
= if || =1

Since IT € L'(R), we can compute its (inverse) Fourier transform in the usual way, and we

have
~ 1 : Lt 1 e =1 2 sin &
= —— | I(x)e ™ der = — e B dy = — — VE#Q
‘) \ 2T JR (z) Vor ) Vor —i€le=1 V& £
sinz
S 2 . . . . ifx#0,
and II(0) = 4 /= . Define the unnormalized sinc function sinc(z) = x
" 1 ifz=0.

Then [1(£) = \/zsinc(gf). Similar computation shows that I1(¢) = I1(¢) = \/Zsinc(g).

Even though the sinc function is not integrable, we can apply Theorem 9.52 and see that

— — ™

sinc(€) = sinc(§) = EH(é) VEeR.

Theorem 9.54. Let T € /(R")". Then

(T 8y = (D), €)™y, (T, ¢y = (T, dno) and (T.¢)=(T.¢) Voe SR,

A short-hand notation for identities above are ﬁ({) = f(ﬁ)e*’f'h, d/ﬁ(g) = )\”f()\f), and
() =T(9).
Proof. Let ¢ € . (R"). For h € R", define ¢p,(z) = ¢(z)e ", Then

(Tn)(€) = D€+ D) = ol i (EHh) g —

1 —ix-h —ix-& _ -
f o | o) e e = 6u(6).

By the definition of the Fourier transform of tempered distribution and the translation

operator,

(T, ) = (T.716) = (T, 0n) = (T(a), dla)e™™") = (T(€), B(E)e™").

On the other hand, for A > 0,

(dr-19)(€) = $(NE) =

o | o 0 de | o)t e = AT
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Therefore,
(AT, 6y = (T, \'dy10) = (T, dx§) = (T, drg) = (\"dy 1T, 6) .

The identity <T YIS <T , @) follows from that quﬁ = gzvﬁ, and the detail proof is left to the

readers. o

~

Remark 9.55. One can check easily that 7, £(&) = F(&)e ®h and dyf(&) = A F(AE) if
f e LYR).

Next we define the convolution of a tempered distribution and a Schwartz function.
Before proceeding, we note that if f, g, ¢ € .(R"), then the Fubini Theorem implies that

xg= [ (Fxa@ode= | (| rwo—ydy)o) s
— [ 10| ote =t dz) dy
~ |t (| o=t de) dn=r5x 0.

The change of variable formula further shows that

thus
(fxgop={fTxd)=Cf.gxdp={f.g% ) VfgpeS(R".

The identity above serves as the origin of the convolution of a tempered distribution and a

Schwartz function.

Definition 9.56 (Convolution). Let 7' € .(R")" and ¢g € .(R"). The convolution of T’
and g, denoted by T % g, is the tempered distribution given by

(Txg,¢)=(TGxdy=(T.g% ¢y Ve S (R,

where T is the tempered distribution given in Definition 9.46.
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Remark 9.57. We will explain why 7" % g € /(R")" (if T € Z(R") and g € ./ (R"))
later in Remark 9.60. For the time being we can temporarily treat the convolution given

above as a “computational” definition (without knowing that if 7' % ¢ is continuous); that
is, T'% g : /(R™) — C is defined by

(T'* g)(¢) =<T.g*¢) V¢es(R")
since (T, * ¢) is well-defined, and (T * g, ¢, is another expression of (7" * ¢)(¢).

Example 9.58. Let d,, be the Dirac delta function at point w € R™, and g € .(R™). Then
0w % g = 7,9 since if ¢ € S (R"),

(BT % 6) = (7 % $)(w) = f 3(y)b(w — y)dy = j 9(z - W)$(2) dz = (7.9, 6

n n

In symbol,
(0w * g)(z) = [ du(y)g(z —y)dy = g(z —w) = (1.9)(7) . (9.4.10)

Rn
Similar to Theorem 9.26 and Corollary 9.27, the product and the convolutions of func-

tions are related under Fourier transform.

Theorem 9.59. Let T € S (R") and g € S (R"). Then

(T*g,0)=(T,3¢) and (T*g,d)y=(T,3¢) Voe SR,

and
(T+G,6)=<T,g¢) and (Txj,¢y=(T,g6) Voes(R"),
where S ¥ b = \/217(”(5 % h) if Se .S (R and he 7 (RY).

Proof. Note that the “convolution” * also satisfies that
(Txg.6)=(T.Gxd)=(T g% ).
By Theorem 9.26 and Corollary 9.27,
(T 0,8) = (T3 %) = 1.5+ ) = (1.7 3]y = (1.50) = (1.50)
and by the definition of the convolution of tempered distributions and Schwartz functions,
(T.96) = (T,98) = (T, 7*(4d)) = (T.5+ ) = TG+ ) = (T +3.0).

The counterpart for the inverse Fourier transform can be proved similarly. =
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Remark 9.60. Let g,¢ € Z(R"), and T € .Z(R") satisfy [(T,u)| < Cypy(u) for all
ue . S(R") and k » 1. By Theorem 9.59, we find that

(T % g,0) =2 (Txg,6) =21 (T,50).
By the fact that

pr(gh) = sup <w>k‘Da(gh)(a:)|< sup Z C§<x>k|D“_ﬂg(aj)D5h($)‘

zeR™ |a|<k IERH"O‘KkOSﬁSa

< (swp Y CF)plope(h) = Mips(g)ma(h) Vg, he SR,

lal<k o< p<a

we conclude from (9.4.8) and (9.4.9) that for k » 1,

KT % g,0)| < V27" CiCl(n, k)pk+n+1<§$) < V21" CLC(n, k) Miprsns1 (9) Prosnsr (9)

S ZWnC’kaé(n’ kK)C(n, k +n+1)prionsa(9)Prionto (¢)
= 5(7% E)pr+2nt2(9)Prranta(@) -

Therefore, T' % g is a tempered distribution.

Remark 9.61. For T € . (R")" and g € .(R"), define ¢T : . (R") — C by

gT,¢) ={T,g6) Voe.s(R").

Then the fact that T'% g € .(R")’ (from Remark 9.60) and Theorem 9.59 show that

(Txg.¢)=(GT,¢y and (Txg,d)=Gl,¢) Voe S (R"),
and
(T*xg,¢)={gT,¢) and (Txg,¢)={gT,¢) Voe L (R"),
In other words, we have T/*\g = §f, m = f}f, ﬁ =T x g and 577/“ =T « g in .7 (R"™)".

Therefore, Theorem 9.59 can be viewed as the generalization of Theorem 9.26 and Corollary
9.27.

Remark 9.62. If S € .(R")’ satisfies that S * ¢ € .(R") for all ¢ € .(R"), we can also
define the convolution of 7" and S by

(T*8,¢)=(T,S%¢y VopeI(R").
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In other words, it is possible to define the convolution of two tempered distributions.

For example, from Example 9.58 we find that d, % ¢ = 7,¢ for all ¢ € L (R"); thus
0w ¥ ¢ € L(R") for all L(R") (and w € R™). Therefore, if T' is a tempered distribution,

T % 0, is also a tempered distribution and is given by
(T%8,,6)={(T, 70 VoeLR".
Further computation shows that
(T % 60,0) = (T, 700> = (T, 7o) = {(r,T,6) VdeSR").

The identity above shows that T % 4§, = 7,7 for all T' e .(R")’. This formula agrees with
(9.4.10).
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