Problem 1. Complete the following.

1. Verify the Wallis's formula: if n is a non-negative integer, then

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n+1} x \, dx = \frac{(2^n n!)^2}{(2n+1)!}$$

and

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \int_0^{\frac{\pi}{2}} \cos^{2n} x \, dx = \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2} \, .$$

- 2. Let $I_n = \int_0^{\frac{\pi}{2}} \sin^n x \, dx$. Show that $\lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = 1$.
- 3. Let $s_n = \frac{n!}{n^{n+0.5}e^{-n}}$. Show that $\{s_n\}_{n=1}^{\infty}$ is a decreasing sequence; that is, $s_n \ge s_{n+1}$ for all $n \in \mathbb{N}$.
- 4. Suppose that you know that \mathbb{R} satisfies **MSP**. Then explain why the limit $\lim_{n\to\infty} s_n$ exists. Find the limit of $\{s_n\}_{n=1}^{\infty}$.

Hint:

- 2. Show that $I_{2n+2} \leq I_{2n+1} \leq I_{2n}$ for all $n \in \mathbb{N}$ and then apply the Sandwich lemma.
- 3. Consider the function $f(x) = \left(1 + \frac{1}{x}\right)^{x+0.5}$.

Proof. 1. Integrating by parts, we find that

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = -\sin^{n-1} x \cos x \Big|_{x=0}^{x=\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \cos^2 x \, dx$$
$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x (1 - \sin^2 x) \, dx$$
$$= (n-1) \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx - (n-1) \int_0^{\frac{\pi}{2}} \sin^n x \, dx;$$

thus

$$\int_0^{\frac{\pi}{2}} \sin^n x \, dx = \frac{n-1}{n} \int_0^{\frac{\pi}{2}} \sin^{n-2} x \, dx \, .$$

Therefore,

$$\int_0^{\frac{\pi}{2}} \sin^{2n+1} x \, dx = \frac{2n}{2n+1} \int_0^{\frac{\pi}{2}} \sin^{2n-1} x \, dx = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \int_0^{\frac{\pi}{2}} \sin^{2n-3} x \, dx = \cdots$$

$$= \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1} \cdot \frac{2n-4}{2n-3} \cdot \cdot \cdot \frac{2}{3} \int_0^{\frac{\pi}{2}} \sin x \, dx = \frac{2}{3} \cdot \frac{4}{5} \cdot \cdot \cdot \cdot \frac{2n}{2n+1}$$

$$= \frac{2^2 4^2 \cdot \cdot \cdot (2n)^2}{(2n+1)!} = \frac{(2^n n!)^2}{(2n+1)!}$$

and

$$\int_0^{\frac{\pi}{2}} \sin^{2n} x \, dx = \frac{2n-1}{2n} \int_0^{\frac{\pi}{2}} \sin^{2n-2} x \, dx = \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \int_0^{\frac{\pi}{2}} \sin^{2n-4} x \, dx = \cdots$$

$$= \frac{2n-1}{2n} \cdot \frac{2n-3}{2n-2} \cdot \frac{2n-5}{2n-4} \cdot \cdot \cdot \frac{1}{2} \int_0^{\frac{\pi}{2}} \sin^0 x \, dx = \frac{1}{2} \cdot \frac{3}{4} \cdot \cdot \cdot \frac{2n-1}{2n} \cdot \frac{\pi}{2}$$

$$= \frac{(2n)!}{2^2 4^2 \cdot \cdot \cdot \cdot (2n)^2} \cdot \frac{\pi}{2} = \frac{(2n)!}{(2^n n!)^2} \cdot \frac{\pi}{2}.$$

2. On the interval $\left[0, \frac{\pi}{2}\right]$, $0 \le \sin x \le 1$; thus

$$\sin^{2n+2}x\leqslant \sin^{2n+1}x\leqslant \sin^{2n}x \qquad \forall\, x\in \left[0,\frac{\pi}{2}\right].$$

Therefore, $I_{2n+2} \leq I_{2n+1} \leq I_{2n}$ so that

$$\frac{I_{2n+2}}{I_{2n}} \leqslant \frac{I_{2n+1}}{I_{2n}} \leqslant 1 \qquad \forall n \in \mathbb{N}.$$

Since $\frac{I_{2n+2}}{I_{2n}} = \frac{2n+1}{2(n+1)}$, the Sandwich Lemma implies that

$$\lim_{n\to\infty}\frac{I_{2n+1}}{I_{2n}}=1.$$

3. Since $\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^{n+0.5} = e$ and $\frac{s_n}{s_{n+1}} = \frac{\frac{n!}{n^{n+0.5}e^{-n}}}{\frac{(n+1)!}{(n+1)^{n+1.5}e^{-n-1}}} = \frac{1}{e} \left(1 + \frac{1}{n} \right)^{n+0.5}$, it suffices to show

that the function $f(x) \equiv \left(1 + \frac{1}{x}\right)^{x+0.5}$ is decreasing on $[1, \infty)$. Nevertheless, this is the same as proving that the function $g(x) \equiv (1+x)^{\frac{1}{x}+\frac{1}{2}}$ is increasing on (0,1].

Differentiate g, we find that

$$g'(x) = g(x) \frac{\left[\ln(1+x) + \frac{2+x}{1+x}\right] 2x - 2(2+x)\ln(1+x)}{4x^2}$$
$$= \frac{2x + x^2 - 2(1+x)\ln(1+x)}{2x^2(1+x)}.$$

To see the sign of the denominator $h(x) = 2x + x^2 - 2(1+x)\ln(1+x)$ on (0,1], we differentiate h and find that

$$h'(x) = 2 + 2x - 2\ln(1+x) - 2 = 2[x - \ln(1+x)]$$

and one more differentiation shows that

$$h''(x) = 1 - \frac{1}{1+x} = \frac{x}{1+x} > 0 \quad \forall x \in (0,1].$$

Therefore, h' in increasing on (0,1] which implies that $h'(x) \ge h'(0) = 0$ for all $x \in (0,1]$. This further implies that $h(x) \ge h(0) = 0$ for all $x \in (0,1]$; thus $g'(x) \ge 0$ for all $x \in (0,1]$.

4. Since $\{s_n\}_{n=1}^{\infty}$ is a decreasing sequence and is bounded from below. By the monotone sequence property, $\lim_{n\to\infty} s_n = s$ exists. Note that

$$\frac{I_{2n+1}}{I_{2n}} = \frac{2}{\pi} \frac{(2^n n!)^4}{(2n)!(2n+1)!} = \frac{2^{4n+1}}{\pi} \frac{s_n^4}{s_{2n} s_{2n+1}} \frac{(n^{n+0.5}e^{-n})^4}{(2n)^{2n+0.5}e^{-2n}(2n+1)^{2n+1.5}e^{-(2n+1)}}$$

$$= \frac{e}{2\pi} \frac{s_n^4}{s_{2n} s_{2n+1}} \frac{(2n)^{2n+1.5}}{(2n+1)^{2n+1.5}} = \frac{e}{2\pi} \frac{s_n^4}{s_{2n} s_{2n+1}} \left(1 + \frac{1}{2n}\right)^{-2n-1.5}.$$

Therefore, 2 implies that

$$1 = \lim_{n \to \infty} \frac{I_{2n+1}}{I_{2n}} = \lim_{n \to \infty} \frac{e}{2\pi} \frac{s_n^4}{s_{2n} s_{2n+1}} \frac{(2n)^{2n+1.5}}{(2n+1)^{2n+1.5}} = \frac{e}{2\pi} s^2 \lim_{n \to \infty} \left(1 + \frac{1}{2n}\right)^{-2n-1.5} = \frac{s^2}{2\pi};$$
thus $s = \sqrt{2\pi}$ (since $s_n \ge 0$).

Problem 2. Let $(\mathbb{F}, +, \cdot, \leq)$ be an Archimedean ordered field, and $0 < \alpha < 1$. Show that $\lim_{n \to \infty} \alpha^n = 0$.

Proof. Since $0 < \alpha < 1$, we have $\frac{1}{\alpha} > 1$; thus by the fact that $\lim_{n \to \infty} \frac{1}{n} = 0$ (which is from Archimedean property), there exists p > 0 such that

$$1 + \frac{1}{p} < \frac{1}{\alpha} \,.$$

Therefore,

$$\frac{1}{\alpha^p} > \left(1 + \frac{1}{p}\right)^p \geqslant 1 + C_1^p \frac{1}{p} = 2$$

which implies that

$$0 < \alpha^p < \frac{1}{2}.$$

By the fact that $2^n \ge n$ for all $n \ge \mathbb{N}$ (which can be shown by induction), we find from the Sandwich Lemma that

$$\lim_{n\to\infty}\alpha^{pn}=0.$$

Let $\varepsilon > 0$ be given. The identity above shows the existence of $N_1 > 0$ such that $|\alpha^{pn}| < \varepsilon$ whenever $n \ge N_1$. Let $N = pN_1$. Then if $n \ge N$,

$$\left|\alpha^n\right| \leqslant \left|\alpha^{pN_1}\right| < \varepsilon.$$

Therefore, $\lim_{n\to\infty} \alpha^n = 0$.

Problem 3. Let $(\mathbb{F}, +, \cdot, \leq)$ an ordered field satisfying the monotone sequence property, and $y \in \mathbb{F}$ satisfying y > 1. Complete the following.

- 1. Define $y^{1/n}$ properly. (Hint: see how we define \sqrt{y} in the last example in class).
- 2. Show that $y^n 1 > n(y 1)$ for all $n \in \mathbb{N} \setminus \{1\}$; thus $y 1 > n(y^{1/n} 1)$.
- 3. Show that if t > 1 and n > (y 1)/(t 1), then $y^{1/n} < t$.
- 4. Show that $\lim_{n\to\infty} y^{1/n} = 1$ as $n\to\infty$.

- Proof. 1. For each $k \in \mathbb{N}$, let N_k be the largest integer satisfying that $\left(\frac{N_k}{2^k}\right)^n \leqslant y$ but $\left(\frac{N_k+1}{2^k}\right)^n > y$ (the existence of such an N_k requires the Archimedean property, why?) Define $x_k = \frac{N_k}{2^k}$. Then
 - (a) By binomial expansion, for each $k \in \mathbb{N}$ we have

$$x_k^n \leq y < 1 + C_1^n y + C_2^n y^2 + \dots + C_n^n y^n = (1+y)^n$$
;

thus Problem 2 in Exercise 1 implies that $x_k < 1 + y$. Therefore, $\{x_k\}_{k=1}^{\infty}$ is bounded from above.

(b) For each $k \in \mathbb{N}$, $\left(\frac{2N_k}{2^{k+1}}\right)^n = \left(\frac{N_k}{2^k}\right)^n \leqslant y$; thus $N_{k+1} \geqslant 2N_k$. Therefore, for each $k \in \mathbb{N}$,

$$x_k = \frac{N_k}{2^k} = \frac{2N_k}{2^{k+1}} \le \frac{N_{k+1}}{2^{k+1}} = x_{k+1}$$

which shows that $\{x_k\}_{k=1}^{\infty}$ is increasing.

Therefore, **MSP** implies that $\{x_k\}_{k=1}^{\infty}$ converges. Assume that $x_k \to x$ as $k \to \infty$ for some $x \in \mathbb{F}$. Then the fact that $x_k^n \leq y$ for all $k \in \mathbb{N}$ implies that $x^n \leq y$. On the other hand,

$$\left(x_k + \frac{1}{2^k}\right)^n \geqslant y \qquad \forall k \in \mathbb{N};$$

thus AP (a consequence of MSP) implies that

$$x^{n} = \left(\lim_{k \to \infty} x_{k} + \lim_{k \to \infty} \frac{1}{2^{k}}\right)^{n} = \lim_{k \to \infty} \left(x_{k} + \frac{1}{2^{k}}\right)^{n} \geqslant y.$$

Therefore, $x^n = y$. Problem 2 then shows that there is only one x > 0 satisfying $x^n = y$. This x will be denoted by $y^{\frac{1}{n}}$.

2. For y > 1, let z = y - 1. Then z > 0 so that for n > 1, the binomial expansion shows that

$$y^{n} - 1 = (1+z)^{n} - 1 = 1 + C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n} - 1 = C_{1}^{n}z + C_{2}^{n}z^{2} + \dots + C_{n}^{n}z^{n}$$
$$> nz = n(y-1).$$

Therefore, replacing y by $y^{\frac{1}{n}}$ in the inequality above, we conclude that

$$y-1 > n(y^{\frac{1}{n}}-1) \qquad \forall n \in \mathbb{N} \setminus \{1\}.$$

3. Suppose that $y^{\frac{1}{n}} \ge t > 1$. Then 2 implies that for $n \in \mathbb{N} \setminus \{1\}$,

$$y-1 > n(y^{\frac{1}{n}}-1) \ge n(t-1)$$
.

Therefore, $n \leq \frac{y-1}{t-1}$, a contradiction.

4. Let $k \in \mathbb{N}$ and $t = 1 + \frac{1}{k}$ in 3. Then for n > k(y - 1),

$$1 \leqslant y^{\frac{1}{n}} < 1 + \frac{1}{k}$$
.

Since $n \to \infty$ as $k \to \infty$, by the Sandwich Lemma we conclude that $\lim_{n \to \infty} y^{\frac{1}{n}} = 1$.

Problem 4. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $S \subseteq \mathbb{F}$ be non-empty.

1. Show that if S is bounded from below, then

$$\inf S = \sup \{ x \in \mathbb{F} \mid x \text{ is a lower bound for } S \}$$

2. Show that if S is bounded from above, then

$$\sup S = \inf \left\{ x \in \mathbb{F} \mid x \text{ is an upper bound for } S \right\}.$$

Proof. Define $A = \{x \in \mathbb{F} \mid x \text{ is a lower bound for } S\}$. Since S is non-empty, every element in S is an upper bound for A; thus A is bounded from above. By the least upper bound property, $b = \sup A \in \mathbb{F}$ exists. Note that by the definition of A,

if
$$x \in A$$
, then $x \leqslant s$ for all $s \in S$. (\star)

Let $\varepsilon > 0$ be given. Then $b - \varepsilon$ is not an upper bound for A; thus there exists $x \in A$ such that $b - \varepsilon < x$. Then (\star) implies that $b - \varepsilon < s$ for all $s \in S$. Since $\varepsilon > 0$ is given arbitrarily, $b \leqslant s$ for all $s \in S$; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m > b such that $m \le s$ for all $s \in S$. Therefore, $m \in A$; thus $m \le b$, a contradiction.

Problem 5. Let A, B be two sets, and $f: A \times B \to \mathbb{F}$ be a function, where $(\mathbb{F}, +, \cdot, \leq)$ is an ordered field satisfying the least upper bound property. Show that

$$\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} \left(\sup_{x\in A} f(x,y)\right) = \sup_{x\in A} \left(\sup_{y\in B} f(x,y)\right).$$

Proof. Note that

$$f(x,y) \leqslant \sup_{(x,y)\in A\times B} f(x,y) \qquad \forall (x,y)\in A\times B;$$

thus

$$\sup_{x \in A} f(x, y) \leqslant \sup_{(x, y) \in A \times B} f(x, y) \qquad \forall y \in B.$$

The inequality above further shows that

$$\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) \leqslant \sup_{(x, y) \in A \times B} f(x, y). \tag{*}$$

Now we show the reverse inequality.

1. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = M < \infty$. Then for each $k\in\mathbb{N}$, there exists $(x_k,y_k)\in A\times B$ such that

$$f(x_k, y_k) > M - \frac{1}{k}.$$

Therefore,

$$M - \frac{1}{k} < f(x_k, y_k) \le \sup_{x \in A} f(x, y_k)$$

which further implies that

$$M - \frac{1}{k} < f(x_k, y_k) \le \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right).$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) \geqslant M$.

2. Suppose that $\sup_{(x,y)\in A\times B} f(x,y) = \infty$. Then for each $k\in\mathbb{N}$, there exists $(x_k,y_k)\in A\times B$ such that

$$f(x_k, y_k) > k.$$

Therefore,

$$k < f(x_k, y_k) \le \sup_{x \in A} f(x, y_k)$$

which further implies that

$$k < f(x_k, y_k) \le \sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right).$$

Since the inequality above holds for all $k \in \mathbb{N}$, we find that $\sup_{y \in B} \left(\sup_{x \in A} f(x, y) \right) = \infty$.

With the help of (\star) , we conclude that $\sup_{(x,y)\in A\times B} f(x,y) = \sup_{y\in B} (\sup_{x\in A} f(x,y)).$

Problem 6. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{F}^n$. Define

$$\|\boldsymbol{x}\|_1 = \sum_{k=1}^n |x_k|$$
 and $\|\boldsymbol{x}\|_{\infty} = \max\{|x_1|, |x_2|, \cdots, |x_n|\}.$

Show that

1.
$$\|\boldsymbol{x}\|_1 = \sup \left\{ \sum_{k=1}^n x_k y_k \mid \|\boldsymbol{y}\|_{\infty} = 1 \right\}.$$
 2. $\|\boldsymbol{y}\|_{\infty} = \sup \left\{ \sum_{k=1}^n x_k y_k \mid \|\boldsymbol{x}\|_1 = 1 \right\}.$

Proof. Let $\mathbf{x}, \mathbf{y} \in \mathbb{F}^n$ be given. Then

$$\sum_{k=1}^{n} x_k y_k \leqslant \sum_{k=1}^{n} |x_k| |y_k| \leqslant \sum_{k=1}^{n} |x_k| \|\boldsymbol{y}\|_{\infty} = \|\boldsymbol{y}\|_{\infty} \sum_{k=1}^{n} |x_k| = \|\boldsymbol{y}\|_{\infty} \|\boldsymbol{x}\|_{1}.$$

Therefore,

$$\sup\left\{\sum_{k=1}^n x_k y_k \left| \|\boldsymbol{y}\|_{\infty} = 1\right\} \leqslant \|\boldsymbol{x}\|_1 \quad \text{and} \quad \sup\left\{\sum_{k=1}^n x_k y_k \left| \|\boldsymbol{x}\|_1 = 1\right\} \leqslant \|\boldsymbol{y}\|_{\infty}\right\}.$$

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of the inequalities belongs to the sets (this is because if $b \in A$ is an upper bound for A, then b is the least upper bound for A).

1. $\sup \left\{ \sum_{k=1}^n x_k y_k \, \middle| \, \| \boldsymbol{y} \|_{\infty} = 1 \right\} = \| \boldsymbol{x} \|_1$: W.L.O.G. we can assume that $\boldsymbol{x} \neq \boldsymbol{0}$. For a given $\boldsymbol{x} \in \mathbb{F}^n$, define $y_k \in \mathbb{F}$ by

$$y_k = \begin{cases} \frac{\overline{x_k}}{|x_k|} & \text{if } x_k \neq 0, \\ 0 & \text{if } x_k = 0, \end{cases}$$

where $\overline{x_k}$ denotes the complex conjugate of x_k . Then $\boldsymbol{y}=(y_1,y_2,\cdots,y_n)$ satisfies $\|\boldsymbol{y}\|_{\infty}=1$ (since at least one component of \boldsymbol{x} is non-zero), and

$$\sum_{k=1}^{n} x_k y_k = \sum_{k=1}^{n} |x_k| = \|\boldsymbol{x}\|_1.$$

2. $\sup \left\{ \sum_{k=1}^{n} x_k y_k \, \middle| \, \| \boldsymbol{x} \|_1 = 1 \right\} = \| \boldsymbol{y} \|_{\infty}$: W.L.O.G. we can assume that $\boldsymbol{y} \neq \boldsymbol{0}$. Suppose that $\| \boldsymbol{y} \|_{\infty} = |y_m| \neq 0$ for some $1 \leqslant m \leqslant n$; that is, the maximum of the absolute value of components occurs at the m-th component. Define $x_j \in \mathbb{F}$ by

$$x_j = \begin{cases} \frac{\overline{y_m}}{|y_m|} & \text{if } j = m, \\ 0 & \text{if } j \neq m, \end{cases}$$

where $\overline{y_m}$ is the complex conjugate of y_m . Then $\boldsymbol{x} = (x_1, x_2, \dots, x_n)$ satisfies $\|\boldsymbol{x}\|_1 = 1$ (since only one component of \boldsymbol{x} is non-zero), and

$$\sum_{k=1}^n x_k y_k = \frac{\overline{y_m}}{|y_m|} y_m = |y_m| = \|\boldsymbol{y}\|_{\infty}.$$

Problem 7. Let $(\mathbb{F}, +, \cdot, \leq)$ be an ordered field satisfying the least upper bound property, and A, B be non-empty subsets of \mathbb{F} . Define $A + B = \{x + y \mid x \in A, y \in B\}$. Justify if the following statements are true or false by providing a proof for the true statement and giving a counter-example for the false ones.

- 1. $\sup(A+B) = \sup A + \sup B$.
- 2. $\inf(A+B) = \inf A + \inf B$.
- 3. $\sup(A \cap B) \leq \min\{\sup A, \sup B\}.$
 - 4. $\sup(A \cap B) = \min\{\sup A, \sup B\}.$
- 5. $\sup(A \cup B) \ge \max\{\sup A, \sup B\}$.
- 6. $\sup(A \cup B) = \max\{\sup A, \sup B\}.$

Proof. 1. Let $a = \sup A$, $b = \sup B$, and $\varepsilon > 0$ be given. W.L.O.G. we can assume that $a, b \in \mathbb{F}$ for otherwise $a = \infty$ or $b = \infty$ so that A + B is not bounded from above.

- (a) Let $z \in A + B$. Then z = x + y for some $x \in A$ and $y \in B$. By the fact that $x \le a$ and $y \le b$, we find that $z \le a + b$. Therefore, a + b is an upper bound for A + B.
- (b) There exists $x \in A$ and $y \in B$ such that $x > a \frac{\varepsilon}{2}$ and $y > b \frac{\varepsilon}{2}$; thus there exists $z = x + y \in A + B$ such that

$$z = x + y > a + b - \varepsilon$$
.

Therefore, $a + b = \sup(A + B)$.

2. By Problem 1,

$$\inf(A+B) = -\sup(-(A+B)) = -\sup(-A+(-B)) = -\sup(-A) - \sup(-B)$$

= \inf(A) + \inf(B).

3. The desired inequality hold if $A \cap B = \emptyset$ (since then $\sup A \cap B = -\infty$), so we assume that $A \cap B \neq \emptyset$. Then $A \cap B \subseteq A$ and $A \cap B \subseteq B$. Therefore,

$$\sup(A \cap B) \leqslant \sup A$$
 and $\sup(A \cap B) \leqslant \sup B$.

The inequalities above then implies that $\sup(A \cap B) \leq \min\{\sup A, \sup B\}$.

- 4. If A and B are non-empty bounded sets but $A \cap B = \emptyset$, then $\sup(A \cap B) = -\infty$ but $\sup A$, $\sup B \in \mathbb{F}$. In such a case $\sup(A \cap B) \neq \min\{\sup A, \sup B\}$.
- 5. Similar to 3, we have $A \subseteq A \cup B$ and $B \subseteq A \cup B$; thus

$$\sup A \leqslant \sup(A \cup B)$$
 and $\sup B \leqslant \sup(A \cup B)$.

Therefore, $\max\{\sup A, \sup B\} \leq \sup(A \cup B)$.

6. If one of A and B is not bounded from above, then $\sup(A \cup B) = \max\{\sup A, \sup B\} = \infty$. Suppose that A and B are bounded from above. Then $A \cup B$ are bounded from above by $\max\{\sup A, \sup B\}$ since if $x \in A \cup B$, then $x \in A$ or $x \in B$ which implies that $x \leq \sup A$ or $x \leq \sup B$; thus $x \leq \max\{\sup A, \sup B\}$ for all $x \in A \cup B$. This shows that

$$\sup(A \cup B) \leq \max\{\sup A, \sup B\}$$
.

Together with 5, we conclude that $\sup(A \cup B) = \max\{\sup A, \sup B\}$.