Exercise Problem Sets 2
Sept. 23. 2022

Problem 1. Complete the following.

1. Verify the Wallis’s formula: if n is a non-negative integer, then

(2"n!)?

3 3
f sin?"t ¢ dx = f cos®™lypdy = ———2
0 0 (2n +1)!

and

: B 2n)!
JQ Sin%:zcdx:f2 cos? x dr = (2n) T
0 0 (2nn!)2 2

jus

2. Let I, = jQ sin” x dzr. Show that lim LETE) = 1.

0 n—000  I2n

n!
nn+056—n'

3. Let s, =
n € N.

Show that {s,}*_; is a decreasing sequence; that is, s, > s, for all

4. Suppose that you know that R satisfies MSP. Then explain why the limit lim s, exists. Find
n—o0
the limit of {s,}7,.

Hint:
2. Show that Is,,o < I5,11 < I, for all n € N and then apply the Sandwich lemma.
3. Consider the function f(z) = (1+ l)HO'E).
T

Proof. 1. Integrating by parts, we find that

: 1 ¥=2 : 2 2
sin" z dr = —sin"" " xcosw +(n—1)| sin" “xcos®zdr
0 z=0 0

=(n—-1) JQ sin"? z(1 — sin*2) dz
0

=(n-— 1)J2 sin" ?xdr — (n — 1)f2 sin” z dz ;

0 0

thus . -
2 -1 (=
f sin” x dx = n J sin" 2 x dx .
0 n 0
Therefore,
3 2 3 2 om—2 (2
J sin? ™ x de = n J sin? ' xde = n_zn f sin® B rdr=---
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on  2m—2 2n—4 2Jg , 2 4 on
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2n+1 2n—-1 2n—-3 3 ) 35 2n+1
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and
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2 _1 s us
J sin® ¢ dx = — JQ sin®" 2w dr = JQ sin®"tader =
0 2n  J 2n 2n—2 J,
on—1 2n—3 2n—5 1 (2 1 3 2n—1 «
— . . Sin I'dm___—_
2n 2n—2 2n—-4 2 2

2. On the interval [0, g], 0 < sinz < 1; thus

-n2n+2 2n+1

. . s
si r < sin r < sin*z Vre [O, 5} .

Therefore, I5,10 < I5,11 < I, so that

12n+2 < ]2n+1

< <1 v N.
]271 [271 ne

I2n+2 _ 2n+1
I, 2(n—|— 1)

Since , the Sandwich Lemma implies that

Iz,
lim =2 — 1,
n—0oo 2n
n!
1\ n+0.5 5, 0 1 1\n+05
3. Since lim (1 + 7> = ¢ and = n"t05¢ == (1 + —) , it suffices to show
n—00 n Sni1 (n+1)! e n

(n + 1)n+1.56—n—1

that the function f(z) = (1 + %)HM

is decreasing on [1,00). Nevertheless, this is the same as
proving that the function g(z) = (1 + )2 is increasing on (0, 1].
Differentiate g, we find that

24
1+x}2x—2(2+x)1n(1+x)

#(2) = (o) -
2z 42?-2(1+2)In(1 +x)
B 222(1 + )

[In(1+ )+

To see the sign of the denominator h(z) = 2z + 2% —2(1+z) In(1+x) on (0, 1], we differentiate
h and find that
h'(z) =242z —2In(142) —2=2[z —In(l + z)]

and one more differentiation shows that

1 T

h'(z)=1-— =
1+ 14«2

>0 Ve (0,1].

Therefore, h’ in increasing on (0, 1] which implies that A’(z) = h’(0) = 0 for all « € (0,1]. This
further implies that h(z) = h(0) = 0 for all z € (0, 1]; thus ¢g’(z) = 0 for all z € (0,1].



4. Since {s,}x_, is a decreasing sequence and is bounded from below. By the monotone sequence

property, lim s, = s exists. Note that
n—o0

]2n+1 B 2 <2nn|)4 B 24n+1 S;ll (nn+0.56—n)4
Ly, 7@0)!2n+ 1! 7 Sonsongr (2n)2005e=2n(2n 4 1)2n+15e—(2n+1)
e st (2n)2nF15 e st 1 \—2n-L5
== = (14 ) .
27 SonSont1 (2n 4+ 1)20FTL5 27 59,80, 41 2n
Therefore, 2 implies that
I " 4 9 2n+1.5 1\ —2n-15 2
| = fim gy €S (2) :£52nm(1+—) =
n—0  fo, n—w 27 SonSan+1 (2n + 1>2n+1.5 2T n—ow 2n 2m
thus s = 4/27 (since s,, = 0). o

Problem 2. Let (I, +, -, <) be an Archimedean ordered field, and 0 < o < 1. Show that lim o™ = 0.

n—o0

Proof. Since 0 < o < 1, we have 1 > 1; thus by the fact that lim 1_ 0 (which is from Archimedean
(@ n—o0 1

property), there exists p > 0 such that

1 1
14+ -<—.
P«
Therefore,
1 1\» 1
— > <1+—> >14+C7-=2
aP p
which implies that
1
0<al <-—.
“ =3

By the fact that 2" > n for all n = N (which can be shown by induction), we find from the Sandwich
Lemma that

lim o™ =0.
n—0o0

Let € > 0 be given. The identity above shows the existence of Ny > 0 such that ‘ap”‘ < ¢ whenever
n > Ni. Let N =pN;. Then if n > N,

‘oz”| < ‘oszl‘ <e.
Therefore, lim o” = 0. O
n—aoo

Problem 3. Let (F,+,-, <) an ordered field satisfying the monotone sequence property, and y € F
satisfying y > 1. Complete the following.

1. Define y*/™ properly. (Hint: see how we define \/y in the last example in class).
2. Show that y™ — 1 > n(y — 1) for all n € N\{1}; thus y — 1 > n(y*/™ — 1).
3. Show that if £ > 1 and n > (y — 1)/(t — 1), then y/™ < t.

4. Show that lim y'/" =1 as n — .
n—aoo



Nk—i-l)n

Proof. 1. For each k € N, let Nj be the largest integer satisfying that (%)n < y but ( o

>y
N,
(the existence of such an N}, requires the Archimedean property, why?) Define ) = 2—: Then
(a) By binomial expansion, for each k € N we have
ap<y<14+Cly+Chy’+- +Chy" = (1+y)";

thus Problem 2 in Exercise 1 implies that x; < 1+y. Therefore, {x}}}2, is bounded from

above.

(b) For each k € N, (%)n = (

Ng,

27)” < y; thus Niiq1 = 2N,. Therefore, for each k € N,

Ne _ 2Ng _ N

Tk = ok T oErL S okl Lh+1

which shows that {z;}{, is increasing.

Therefore, MSP implies that {z;}{, converges. Assume that z; — x as k — oo for some
x € F. Then the fact that 2} <y for all £k € N implies that 2" < y. On the other hand,

1 n
@Hﬁ) >y VkeN:

thus AP (a consequence of MSP) implies that

n_ (] im )" = L\"
o = ((Jim a4 lim o) = i () 2

Therefore, ™ = y. Problem 2 then shows that there is only one x > 0 satisfying x™ = y. This

x will be denoted by y%.
2. Fory > 1,let z=y — 1. Then z > 0 so that for n > 1, the binomial expansion shows that

Y -1=(1+2)"-1=1+Cr2+Cyz*+  +C2"—1=Clz+Cy2* + -+ Cn2"

>nz=n(y—1).
Therefore, replacing y by y% in the inequality above, we conclude that
y—1>n(y71»—1) VneN\{1}.
3. Suppose that y% >t > 1. Then 2 implies that for n € N\{1},

y—1>n(y%—1)>n(t—1).

Y

-1 .
Therefore, n < T ? contradiction.

4, LetkeNandtzl—i—%in?). Then for n > k(y — 1),

1 1
1<y5<1+E.

Since n — o as k — o0, by the Sandwich Lemma we conclude that lim y% =1 =
n—0oo



Problem 4. Let (I, +, -, <) be an ordered field satisfying the least upper bound property, and S < F

be non-empty.
1. Show that if S is bounded from below, then

inf.S = sup {x eF ’ x is a lower bound for S}

2. Show that if S is bounded from above, then

sup S = inf{a: el ‘ x is an upper bound for S} .

Proof. Define A = {x el } x is a lower bound for S } Since S is non-empty, every element in S is an
upper bound for A; thus A is bounded from above. By the least upper bound property, b = sup A € F
exists. Note that by the definition of A,

if re A, then x < s for all s€ S. (*)

Let € > 0 be given. Then b — ¢ is not an upper bound for A; thus there exists z € A such that
b—¢e < x. Then () implies that b —e < s for all s € S. Since € > 0 is given arbitrarily, b < s for all
s € .S; thus b is a lower bound for S.

Suppose that b is not the greatest lower bound for S. There exists m > b such that m < s for all

s € S. Therefore, m € A; thus m < b, a contradiction. =

Problem 5. Let A, B be two sets, and f : A x B — F be a function, where (F, +, -, <) is an ordered
field satisfying the least upper bound property. Show that

sup  f(x,y) = sup (sup f(z,y)) = sup (sup f(z,y)) .
(z,y)eAxB yeB xzeA €A  yeB

Proof. Note that

flr,y) < sup  f(z,y) V(x,y)e Ax B;
(z,y)eAxB

thus

sup f(z,y) < sup f(z,y) VyeB.
€A (z,y)eAxB

The inequality above further shows that

sup (Sup f(ft,y)> < sup f(z,y). (*)
yeB * zeA (z,y)eAxB

Now we show the reverse inequality.

1. Suppose that sup f(z,y) = M < . Then for each k € N, there exists (x,yx) € A x B
(z,y)eAxB

such that



Therefore,

1
M- < fzr ) < SuApf(J? Yr)

which further implies that

M — % < f(xk, yx) < sup (supf(x ?J))

yeB x€A

Since the inequality above holds for all k € N, we find that sup (sup f(z,y)) = M.
yeB  x€A

2. Suppose that sup f(z,y) = . Then for each k € N, there exists (zy,yx) € A x B such
(z,y)eAxB

that
fxr, ye) > k.

Therefore,

k< florye) < Slelgf(x Yr.)

which further implies that

k< f(zr,yr) <sup (SUP f(z, Z/))
yeB zxeA

Since the inequality above holds for all k£ € N, we find that sup (sup f(z, y)) =

yeB  xeA
With the help of (x), we conclude that sup f(z,y) = sup (sup f(z, y)) o
(z,y)eAxB yeB  z€A

Problem 6. Let (F,+,-, <) be an ordered field satisfying the least upper bound property, and

x = (r1,%9, - ,x,) € F". Define
|2l = > el and |@]e = max {[a1], ], |zal}
Show that
Ut = s { wn Iole =1} 2 Lo = sup { 3 Jelh =1}
k=1 k=1

Proof. Let x,y € F" be given. Then

n n n

D T Z lxllyel < 35 lzellylos = Il D Lol = Iyl -
k=1

k=1 k=1 k=1

Therefore,

sup{ Y awpe | lyle = 1} <ol and  sup{ Y anye| Jwl = 1} <yl
k=1 k=1

Next we show that the two inequalities are in fact equalities by showing that the right-hand side of
the inequalities belongs to the sets (this is because if b € A is an upper bound for A, then b is the
least upper bound for A).



1. sup{ > TRy ‘ |yl = 1} = ||z[;: W.L.O.G. we can assume that x # 0. For a given x € F",
k=1
define y;, € F by

Y = e
0 ifap=0,
where Tj denotes the complex conjugate of zx. Then y = (y1,y2,- -+ ,y,) satisfies ||y|o = 1

(since at least one component of & is non-zero), and
n n
Z LYk = Z k] = [
k=1 k=1

2. sup{ > xkyk‘HmHl = 1} = |ylo: W.L.O.G. we can assume that y # 0. Suppose that
k=1

|Ylo = |ym| # 0 for some 1 < m < n; that is, the maximum of the absolute value of

components occurs at the m-th component. Define z; € F by

Im it j=m
CL’j = |ym|
0 ifj#m,
where 7, is the complex conjugate of y,,. Then x = (21,9, ,x,) satisfies |z, = 1 (since

only one component of & is non-zero), and

m . o

Problem 7. Let (F,+, -, <) be an ordered field satisfying the least upper bound property, and A, B
be non-empty subsets of F. Define A+ B = {x+y|x € A,y € B}. Justify if the following statements

are true or false by providing a proof for the true statement and giving a counter-example for the

false ones.
1. sup(A+ B) =sup A + sup B. 2. inf(A+ B) = inf A + inf B.
3. sup(A n B) < min{sup A, sup B}. 4. sup(A n B) = min{sup A, sup B}.

5. sup(A u B) > max{sup A, sup B}. 6. sup(A U B) = max{sup A, sup B}.

Proof. 1. Let a =sup A, b =sup B, and € > 0 be given. W.L.O.G. we can assume that a,b € F for

otherwise @ = o0 or b = o so that A 4+ B is not bounded from above.

(a) Let z€ A+ B. Then z = x + y for some x € A and y € B. By the fact that z < a and
< b, we find that z < a + b. Therefore, a + b is an upper bound for A + B.
(b) There exists x € A and y € B such that z > a — % and y > b — 5; thus there exists
z=x+1y e A+ B such that

z=x+y>a+b—=c.



Therefore, a + b = sup(A + B).

. By Problem 1,

inf(A + B) = —sup(—(A+ B)) = —sup(—A + (—B)) = —sup(—A) — sup(—B)
— inf(A) + inf(B).

. The desired inequality hold if A n B = ¢J (since then sup A n B = —0), so we assume that
AnB# . Then An B< Aand An B < B. Therefore,

sup(An B) <supA  and sup(An B) <sup B.
The inequalities above then implies that sup(A n B) < min{sup A, sup B}.

. If A and B are non-empty bounded sets but A n B = ¢, then sup(A n B) = —o but
sup A,sup B € F. In such a case sup(A n B) # min{sup A, sup B}.

. Similar to 3, we have A Au B and B € A U B; thus
sup A < sup(A u B) and sup B < sup(A u B).
Therefore, max{sup A4, sup B} < sup(A u B).

. If one of A and B is not bounded from above, then sup(A u B) = max{sup A, sup B} = .
Suppose that A and B are bounded from above. Then A u B are bounded from above by
max{sup A, sup B} since if z € A u B, then x € A or x € B which implies that z < sup A or
x < sup B; thus z < max{sup A, sup B} for all z € A U B. This shows that

sup(A u B) < max{sup A,sup B} .

Together with 5, we conclude that sup(A u B) = max{sup A, sup B}. D



