Exercise Problem Sets 5
Oct. 14. 2022

Problem 1. Let | - || : F* — R, where F = R or C, be defined by
<Z|:pi|p>; if 1<p< w0,
||:l"HpE i=1 T = (xla"‘ 7xn)'
max {|z1,- -, |z,|}  ifp=o0,

Complete the following.

1. Prove the Holder inequality Km, y>‘ < |fl,|yl, for all z, y € F*, where p,q € [1,00] satisfy

1.{.1:1.
p g

2. Show that | - |, is indeed a norm on F™ for all 1 < p < .

3. Show that |z|, = lim ||, for all z e F".
p—00

4. Show that for each 1 < p,qg < coand p # ¢, || - [, and || - |, are equivalent norms.

Hint: 1. Prove first the Young inequality (if you do not know this inequality)

1 1
ab < 1a” + 1bq Va,b>=0and p,qe€ (1,0) satisfying — + — =1,
p q p q

Proof. 1. First we prove the Young inequality. Suppose that 1 < p < c0. Consider the function
y = f(z) = xP~. The inverse function of f is y = f~1(z) = 271, For a,b > 0, we do not

necessarily have a?~! = b; thus by the convexity of f we have

ff(a;) dx + Lbfl(@ iz >

The inequality above implies that

¢ b 1 1 oy 1 1
abéjx” dx—irfxp—lda::—a”—l— —br 1" = —aP + b1

0 0 p I+ D q

since g = P
p—1
Now suppose that 1 < p < . Let & = (21, - ,2,) and y = (y1,--- ,yn) be given, and
q= Ll be the Holder conjugate of p satisfying 1 + 1o 1. By Young’s inequality, we find
p—= p q
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If p = o0, then ¢ = 1 and clearly we have

‘ Z TiYi

The case that p = 1 can be proved in a similar fashion.

n

< el < 25 (jmiss oIl = Il 5 ol = o
=1 )

1<igsn

2. The case for p = 1 and p = o are trivial:

n

le+yl = D o +yel < 3 (ol + lyal) = X lenl + D ol = lela + Nyl
k=1 k=1

k=1 k=1

and for all 1 < j < n,

|2+ y5] < oyl + [y;| < max {|ag], - 2l +max {Jyil, -yl = 2o + 1Y)

so that by the fact that ||z + y|ls = |xx + yi| for some 1 < k < n we obtain that

|2+ ylo < [zl + [yl

For the case 1 < p < o0, having established Holder’s inequality we find that

n

||m+y\|”—2\wz+yz <l + il 1I%|+lel+yz|” il

=1 =1 =1

n p—1 n 1
< [Z(L’Ei"‘yiv)_l)%] ' <Z|xi|p>p
=1 L

[Z i + il ™) } (Zly )

p—1

(ZWW) (el + lyl) = I+ gl (2, + lyl,) -

Therefore, |+ y|, < ||z, + ||yll, for 1 <p < oo as well.

3. W.L.O.G. we can assume that & # 0. Suppose that ||, = |z)| for some 1 < k < n. Then

n 1
P
@l = (X laal?)” = [l = @
=1

Moreover, |z;| < |zg| for all 1 < j < n; thus

|2, = (Z |xz~|p); = ] [i(

i=1

’l’z| Py 4 7 1
> } <|$k|<21p) :|$k|np;

[z i=1

thus

1
|20 < ], < 2] .

By the fact that lim nr = 1, the Sandwich Lemma implies that lim |||, = | @sw.
p—00

p—®0



4. It suffices to show that every p-norm is equivalent to the co-norm since if so, then for all
1 < p,q < w0 there exist C, Cy, C5, Cy such that

Cilzlp < |2l < Cofl@], and  Cslal, < [|@]e < Culz], VaeF".
Therefore,
Cl 02
Glaly < lol, < Glal,  VoeF.

Now we show that each p-norm is equivalent to the co-norm. Note that
|0 < ||, Vi<p<ow

On the other hand,

n 1 n 1
laly = (XlP)” < (XL lelz)” < n¥lale
Therefore,
nrlzl, < |zle < |z|, VYzeFlandl<p<o. .
Problem 2. Complete the following.
1. For f € %€ ([a,b];R), define

J| ]pdxp ifl<p<oo,
1flp =

max‘f ’ if p=o0.

z€[a,b]

Show that | - ||, is a norm on %([a, b]; R).
2. Show that | f|, = lim | f], for all f € € ([a,b];R).
p—0

3. Are |- |, and | - ||, equivalent norms on %([a, b];R) for any 1 < p,q < o7

Proof. 1. For a continuous function h : [a,b] — R,

fbh()dx—hmZh a—i—z )b—a

a n—aoo n

Therefore, with ¢; and d; denoting f (a + ib — a) and g(a + ib — a), respectively, we have

%)

n

n
0 s o (S )]

=1

I + gl = lim (2\ Fta)atit

and similarly,

£l = (b= a)? Tim [ (2|cz|p)}, lgly = (b= a)> lim [0~ (Z\d\)}

By Minkowski’s inequality in Problem 1,

n 1 n 1 n 1
n7%<2 ’Ci + di|p>p < 717%(2 ’Ci‘p>p —I—n*%<2 ’di’p>p
i=1 i=1 =1

thus the desired conclusion follows from passing to the limit as n — oo.



2. By the Extreme Value Theorem (Problem 3 of Exercise 4), there exists ¢ € [a, b] such that

£(0)] = max | £(@)] = Il

W.L.O.G. we can assume that f(c) >0
Let n € N be given. Then by the continuity of f, there exists d,, > 0 such that

‘f(x)—f(c)‘<% whenever z€l, = (¢c—d,,c+d,) N [a,b].

Then for n >» 1,

|f(2)] > |f(c ‘—— whenever zel,.

Therefore, for n » 1,

o= ([ 1rp ar)’ > ([ ) = (- B[ ar)
= (Il = )10

thus for all n » 1,
1 1
(IFle = = )l < 1£1y < [ £lo(b = )7

Therefore, passing to the limit as p — oo, we find that for n » 1,
1 o .
[flee = = < lm inf || f{}, < limsup /], <[ f]-
n p—0 p—0

Therefore, passing to the limit as n — oo, we find that

[fleo = lim inf| £, = lim sup | f, = [ f]eo ;

p—00
thus hm I £y = Il flloo-

3. The 1-norma and the co-norm are not equivalent. For each n € N, consider the function
fn 10,1 = R defined by

S

—n2r+n if0<z<
fn(m):{

0 otherwise.
Then | f.|1 = % but | fn|w = n. Therefore,

[ fnlloo
[ fnll

which does not belong to any given bounded interval [C,C5] when n is large. In fact, any

=2n

p-norm and ¢g-norm cannot be equivalent since for every n > 0 one can also find a
function f : [0,1] — R such that |f|, =1 and |f|, >nifp <q. D



Problem 3. A set A in a vector space V is called convex if for all z,y € A, the line segment joining

x and y, denoted by Ty, lies in A.

1.

Show that open r-balls and closed r-balls in any normed vector spaces are convex.

. Show that an ellipsoid FF = {:1: e R" ‘ Qe+ bz + ¢ < O} is convex, where () is a positive

semi-definite n x n matrix and b, ¢ € R" are vectors.

Show that a polytope P = {m e R” } Ax < b} is convex, where A is an m x n matrix, b € R™

is a vector, and < is defined by ¢ < d if and only if ¢; < d; for all components.

Show that if C,, is convex for all « € I, then (] C, is convex.
ael

Show that if C,Cs, - -+, Cy are convex sets and pq, o, - - - , v are real numbers, then
piCh + pCs + -+ uyCy = {Mlxl+N2$2+"'+MN$n|$k€Ck for 1 < k<N}
is convex.

Show that if Cy,Cs, - ,Cy are convex sets, then the Cartesian product C; x Cy x --- x Cy is

convex.

Let A be an m x n matrix, and C be a convex set in R™, D be a convex set in R™. Show that

C)={Az|zcC} and AN (D)= {z| Az e D}

are convex.
Let Ay = {()\1,--- , Ak) € Rk‘o < 1lforalll <i<kand Z i = 1} A convex combi-
nation of k vectors @, - ,x; € R is a sum of the form A\ a; + )\QZL‘Q + -+ + A\pzxy for some
(A1, -+, Ak) € Ag. Show that the collection of all convex combinations of k given vectors
Ty, -+, x; is convex; that is, show that

{M@ 4+ Aoy + -+ Ny | (A1, Ao, o0, A) € Ay}
Is convex.

Let S be a subset in R™. Show that the collection of all convex combinations of finitely many

vectors from S is convex; that is, show that
{)\1151+"'+)\k$k‘kEN,$1,$g,"' ,:I:keSand ()\1,"' ,)\k) EAk}

is convex. The set defined above is called the convex full of S and is sometimes denoted by
conv(S).



Problem 4. Show that
|Al; = max {Z a1, Z |aia], - Z |a2my} VAE Mum.
=1

Hint: Mimic the computation of | A, in Example 2.19 of the lecture note, or make use of Problem

6 of Exercise 2.

Proof. By Problem 6 of Exercise 2.

|z = sup -y and  |y[o = sup =y,
lylleo=1 |2|1=1
where x - y denotes the standard inner product of  and y in the Euclidean space. Therefore,
|Ali = sup |Az|, = sup sup (Az)-y= sup sup z-(A'y),

|1 =1 l2|=1[yleo=1 lzl1=1[yo=1

and Problem 5 of Exercise 2 further implies that
[Ali = sup sup (ATy)-z= sup |ATy|s =[AT]w.
lylloo=1llz]1=1 lylloo=1

By the fact that the co-norm of an n x m real matrix is the maximum of the sum of the absolute

value of entries of all row vectors, we find that

n n n
[A1 = |A" oo = max {Z i, Y laiol, -+, ) |aim} : 2
=1 =1 =1

Alternative proof. Let & = (x1, -+ , %) € R™ and |z|; = 1. Then for A = [a;;] € M;xm, we have

n m
[ Aal = Y| @i <22\ain$ﬂ—ZZ|%H%\—Z\%’(Z’%)
i=1 j=1 i=1j=1 j=1i=1

m n
< ol mae o) = (max o) Doyl = (e Do)l
j=1 =1 1=1 Jj=1 =1

= s Dl

Therefore, |Al; = sup [|[Az|; < < max ) Z la;;].

lzli=1 SIS
On the other hand, suppose that max Z la;;] = 2 |aik|; that is, the maximum of the sum of
sjsm i=1
absolute value of column entries of A occurs at the k-th column. Let & = (x1, -+ ,x,) € R™ be
defined by
0 ifj#k,
Xy = o
1 ifj=k.
Then
\Awul—Z\Zaw%) mr = max Z\am
=1 j=1
thus [Af, = sup Az, > max 2 Z |z o

lli=1



Problem 5. Let M, (F) be collection of n x m matrices with entries in F, where F = R or C. For
A € My (), define

—_

[\

@

S

A

A
Al = sup [Ag], = sup 12%he
=1 220 |12,

Show that | - ||, is a norm on M,,,,,(IF).

. Show that |A], = 4/the maximum eigenvalue of A'A, where A is the conjugate transpose of

A.

Show that Al = max { 3% Jau, 35 Janl. -+ 35 fal} if A€ Moo (B).
k=1 k=1 k=1

- Show that Al = max { 3] lal, 3 lasel: -+, 3 lagnl } if A€ My (B).
k=1 k=1 k=1

Show that [|A|2 < || Al|1[|A]l, for all A € M,y (F).

Proof. The proofs of 1,2,4 are identical to the proof for the case of F = R and are given in Example
2.19 and Problem @

3.

It suffices to show the case F = C and A is not zero matrix. Let & € C™. If ||, = 1, then for

each 1 <1 < n,

m m
lanz1 + Gio®a + -+ Qi T | < Z |aij| < max Z |ai;] ;
—1 —1

1<isn

thus the absolute value of each component of Az, under the constraint ||, = 1, has an upper

m
bound max Z |la;;]. Therefore,
=1

1<isn

|Allo = sup |Az|, = sup max |anz1 + GpTo + - - G| < Mmax Z lai;]
llloo=1 [z]o=1 Isisn 1<isn 4

m m
On the other hand, assume max Z lai;| = Z lay;| for some 1 < k < n. Let f5; € C satisty
1<i<n — )

Bjaj, = |a;|

and define
T = (51752)"' 75n)T
Then |z|, = 1 (since A is not zero matrix so that max{|bi|, - ,|bs|} = 1), and ||Ax|, =
> |ak;|; thus
Jj=1 m
[ Alleo = Sup [zl > ) || = max Z |az] -
z|o=1 1

The combination of the two inequalities above implies the desired identity.



5. Let A > 0 be the largest eigenvalue of AT A with corresponding eigenvector v. Then ATAv = \v
so that 2 implies that

JAI3Ivly = Ml = [ATAv]; < AT Av]y < |AT Al o)

thus by the fact (from 3 and 4) that |Af||; = |A|, and ||v|; # 0, we concludethe desired
inequality. O

Problem 6. Let M, (F) be the collection of all n x m matrices with entries in F, where F = R
or C. Define a function | - |,4 : Myxm(F) = R by

|Alpg = sup |Az],,

]l =1
here we recall that | - |, is the p-norm on F" given in Problem m If p = ¢, we simply use |A[, to

denote [|A|,,. Complete the following.

. Show that ||A],, = sup || ||q for all p,q = 1.
z#0

—_

2. Show that |A|,, = inf {M € F|[Az|, < M|/, Yz F"}.
3. |Az|y < [Allpol 2], for all 2 F™.
4. ||+ |4 defines a norm on M.,y (F).

5. Let {4} € Mysm(F). Show that klim |Ak|p, = 0 if and only if each entry of Aj converges
—m
(k)

ij ng’gn,lgjgm’

to 0. In other words, by writing Ay, = [a show that klim |Ak|p, = 0 if and
—00

only if hm a =0foral 1 <i<m1<j<n. Inparticular, Ay — A in the sense that
| Ay — AHpq — 0 as k — o if and only if the (i, 7)-th entry of A converges to (i, j)-th entry of
Aforalll<i<nand1<j<m.

Proof. 1. If ¢ # 0, then y = satisfies that ||y|, = 1; thus if & # 0,

R Hp
|Az]
t = [Ay|, < sup |Az]y = A,

(B |2, =1

|Azl, _

Therefore, sup
z+0 [ Zlp

On the other hand, if ||z|, = 1, then x # 0; thus if ||z|, = 1,

< [Alpg-

|Az], _ Azl

E =

|Az|, =

A
Therefore, |Al,, = sup |Az|, < sup | A2y

Jalp=1 |2l

2. 2 follows from Problem 4 of Exercise 2.



| Az

[

3. By 1, < ||A]p,, for all & # 0 or equivalently,

| Azl <

Ve #0.
Since the inequality above also holds for & = 0, we conclude that

| Azl <

Ve R™.

4. The proof of 4 is similar to the proof of that || - |, is a norm on M, (F).

5. Let B = [bi;] € Myxm, and |by| =  max_  |b;;]; that is, the maximum of the absolute value
1<isn,l<gj<m

of entries of B occurs at the (k,¢)-entry. Let e, be the unit vector whose /-th component is 1.

Since Bey is the -th column of B, for 1 <i<nand1<j<m,
1bi| < |brel < |Bedlly < |Bllpgllec, = 1Bl
thus
6] < [|Bllp.g Vi<i<n,1<j<m. (%)

| )

On the other hand, there exists € R™ such that |z, =1 and |Bz|, > . Therefore, if

1 <qg< oo,

< imaly = (N Soa) < [B (S mal)] < m[ X (5 S al) ]’
i=1 j=1 i=1 j=1 i=1 7j=1
S m(i % i |bl]‘q>}1 < ml_% (Zn: i ‘le| )é < m(i 3 |sz‘q>; )
i=1 7j=1 i=1j=1 i=1j=1

while if ¢ = o0

1<i<n

B m m n o m
152 < 3ol = s | 3 g < s Y Il < 25 Y Il
j ' '

In either cases, we conclude that

< (b, [bazls -+, [baml) (o)

for some function f of nm variables satisfying that f(y) — 0 as y — 0.

(=) Using (x), we find that for each 1 <i <nand 1 <j <m,

< |’ < 14l
Since klim |Ak|lp.g = 0, by the Sandwich Lemma we conclude that
—00

khm‘a ‘:0 Vi<i<nl<j<m.
—00



<) Suppose that lim a =0 forall 1 <i< n,1 < j < m. Then (¢) implies that
koo ! Y

0 < [Alpg < £(jal?] |als)]. - . |alf)]) (o)

for some function f of nm variables satisfying that f(y) — 0 as y — 0. Therefore,

the Sandwich Lemma implies that klim | Akllp.q = 0. D
—00

Problem 7. Let M,,«,(F) be the collection of all n x m matrices with entries in F, where F = R
or C. Define | - |r : Myuxm(F) = R by

Al = (23 fas )’
i=1j=1

1. Show that |A|% = tr(ATA), where AT is the conjugate transpose of A, and tr(M) is the trace
F

of square matrix M.

2. Show that | - | is a norm on M,,,,,(IF) (for all n,m € N). This norm is called the Frobenius

norm of matrices.
3. Show that |AB||r < |Allr|B|r whenever A € My« (F) and B € M, (F).

Hint: 3. Let A = [alfagf }am} and B = [blszf }bm}T; that is, ay is the k-th column of A

and by is the /-th row of B. Then AB = ) ayb,. First show that |aib; |r = |axll2]bill2 and use
k=1
the triangle inequality to conclude the desired equality.

Proof. 1. Note that if C' = AB and A = [a;;], B = [b;j] and C' = [¢;;], then
Cij = 2 az’kbkj . (0-1)

Therefore, if B = ATA, where A = [a;;] € Myxm(F) and B = [b;;] € My (F), then the
(i, k)-entry of A' is @y; so that

n
= 2, T

tr(ATA) = Y by = >0 Y Tag = Y > |awl* = | Al
i=1 i=1 k=1 i—1 k=1
2. Clearly | - || satisfies properties (a)-(c) in Definition ??, so it suffices to show the triangle

inequality. Let A = [a;;] and B = [b;;]. Define two vectors u, v € F™™ by

u:(a117a127'” s Q1m, @21, , A2m, @31, * ** 3, A3m, * ** , Anl, """ 7anm)

and

’U:(bll,b127’“ 7b1m7b217"' 7b2mab31a'” 7b3ma"' 7bn17”' 7bnm)'



Using the triangle inequality for the norm | - |[gnm, we obtain that

n m 1
2\ 2
14+ Ble = (2] s +by[")* = Ju+ vlenn < Julgnm + oo

i=1j=1
= (X2 lal”)" + (X X [bal*)* = 14l + 1Bl
i=1j=1 i=1j=1

so that the triangle inequality for || - | is established.

3. Let a; and b; denote the i-th column of A and j-th row of B, respectively. Then (@) implies

that
AB:a1b1+a2b2—|—"'+ambm. (02)
Note that for column vector a@ = (ay,- - ,a,)" € F" and row vector b= (b, -+ ,b,) € F?,
n p n p
Jabf = 33 faiby 2 = (D al?) (D 162) = lal3lbl3:
i=1j5=1 i=1 j=1

thus (@) and the triangle inequality imply that
|AB||F < Z larbi|F < Z | a2] bll2 -

The Cauchy-Schwarz inequality further shows that

|ABJ3 < (Znakn Iile) < (Zmu)(anku) | AI1B1E

thus [AB|r < [Al¢[Blr. o

Problem 8. Let (V,{,-)) be an inner product space over F, where F = R or C, and «, y € V. Show
that
(e,yy=0 ifandonlyif |y|< | \e+y| VAeF,

where | - || is the norm induced by the inner product (-, -).

Proof. Let o = (&, y). Then

Az + y|* = Az + y, Az + y) = Az, Ax) + O, y) + (g, o) + (g, y)
= APz)® + M, y) + XMz, y) + |y* = [A[2]* + 2Re(a) + |y]*.

“=71If @ = 0, then | Az + y|*> = |A\?|z|* + |y[* = |y|* for all A e F.

“<” W.L.O.G. we can assume that x # 0. Letting A = Tz HQ, we find that

of | 1o plof o’
Iyl < e+ yl? = (sl + 27 T+ Il = ol — 12
E E E




thus oo = 0. o

Problem 9. Let (V,+,-,{-,-)) be an inner product space over R, and define ||v|| = (v, v)!/? for all
v € V. Show that

L 2]x|* 4+ 2y = |z + y|* + | — y|* (parallelogram law).
2. [|2* = [yl < |z + yllz -yl < J2* + |y]*.
3. 4z, y) = |z + y|* — |z — y|* (polarization identity).
Can the p-norm || - |, on R™ be induced from any inner product (on R™) for p # 27

Proof. Note that if , y € V, by Proposition 2.25 of the lecture note we have

lz+ y|* =(x+y,z+y = |z|"+ gz + (@ y+ |y,
lz—y|> =(x—y,z—y)=|z|> — (g, x) — {x, y)+ |y]*.

Since V is a vector space over R, (e) of the definition of inner products implies that (z, y) = (y, )

for all x, y € V; thus
lz+y|* = lz|* + 2z, ) + [yl*  and |z -y|* = |z]* - 2z y) + |y (0.3)
1. Let &,y €V be given. Then (@) implies that

lz+y|* + |z — yI* = 2(|2|* + |y]*) -
2. Let @,y € V be given. Then (@) implies that

|+ yl* |z — y|* = (|2]° + 2@, y) + [y]*) (|=]* — 2z, y) + [y]*)
2 2 2
= (l=I* + 1yl*)” — 4z, | < (l=I” + |91*)";
thus [z + yl|z — gl < [=[* + |y[*.

On the other hand, the Cauchy-Schwarz inequality implies that

lz+ y* |z — yl* = (l2* + 2z y) + [y]*) (|2]* — 2(z, y) + |y]*)
2 2 2
= (I + 1yl*)" — 4z, " = (l2I* + [y]*)” — 4] ]y|?
= lz* +2]z*|y* + |9]" — 4]=]*]y|*
2
= lz* = 2l2*|y* + |yI* = (l=|* = [¥]*)" = 0;
thus |z + yl|z — y| = [|=]* - y[?|

3. Let =,y €V be given. Then (@) implies that

|z +yl* + |z — y* = 2y, 2) + 22, y) = Kz, y).



Suppose that | - |, is induced by an inner production (-, -) on R™. Then 1 implies that
20al; +2lyl; =lz+yl;+lz-yl; VY yeR"
Let £ =e; and y = ey. Then |z|, = |y|, =1 and |z + y|, = |z — y|, = 27 so that
2 2
4 =25 49

which holds only for p = 2. Therefore, if p # 2, then || - ||, is not induced by an inner product on R”".

O
Problem 10. Let (V,{:,-)) be an inner product space over C. Show the polarization identity
1 . . . .
@y = (le+yl—lo—yl* +ilo+iyl* —ilz—iyl)) VayeV.
Proof. Let x,y € ) be given. Then
|2+ yl* — |z —y|* +i|z+iy|* —i|z—iy]?
=(@+yzt+y —(z-yr—y +izt+iyc+iy) —e—iy,z—iy)
=2((z y) + (y. @) + 2i((z, iy) + iy, z)) .

By Proposition 2.25 of the lecture note, we conclude that

i((m,iy) + Gy, @) = (@, y) — (Y, 2);
thus
|z +y|? — |z —y|* —ilz+iy|* + iz —iy|* = K=z, y). 2
Problem 11. Let (M, d) be a metric space. Define p: M x M — R by

d(z,y)
p(r,y) = H—d—(:c,y) .

Show that (M, p) is also a metric space.

Proof. By the fact that d is a metric, we find that p(z,y) = 0 and p(z,y) = p(y, z) for all z,y € M.
Moreover,

p(x,y) =0 ifand only if d(z,y)=0 ifandonlyif z=y.

Therefore, if suffices to shows the triangle inequality. Let x,y, 2 € M be given. Then
(1+d(z,2))(p(z,y) + ply, 2)) = (1 + d(z, 2)) (1 i(zémy,)y) + 7 i(cyl&yz,)z))
Cd(z,y) (1 +d(y, 2)) (1 +d(x, 2)) + d(y, 2) (1 + d(z,y)) (1 + d(z, 2))
B (1+d(z,y))(1+d(y, 2))
- d(z,z) + d(x,y)d(x, z) + d(y, 2)d(x, 2) + d(x, y)d(y, 2)d(z, 2)
- 1+d(x,y) +d(y, z) + d(z,y)d(y, 2)
1+d(x,y)+d(y,z) + d(z,y)d(y, 2)

— d(x’z>1+d(a:,y)+d(y, D+ d,y)dly. ) =d(z,2);
thus p(z,y) + p(y, 2) = % = p(z, 2). :



Problem 12. Let d : R? x R? — R be defined by

T — it xo = ys,
d(z,y) = | | ‘ where © = (z1,22) and y = (y1,y2).
|$1—y1|+|$2—92|+1 if x9 # 1Yo,

Show that d is a metric on R2.
Proof. Let = (z1,72), y= (y1,¥2) and z = (z1, 29) in R
1. Clearly d(zx,y) = 0.
2. dzy) =0 (r2=p)Alti—pul=0s(2=p)r(@1=y) ==y

3. (a) The case xy = yo: In this case d(x,y) = |1 — y1| and d(y, ) = |y1 — x1]; thus if 25 = yo
then d(z, y) = d(y, x).

(b) The case x5 # yo: In this case
d(z,y) = |v1 =yl + w2 — e[ +1 and d(y,z) = [y1 — 21| + 3o — 22 + 1;
thus if 25 # yo then d(x, y) = d(y, ).
In either cases, we have d(z, y) = d(y, ).
4. (a) The case x9 = yo: In this case
dz,y) = |v1 — | < |v1 — 21| + |21 — | < d(=,2) +d(z, ).

(b) The case xy # yo: In this case z is different from at least one of the second component
Z2,Y2. W.L.O.G. we assume that zo # x5. Then
d(x, y) = |x1 — 1| + w2 =y + 1
<z — 21+ [z — g + w2 — 22 + 22 — g2 + 1
=d(z, 2) + |21 —y1| + |22 — | < d(z,2) +d(2,9y).

In either cases, d satisfies the triangle inequality. O



