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Sept. 30. 2022

Problem 1. Let (F,+, ¨,ď) be an ordered field (satisfying the least upper bound property), and A

be a non-empty subset of F. Show that if a P A is an upper bound for A, then a is the least upper
bound for A.

Proof. Let ε ą 0 be given. There exists x P A, namely x = a, such that x ą a ´ ε. In other words,
a ´ ε cannot be an upper bound for A for all ε ą 0; thus the fact that a is an upper bound for A

implies that a is the least upper bound for A. ˝

Problem 2. Let (F,+, ¨,ď) be an ordered field satisfying the least upper bound property, and A be
a non-empty set of F which is bounded below. Define the set ´A by ´A ”

␣

´ x P F
ˇ

ˇx P A
(

. Prove
that

infA = ´ sup(´A) .

Note that this problem shows that if F satisfies the least upper bound property, then F satisfies the
greatest lower bound property.

Proof. Let C be a subset of F. Then

b is a lower bound for a set C ô b ď c for all c P C ô ´b ě ´c for all c P C

ô ´b ě ´c for all ´ c P ´C ô ´b ě c for all c P ´C ô ´b is an upper bound for ´C.

Therefore, we conclude that

b is a lower bound for a set C if and only if ´b is an upper bound for ´C. (‹)

Now, since A is bounded from below implies that ´A is bounded from above. The least upper
bound property then implies that b = sup(´A) P F exists. From (‹), we find that ´b is a lower
bound for A. Suppose that ´b is not the greatest lower bound for A. Then there exists m ą ´b such
that m ď x for all x P A. This implies that m is a lower bound for A; thus (‹) shows that ´m is an
upper bound for ´A. By the fact that ´m ă b, we conclude that b is not the least upper bound for
´A, a contradiction to that b is the least upper bound for ´A. ˝

Problem 3. Let (F,+, ¨,ď) be an Archimedean ordered field. A number x P F is called an accu-
mulation point of a set A Ď F if for all δ ą 0, (x´ δ, x+ δ) contains at least one point of A distinct
from x. In logic notation,

x is an accumulation point of A ô (@ δ ą 0)
(
A X (x ´ δ, x+ δ)ztxu ‰ H

)
.

1. Show that if txnu8
n=1 is a sequence in F so that xi ‰ xj for all i, j P N and A =

␣

xk

ˇ

ˇ k P N
(

,
then x is an accumulation of A if and only if x is a cluster point of txnu8

n=1.



2. How about if the condition xi ‰ xj for all i, j P N is removed? Is the statement in 1 still valid?

Proof. 1. We show that

x is an accumulation point of A if and only if (@ δ ą 0)
(
#(A X (x ´ δ, x+ δ)

)
= 8

)
.

The direction “ð” is trivial since if #(AX (x´ δ, x+ δ)
)
= 8, AX (x´ δ, x+ δ) contains some point

distinct from x.

(ñ) Let δ1 = 1, by the definition of the accumulation points, there exists x1 P AX(x´δ1, x+δ1) and
x1 ‰ x. Define δ2 = min

␣

|x1 ´ x|,
1

2

(

. Then δ2 ą 0; thus there exists x2 P A X (x ´ δ2, x+ δ2)

and x2 ‰ x. We continue this process and obtain a sequence txnu8
n=1 Ď Aztxu satisfying that

x1 P A X (x ´ 1, x+ 1), xn P A X (x ´ δn, x+ δn) with δn = min
␣

|x ´ xn´1|,
1

n

(

.

By Archimedean property, txnu8
n=1 converges to x since |x´ xn| ă δn ď

1

n
. Let δ ą 0 be given.

There exists N ą 0 such that 1

N
ă δ; thus

A X (x ´ δ, x+ δ) Ě A X
(
x ´

1

N
, x+

1

N

)
Ě txN , xN+1, xN+2, ¨ ¨ ¨ u .

Since xi ‰ xj for all i, j P N, we must have #
(
A X (x ´ δ, x+ δ)

)
= 8. ˝

Problem 4. Let (F,+, ¨,ď) be an ordered field, and txnu8
n=1 be a sequence in F. Show that the

following three statements are equivalent.

1. txnu8
n=1 converges.

2. Every proper subsequence of txnu8
n=1 converges.

3. Every subsequence of txnu8
n=1 converges.

Proof. “1 ñ 2” Suppose that txnu8
n=1 converges. Then txnu8

n=1 converges to some x P F; thus
Proposition 1.60 of the lecture note shows that every proper subsequence of txnu8

n=1 converges
to x. Therefore, every proper subsequence of txnu8

n=1 converges.

“2 ñ 3” Suppose that every proper subsequence of txnu8
n=1 converges. Then txn+1u8

n=1 converges
to some x P F; thus txnu8

n=1 converges to x. This implies that every subsequence of txnu8
n=1

converges (since txnu8
n=1 is the only non-proper subsequence of txnu8

n=1).

“3 ñ 1” Suppose that every subsequence of txnu8
n=1 converges. In particular, the fact that txnu8

n=1

is a subsequence of txnu8
n=1 implies that txnu8

n=1 converges. ˝

Problem 5. Let (F,+, ¨,ď) be an Archimedean ordered field, and txnu8
n=1 Ď F be a sequence

satisfying |xn ´ xn+1| ă
1

n
for all n P N. Prove or disprove that there exists a subsequence txnk

u8
k=1

of txnu8
n=1 so that txnk

u8
k=1 is a Cauchy sequence.



Solution. Let F = R, and define sequence txnu8
n=1 as follows: x1 = 0 and for each n P N,

xn+1 =
1

2

n
ÿ

k=1

1

k
.

Then |x1 ´ x2| =
1

2
ă

1

1
and |xn ´ xn+1| =

1

2
¨
1

n
ă

1

n
for all n ě 2. Therefore, the sequence txnu8

n=1

satisfies the required properties. However, such an txnu8
n=1 is an increasing sequence which is not

bounded from above so that any subsequence of txnu8
n=1 is also increasing and is not bounded from

above. Therefore, any subsequence of txnu8
n=1 diverges; thus any subsequence of txnu8

n=1 cannot be
Cauchy sequence (since Cauchy sequence in R must converge). ˝

Problem 6. Let (F,+, ¨,ď) be an Archimedean ordered field, and f : F Ñ F be a function so that

|f(x) ´ f(y)| ď α|x ´ y| @x, y P F ,

where α P F is a constant satisfying 0 ă α ă 1. Pick an arbitrary x1 P F, and define xk+1 = f(xk)

for all k P N. Show that txnu8
n=1 is a Cauchy sequence in F.

Proof. Since 0 ă α ă 1, Problem 2 in Exercise 2 shows that lim
nÑ8

αn = 0. By the fact that |f(x) ´

f(y)| ď α|x ´ y| and xk+1 = f(xk) for all k P N, we have

|xn+1 ´ xn| = |f(xn) ´ f(xn´1)| ď α|xn ´ xn´1| @n ě 2 ;

thus
|xn+1 ´ xn| ď α|xn ´ xn´1|

(if n ě 3)
ď α2|xn´1 ´ xn´2| ď ¨ ¨ ¨ ď αn´1|x2 ´ x1| .

Therefore, if n ą m,

|xn ´ xm| = |xn ´ xn´1 + xn´1 ´ xn´2 + xn´2 ´ ¨ ¨ ¨ ´ xm+1 + xm+1 ´ xm|

ď |xn ´ xn´1| + |xn´1 ´ xn´2| + ¨ ¨ ¨ + |xm+1 ´ xm|

ď αn´2|x2 ´ x1| + αn´3|x2 ´ x1| + ¨ ¨ ¨ + αm´1|x2 ´ x1|

=
(
αn´2 + αn´3 + αm´1

)
|x2 ´ x1| ď

αm´1

1 ´ α
|x2 ´ x1| .

Let ε ą 0 be given. Since lim
nÑ8

αn = 0, there exists N ą 0 such that
αn´1

1 ´ α
|x2 ´ x1| ă ε whenever n ě N .

Then if n ą m ě N , by the fact that |xn ´ xm| ď
αm´1

1 ´ α
|x2 ´ x1| we obtain that |xn ´ xm| ă ε. ˝

Problem 7. Let (F,+, ¨,ď) be an ordered field with Archimedean Property, I Ď F be a non-empty
interval, and f : I Ñ F be a function.

1. f is said to have a limit at c P I or we say that the limit of f at c exists if

lim
nÑ8

f(xn) exists for all convergent sequences txnu8
n=1 Ď Iztcu with limit c.

Show that the limit of f at c exists if and only if there exists L P F satisfying that for every
ε ą 0 there exists δ ą 0 such that

ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I .



2. f is said to be continuous at a point c P I if

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď I with limit c .

Show that f is continuous at c if and only if for every ε ą 0 there exists δ ą 0 such that
ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ and x P I .

Proof. 1. (“ñ”) Suppose that the limit of f at c exists.

Claim: If txnu8
n=1, tynu8

n=1 Ď Iztcu and lim
nÑ8

xn = lim
nÑ8

yn = c, then lim
nÑ8

f(xn) = lim
nÑ8

f(yn).

Proof of claim: Define zn by

zn =

#

xn+1
2

if n is odd ,

yn
2

if n is even .

Then lim
nÑ8

zn = c; thus by the assumption that the limit of f at c exists, we find that lim
nÑ8

f(zn)

exists. On the other hand, since lim
nÑ8

f(xn) and lim
nÑ8

f(yn) both exist, we must have
lim
nÑ8

f(xn) = lim
nÑ8

f(zn) = lim
nÑ8

f(yn) . ˝

Having established the claim, we find that there exists L P F such that lim
nÑ8

f(xn) = L whenever
txnu8

n=1 Ď Iztcu is a convergent sequence with limit c.

Suppose the contrary that there exists ε ą 0 such that for each δ ą 0 there exists x P I

satisfying 0 ă |x ´ c| ă δ and
ˇ

ˇf(x) ´ L| ě ε. In particular, for each n P N, there exists xn P I

satisfying
0 ă |xn ´ c| ă

1

n
and

ˇ

ˇf(xn) ´ L| ě ε .

Then txnu8
n=1 Ď Iztcu and Archimedean Property implies that lim

nÑ8
xn = c. Therefore, the

claim shows that lim
nÑ8

f(xn) = L which contradicts to the inequality
ˇ

ˇf(xn) ´ L
ˇ

ˇ ě ε.

(“ð”) Let txnu8
n=1 Ď Iztcu be a convergent sequence with limit c, and ε ą 0 be given. By

assumption, there exists δ ą 0 such that
ˇ

ˇf(x) ´ L
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I .

By the fact that lim
nÑ8

xn = c, there exists N ą 0 such that

|xn ´ c| ă δ whenever n ě N .

Therefore, if n ě N , then 0 ă |xn ´ c| ă δ and xn P I so that
ˇ

ˇf(xn) ´ L
ˇ

ˇ ă ε. This implies
that lim

nÑ8
f(xn) = L; thus

lim
nÑ8

f(xn) exists for all convergent sequences txnu8
n=1 Ď Iztcu with limit c.



2. (“ñ”) Suppose that f is continuous at a point c P I; that is,

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď I with limit c .

In particular, for all convergent sequences txnu8
n=1 Ď Iztcu with limit c we have lim

nÑ8
f(xn) =

f(c). Therefore, 1 implies that

(@ ε ą 0)(D δ ą 0)
(
ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I
)
.

We note that we must have
ˇ

ˇf(c) ´ f(c)
ˇ

ˇ ă ε; thus the statement above implies that

(@ ε ą 0)(D δ ą 0)
(
ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever |x ´ c| ă δ and x P I
)
.

(“ð”) We note that the assumption in particular implies that

(@ ε ą 0)(D δ ą 0)
(
ˇ

ˇf(x) ´ f(c)
ˇ

ˇ ă ε whenever 0 ă |x ´ c| ă δ and x P I
)
;

thus 1 implies that

lim
nÑ8

f(xn) = f(c) for all convergent sequences txnu8
n=1 Ď Iztcu with limit c. (0.1)

Now suppose the contrary that there exists a convergent sequence txnu8
n=1 Ď I with limit c but

lim
nÑ8

f(xn) ‰ f(c). Then (0.1) implies that

#tn P N |xn = cu = 8 .

(a) If #tn P N |xn ‰ cu ă 8, then there exists N ą 0 such that xn = c for all n ě N . This
implies that

ˇ

ˇf(xn) ´ f(c)
ˇ

ˇ = 0 ă ε whenever n ěN, a contradiction to that lim
nÑ8

f(xn) ‰

f(c).

(b) If #tn P N |xn ‰ cu = 8, then tn P N |xn ‰ cu = tnj P N | j P N, nj ă nj+1u and
txnj

u8
j=1 Ď Iztcu is a convergent sequence with limit c. Therefore, (0.1) implies that

lim
jÑ8

f
(
xnj

)
= f(c) .

Let ε ą 0 be given. The limit above shows that there exists J ą 0 such that
ˇ

ˇf(xnj
) ´

f(c)
ˇ

ˇ ă ε whenever j ě J . Let N = nJ . Then for all n ě N , we have either xn = c or
xn = xnj

for some j ě J ; thus
ˇ

ˇf(xn) ´ f(c)
ˇ

ˇ ă ε whenever n ě N ,

a contradiction to that lim
nÑ8

f(xn) ‰ f(c). ˝


