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Problem 1. Let (F,+,-, <) be an ordered field (satisfying the least upper bound property), and A
be a non-empty subset of F. Show that if a € A is an upper bound for A, then a is the least upper
bound for A.

Proof. Let € > 0 be given. There exists x € A, namely x = a, such that x > a — . In other words,
a — ¢ cannot be an upper bound for A for all € > 0; thus the fact that a is an upper bound for A
implies that a is the least upper bound for A. O

Problem 2. Let (I, +, -, <) be an ordered field satisfying the least upper bound property, and A be
a non-empty set of F which is bounded below. Define the set —A by —A = {— rxelF ’ T E A}. Prove
that

infA = —sup(—A).
Note that this problem shows that if [ satisfies the least upper bound property, then ' satisfies the

greatest lower bound property.

Proof. Let C be a subset of F. Then

bis a lower bound for aset C e b<cforallceC < —b> —cforallce C

< —b>=—cforall —ce —C < —b=>cforall ce —C' < —b is an upper bound for —C.
Therefore, we conclude that
b is a lower bound for a set C'if and only if —b is an upper bound for —C. (%)

Now, since A is bounded from below implies that —A is bounded from above. The least upper
bound property then implies that b = sup(—A) € F exists. From (x), we find that —b is a lower
bound for A. Suppose that —b is not the greatest lower bound for A. Then there exists m > —b such
that m < x for all z € A. This implies that m is a lower bound for A; thus (%) shows that —m is an
upper bound for —A. By the fact that —m < b, we conclude that b is not the least upper bound for
—A, a contradiction to that b is the least upper bound for —A. O

Problem 3. Let (F,+,-, <) be an Archimedean ordered field. A number z € F is called an accu-
mulation point of a set A € Fif for all § > 0, (z — 4, x4 J) contains at least one point of A distinct

from x. In logic notation,
z is an accumulation point of A < (V4 > 0)(An (z -6,z +6)\{z} # &).

1. Show that if {x,}%_, is a sequence in I so that z; # z; for all i,j € N and A = {z; |k € N},

then x is an accumulation of A if and only if = is a cluster point of {z,}_;.



2. How about if the condition x; # z; for all 7, j € N is removed? Is the statement in 1 still valid?
Proof. 1. We show that
« is an accumulation point of A if and only if (V& > 0)(#(A N (z — 6,2+ 6)) = ) .

The direction “<” is trivial since if #(A N (z — 8,2+ 8)) = 00, A (z —§,z + ) contains some point

distinct from z.

(=) Let §; = 1, by the definition of the accumulation points, there exists x; € An (z— 1,2+ 6;1) and
1

x1 # x. Define 6y = min{\xl — x|, 5}. Then dy > 0; thus there exists x5 € A N (x — dy, & + d2)

and xo # x. We continue this process and obtain a sequence {z,}°_; < A\{x} satisfying that

rneAn(z—1z4+1), z,€An(x—0,x+0,) with 6n:min{|x—xn_1], 1}.

n

By Archimedean property, {z,}>_; converges to z since |z — x,| < 0, < % Let § > 0 be given.
There exists N > 0 such that % < ¢; thus

An(z—=0z+0)2An (m— %,m—k%) D {TN, N1, TNy, )
Since z; # z; for all ¢, j € N, we must have #(A N(x—46,x+ (5)) = . D

Problem 4. Let (F,+,-, <) be an ordered field, and {z,}*_; be a sequence in F. Show that the

following three statements are equivalent.
1. {z,} | converges.
2. Every proper subsequence of {x,}%_, converges.
3. Every subsequence of {z,}>_, converges.

Proof. “1 = 2”7 Suppose that {z,}>_ , converges. Then {x,}> , converges to some z € F; thus
Proposition 1.60 of the lecture note shows that every proper subsequence of {z,}*_, converges

to x. Therefore, every proper subsequence of {z,}*_, converges.

“2 = 3” Suppose that every proper subsequence of {x,}% ; converges. Then {z,1}7, converges
to some z € IF; thus {x,}’2; converges to x. This implies that every subsequence of {z,}>_,

converges (since {x,}’°; is the only non-proper subsequence of {z,}*_;).

“3 = 1”7 Suppose that every subsequence of {z,}°_; converges. In particular, the fact that {z,}>_,
is a subsequence of {z,}*_; implies that {z,}>_, converges. D
Problem 5. Let (F,+,-, <) be an Archimedean ordered field, and {z,}>; < F be a sequence
e 1 . .
satisfying |z, — z,+1| < — for all n € N. Prove or disprove that there exists a subsequence {x,, }7~,
n

of {x,}2 | so that {x,, }{, is a Cauchy sequence.



Solution. Let F = R, and define sequence {z,}°_; as follows: z; = 0 and for each n € N,

11
Tn+1 = = Z —.
2 = k
11 11 1 .
Then |x; — 5| = 3 <1 and |z, — Tpy1| = 3 < - for all n > 2. Therefore, the sequence {z,}>_,

satisfies the required properties. However, such an {x,}, is an increasing sequence which is not
bounded from above so that any subsequence of {x,}%_; is also increasing and is not bounded from
above. Therefore, any subsequence of {x,}> ; diverges; thus any subsequence of {z,}*_; cannot be

Cauchy sequence (since Cauchy sequence in R must converge). O

Problem 6. Let (F,+,-, <) be an Archimedean ordered field, and f : F — F be a function so that

f(x) = fyl<alr—y| Va,yeF,

where a € F is a constant satisfying 0 < a < 1. Pick an arbitrary z; € F, and define zy1 = f(z)

for all £k € N. Show that {z,}>_, is a Cauchy sequence in F.

Proof. Since 0 < a < 1, Problem 2 in Exercise 2 shows that lim o™ = 0. By the fact that |f(z) —

n—o0
fW)| < alz —y| and x4 = f(xy) for all k € N, we have
|$n+1_xn| = |f(xn)_f(l'n—1)| <a|xn—xn_1| Vn=2;
thus
(if n = 3) 9 1l

|Tpi1 — xn| <y — 21| < QT |Tpo —Tpo] < < Q" oy — 2.
Therefore, if n > m,

|xn - xm| - |xn —Tp1t+Tp-1 —Tp—2+Tpo— " — Tm+1 + Tm+1 — xm|

< |xn - xn—1| + |xn—1 - xn—2| + 4+ |l‘m+1 - xm|
<" Hag — x|+ "By — x|+ F o™ Hag — 2

Oém_l

— (a”‘Z +a" 3 4 am_l) |xo — 1] < |xe — 1] .

-«
Let € > 0 be given. Since lim o™ = 0, there exists N > 0 such that

n—0o0

an—l
] |ro — 21| <€ whenever n > N.
-«
am—l
Then if n > m > N, by the fact that |z, — z,,| < : |zo — 21| we obtain that |z, — x,| < e. O
—

Problem 7. Let (F,+,-, <) be an ordered field with Archimedean Property, I < F be a non-empty
interval, and f: I — F be a function.
1. f is said to have a limit at ¢ € I or we say that the limit of f at ¢ exists if
r}l—r»g; f(z,) exists for all convergent sequences {z,}; < I\{c} with limit c.
Show that the limit of f at ¢ exists if and only if there exists L € I satisfying that for every

€ > 0 there exists § > 0 such that

|flx)—L|<e whenever 0 <|z—c/<dandxel.



2. f is said to be continuous at a point c € I if

lim f(x,) = f(c) for all convergent sequences {z,},., < I with limit c.
n—00

Show that f is continuous at c if and only if for every € > 0 there exists ¢ > 0 such that

|f(z) = flo)] <e whenever |r—c¢|/<dandzel.

Proof. 1. (“=") Suppose that the limit of f at ¢ exists.
Claim: If {z,};" 1, {yn}i—q < I\{c} and T}l—{rolo Ty = T}l_rélo Y, = ¢, then 7}1_{210 flz,) = 7}1_1)130 f(yn)-
Proof of claim: Define z, by
- { Tngt if n is odd,

yz  ifnis even.

Then lim z, = ¢; thus by the assumption that the limit of f at ¢ exists, we find that lim f(z,)

n—00 n—0o0

exists. On the other hand, since lim f(z,) and lim f(y,) both exist, we must have
n—0o0 n—00

lim f(2,) = lim f(z,) = lim f(y,). o
n—00 n—00 n—00
Having established the claim, we find that there exists L € F such that lim f(x,) = L whenever

n—aoo
{z,}2 , < I\{c} is a convergent sequence with limit c.

Suppose the contrary that there exists ¢ > 0 such that for each § > 0 there exists z € [
satisfying 0 < |z — ¢| < § and |f(z) — L| > e. In particular, for each n € N, there exists z,, € I
satisfying

0<lzn—cl <> and  |f(za)—L|>e¢.
n

Then {z,}r, < I\{c} and Archimedean Property implies that 7}1_1)1010 z, = c. Therefore, the

claim shows that lim f(z,) = L which contradicts to the inequality |f(z,) — L| > e.
n—oo

(“<=") Let {x,}2, < I\{c} be a convergent sequence with limit ¢, and £ > 0 be given. By

assumption, there exists § > 0 such that
|f(x) —L| <& whenever 0<|z—c/<dandael.
By the fact that lim z,, = ¢, there exists N > 0 such that
n—aoo

|z, —c| < whenever n>=N.

Therefore, if n > N, then 0 < |z, — ¢[ < 6 and z, € I so that |f(z,) — L| < e. This implies
that lim f(z,) = L; thus
n—00

lim f(z,) exists for all convergent sequences {z,},_; < I\{c} with limit c.
n—00



2. (“=") Suppose that f is continuous at a point ¢ € I; that is,

lim f(x,) = f(c) for all convergent sequences {z,},., < I with limit c.
n—00

In particular, for all convergent sequences {z,}>_ ; < I\{c} with limit ¢ we have lim f(z,) =
n—ao0
f(c). Therefore, 1 implies that

(Ve>0)(36 > O)(‘f(:v) — f(¢)) <& whenever 0<|z—c/<dandze I) :
We note that we must have |f(c) — f(c)| < &; thus the statement above implies that

(V€>0)(35>0)(‘f(x)—f(c)‘<5 whenever |x—c|<§andxe]).

(“<=”) We note that the assumption in particular implies that
(Ve>0)(36> O)(‘f(:v) — f(¢)) <& whenever 0<|z—c|<dandze I) ;
thus 1 implies that

lim f(z,) = f(c) for all convergent sequences {z,}_; < I\{c} with limit c. (0.1)
n—00

Now suppose the contrary that there exists a convergent sequence {z,}_, < I with limit ¢ but

lim f(z,) # f(c). Then (0.1) implies that
#{neN|z, =c} =w0.

(a) If #{n € N|z, # ¢} < oo, then there exists N > 0 such that x,, = ¢ for all n = N. This
implies that | f(z,) — f(c)| = 0 < e whenever n =N, a contradiction to that lim flxn) #
f(e)-

(b) If #{n € N|z, # ¢} = o, then {n € N|z, # ¢} = {n; € N|j € N,n; < nj41} and

{rn,}52, € I\{c} is a convergent sequence with limit c. Therefore, (@) implies that

lim f(xnj) = f(C) :

J—0

Let € > 0 be given. The limit above shows that there exists J > 0 such that ‘ f(xn,) —
f(c)| < & whenever j > J. Let N = n;. Then for all n > N, we have either z,, = ¢ or

Ty = Ty, for some j = J; thus

\f(xn)—f(c)‘<s whenever n > N,

a contradiction to that lim f(z,) # f(c). o
n—00



