Exercise Problem Sets 7
Oct. 28. 2022

Problem 1. Let {a,}°; and {z,}?; be two sequences of real numbers, and |z, — 41| < a, for

all n € N. Show that {z,}*_, converges if Z a, converges.
n=1

Proof. First we note that if n > m,

‘xn - xm‘ = |xn —Tp_1+Tp—1— Tp—o+ -+ Tm+1 — xm‘

< |xn - xnfl‘ + |xn71 - xn72| Tt |'Tm+1 - xm|

Slna+ ozt am= )Y ay.

0
Let € > 0 be given. Since Y] aj converges, the Cauchy criterion implies that there exists N > 0 such
k=1
that
n—+p
‘ Zak‘ ‘an+an+1+ +an+p‘ <¢e¢ whenever n> N andp=>0.
k=n

Therefore, if n > m > N, by the fact a; > 0 for all £ € N, we have

Ty — Tpy| < Zak<e

This implies that {z,}> ; is a Cauchy sequence in R. By the completeness of R, {z,}> , converges.

[m]

Q0 0
Problem 2. Let ; aj be a conditionally convergent series. Show that Y, [1 + sgn(ay)]a; and
k=1 k=1

18

[1 — sgn(ak)]ak both diverge. Here the sign function sgn is defined by

k=1

1 ifa>0,
sgn(a) = 0 ifa=0,
-1 ifa<0.

Proof. Claim: Let {x,}* ; and {y,}>; be sequences of real numbers. If {x,}> ; converges and
{yn}>_ | diverges, then {x, + y,}r_; diverges.

To see the claim, suppose the contrary that {x, + y,}>_, converges. Then Theorem 1.40 in the
lecture note implies that {x,, + yn —x, ), converges, which contradicts the assumption that {y,}r_,

diverges. Simﬂarly, {xn —yn b 1 also diverges.

Let S, = Z ap and T, = Z lag|. Then {S,}°_; converges but {T},}*_; diverges. Therefore, the
claim above shows that {5, + T 1> | diverges. By the fact that |a| = sgn(a)a for all a € R, we have

n n
:Zak—i—]ak\ :Z 1+sgnak ayg
k=1 k=1

so we conclude the desired result. o



0
Problem 3. Let {ax}2; < R ba a sequence. A series | by is said to be a rearrangement of the series

k=1
0

Y. ay, if there exists a rearrangement 7 of N; that is, 7 : N — N is bijective, such that by = a).
k=1

0 6]
1. Show that if > a; converges absolutely, then any rearrangement of the series > a converges

k=1 k=1
and has the value ] a.
k=1
oe}
2. Show that if )] ay is conditionally convergent, then for each r € R, there exists a rearrangement
k=1
Q0 Q0 0
D An(k of the series >} ay such that Y} a.g = 7.
k=1 k=1 k=1
Q0
Proof. 1. Suppose that > a; is an absolutely convergent series with limit a, and 7 : N — N is a
k=1

rearrangement of N. Let € > 0 be given. Then there exists N > 0 such that

n 0
‘Zak—a‘<§ and Z ](JLk|<E whenever n > N.
2 2
k=1 k=n-+1
Choose K > 0 such that w(n) > N if n > K. In fact, K = max{r~'(1),--- , 7 (N)} +1
suffices the purpose. Then K > N and if n > K, 7r({1,2, e ,n}) 5 {1,2,---, N}. Therefore,
ifn> K,

n N N .
‘Zaﬂ(’v)_a‘<’Zaw(k)—2ak‘+‘2ak—a‘< Z |ak|+g<5
k=1 k=1 =1

k=1 k=N+1

o8]
which implies that Y} a.) = a.
k=1

0

2. Suppose that »; a; is conditionally convergent. Let {ay,}72; denote the subsequence of {ay}7_,
k=1

so that ay; > 0 for all j € N and ap < 0 if & € N\{ky, ko, ---}. In other words, {a, }72, is

the maximal subsequence of {ay};2; with non-negative terms. Let {a,;}}2, be the maximal

subsequence of {ay};2; with negative terms. Then

e} e 6}
Zapj:oo and Zanj:—oo.
i=1 j=1

0

Let r € R be given, and use the notation Y to denote summing nothing. Define kg = 0. Choose
j=1

ki—1 k1 00
k1 € N be the unique natural number so that »; a, <7 but >} a, > r. Since }; a,, = —©,
=1 =1 =1
k1 / ko—1 / k1 ko /
there exists a unique k, € N such that > a, + > a,, > r but > a, + > a, <r. We
j=1 j=1 j=1 j=1

continue this process, and obtain a sequence {k;}, such that for each ¢ € N,

kop1—1 kog_2 koe—1 kog_2

(a) > ap, + X an, <. (b) 20 ap, + D an, >
i—1 =1 =1

Jj=1 J



kog—1 koe—1 koe—1 kor

() X ap,+ > an, >7. (d) 25 ap, + > an, <.
j=1 j=1 j=1

=1

We then obtain a permutation of {a,}r_;:

QApys e Japkl7an17 e 7ank27apkl+17 e )apk37ank2+17 e 7ank47 T
. S \G S \A > . J
7 7 ' 7
k1 “=0” terms kg “< 0” terms k3 “= 0” terms kg “< 0” terms
Denote the permutation above by {a ) }r_;; that is, m(1) = p1, - -, (k1) = Dy,
o]
7(k1 + k2) = ni,, and so on. Next we show that > aru) = 7.
k=1
n e}
Let ¢ > 0 be given, and define S,, = > Ar(k). Since > a, converges, hm a, =
k=1 n=1

exists N > 0 such that |a,| < € for all n = N. By the construction of {k,}7,

S — Sn—1| = |azm)| <€ whenever n =k +ky+ -+ ky.

This implies that S, € (r — e, + €) whenever n > k; + ky + - - - + ky. Therefore,

’Zaw(k)—rl<€ whenever n > k; +ky+ -+ ky
k=1

8
which shows that Y} a-x) = 1.
k=1

o
Problem 4. Consider the function f(z) = )] Smgckx).
k=1

1.

Find the domain of f.

m(k1+1) = ny,

0; thus there

2. Show that for each ¢ > 0 and 0 < § < m, there exists N > 0 and N depends only on ¢ and 9

but is independent of x, such that

n+p .
k
‘Zsmg{:x)‘<g Vn = N,p>0andze[d2r— 0.

Proof. Let S,(z) = i sin(kz).
k=1

1.

(a) If z = 2n7 for some n € Z (or x = 0 (mod 27)), then S, (z) = 0 for all n € N; thus for

cach © = 0 (mod 27), {S,(z)}r_, is bounded by 1.
(b) If  # 2nm for all n € Z (or x # 0 (mod 27)), then

2sin = S ZQsm—sm (kx) Zcos k——)x—cos(k—i— )

k=1

T 1
= COSE — COS (n+ §)x

which implies that

z _ 1
‘Sn(a:)‘ < ‘cos 5 — COS (n+ 2)x‘ 1

QSm2 ‘81112‘

Va #0 (mod 27).



In either cases, for each x € R there exists M = M (x) € R such that |S,(x)| < M. Therefore,
the Dirichlet test (With ar = sin(kx) and py = %) implies that f is defined everywhere; thus
the domain of f is R.

2. We mimic the proof of the Dirichlet test. Let ¢ > 0 and ¢ € (0,27) be given. Then cscg > 0;

thus the Archimedean property of R implies that there exists N > gcsc g Ifn=N,p=0
and x € [6, 2 — 6] (thus z # 0 (mod 27)), then

‘% sini{kx)‘ — ‘% [Skt1(x) — Sk(2)] %‘
k=n k=n

— |- Su@)k S @t L) e S le) (s - )

n n+1 n+p—1_n+p
1
+ Sn+p+1(x)m’
1 1 1 1 1 1 1
e LR e R
’smﬂn n n+l n+p—1 n+p n+p
2 sin &
= < —2¢.
n’sm%] ‘s1n§|
Since x € [4, 27r—5},singattains its minimum at x = ¢ or 27 — J; thus
. . X
0 < sin— <sin— Vaeld2r—0].
2 2
Therefore,
nersin(kx)
’Z k ‘<6 whenever n > N,p >0 and z € [§,2m — ¢]. D

k=n
In the exercise of Chapter 3, we first introduce the concepts of accumulation points, isolated

points and derived set of a set as follows.
Definition 0.1. Let (M, d) be a normed vector space, and A be a subset of M.

1. A point x € M is called an accumulation point of A if there exists a sequence {z,}> ; in

A\{z} such that {z,}*_, converges to x.

2. A point x € A is called an isolated point (7% = ) (of A) if there exists no sequence in A\{z}

that converges to x.
3. The derived set of A is the collection of all accumulation points of A, and is denoted by A’.
Problem 5. Let (M, d) be a metric space, and A be a subset of M.
1. Show that the collection of all isolated points of A is A\A'.

2. Show that A’ = A\(A\A’). In other words, the derived set consists of all limit points that are
not isolated points. Also show that A\A’ = A\A’.



Proof. 1. By the definition of isolated points of sets,

re A\A" & z € A and z is not an accumulation point of A
< reAand e > 03 B(z,e) n A\{z} =g
< reAand 3e > 03 B(zr,e) n A< {z}
< de>053B(z,e) n A= {x};

thus x is an isolated point of A if and only if z € A\A'.

2. First we show that A = A U A’. To see this, let z € A\A. By the fact that A = A\{z}, there

exists {z,}°, < A\{x} such that lim z,, = x. Therefore, x € A" which implies that
n—0o0
AAc A cA,
where we use the fact that A 2 A’ to conclude the last inclusion. The inclusion relation above

then shows that
A=AVA=AUV(AA)CAVACAVA=A;

thus we establish that A = A U A’. This identity further shows that
AnA'=AuA) A=A A cA.
Now, using the identity A\B = A n B® we find that
AAA)=An (An (AN =An (AL VA)=(An A U (An A)
=(AnAY v A =4
Moreover, using A = A u A’ we also have
AA =AVA) N (A =An A =AA. o
Problem 6. Let A and B be subsets of a metric space (M, d). Show that
1. cl(cl(A)) = cl(A).
2. cl(Au B) =cl(A) ucl(B).
3. cl(An B) ccl(A) ncl(B). Find examples of that cl(A n B) < cl(A) n cl(B).
Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A4)) = cl(A).

2. Since A < Au B and B <€ Au B, we have cl(A) < cl(A U B) and cl(B) < cl(A u B); thus
cl(A) u cl(B) € cl(A u B). On the other hand, if x € cl(A U B), there exists a sequence
{z,}_, in AU B such that lim z,, = . Since AU B contains infinitely many terms of {x,}’_,,

n—aoo

at least one of A and B contains infinitely many terms of {z,}_ ;. W.L.O.G., suppose that
#{neN}xneA} = 0. Let

{neN‘xneA}:{nkeN‘nk<nk+1}.

Then {x,,}7, € A. Since z,, — = as n — o0, we must have x,, — = as k — o0; thus = € cl(A).
Therefore, cl(A U B) < cl(A) u cl(B).



3. Let z € cl(A n B). Then
(Ve > 0)(B(z,e) n (An B) # &).

Therefore, by the fact that B(z,e)n A < B(z,e)n(AnB) and B(z,e)n B < B(z,e) n(AnB),
we have

(Ve > 0)(B(z,e) n A+ &) and (Ve > 0)(B(z,e) n B # ).
This implies that € A n B. Note that if A= Q and B = Q, then cl(A n B) = J, while
A = B = R which provides an example of cl(A n B) ¢ An B. o

Problem 7. Let A and B be subsets of a metric space (M, d). Show that

1. int(int(A)) = int(A).

2. int(A n B) = int(A) n int(B).

3. int(A u B) 2 int(A) u int(B). Find examples of that int(A u B) 2 int(A) U int(B).
Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since An B < Aand An B < B, we have int(A n B) € int(A) and int(A n B) < int(B); thus
int(A n B) < int(A) n int(B). On the other hand, let = € int(A) N int(B). Then x € int(A)

and z € int(B); thus there exist r1, 79 > 0 such that
B(z,m) < A and B(z,m < B.

Let r = min{ry,72}. Then r > 0, and B(x,r) < B(z,r) and B(z,r) < B(z,r2). Therefore,
B(z,r) <€ A and B(x,r) € B which further implies that B(z,r) € A n B; thus x € int(A n B).

3. Let z € AU B. Then z € A or z € B; thus there exists 7 > 0 such that B(z,r) < A or
B(z,r) < B. Therefore, there exists r > 0 such that B(z,7) € A u B which shows that
int(A U B) 2 int(A) U int(B). Note that if A =Q and B = Q°, then int(4A U B) = R while
int(A) = int(B) = &J; thus we obtain an example of int(A U B) 2 int(A) U int(B). o

Problem 8. Let (M, d) be a metric space, and A be a subset of M. Show that
0A = (Anc(M\A)) U (cl(A)\A).
Proof. By the definition of the boundary, dA = A n AC; thus

(Anc(M\A)) U (I(ANA) = (An AF) U (An A
“ AU (AnAY)] A [A 0 (AnAY] = A [(A 0 A) A (A 0 AD)]
=An[(AAUA)NA] =0An (AU A) =04,
where the last equality follows from that dA = A and 0A < AC. O

Problem 9. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets
satisfy A < S < cl(A). For example, Q is dense in R.



1. Show that if A is dense in S and if S is dense in 7', then A is dense in 7.
2. Show that if A is dense in S and B < S is open, then B < cl(A n B).

Proof. 1. If A is dense in S and if S is dense in T, then Ac S< Aand S< T < S. Since S < A,
we must have S < A; thus
AcScTcScA

which shows that A is dense in T

2. Let z € B. Since B is open, there exists g > 0 such that B(z,g0) € B < S. On the other

hand, x € S since B is a subset of .S; thus the denseness of A in S implies that
(Ve > 0)(B(z,e) n A # ).
Therefore, for a given € > 0, if € > ¢, then
B(z,e) n (An B) 2 B(z,¢0) n (AN B) = B(z,60) N A # &)

while if € < ¢, then
B(z,e)n(AnB)=B(z,e) nA# .

This implies that
(Ve > 0)(B(z,e) n (An B) # &);

thus z € cl(A n B). o

Problem 10. Let A and B be subsets of a metric space (M, d). Show that

1. 0(0A) < 0(A). Find examples of that (0 A) & 0A. Also show that 0(0A) = dA if A is closed.

2. 0(AuB)cdAudB< d(Au B)u Au B. Find examples of that equalities do not hold.

3. If cl(A) ncl(B) = &, then 0(Au B) =0A v dB.

4. 0(An B) < 0A u 0B. Find examples of the equalities do not hold.

5. 0(0(0A)) = 0(0A).
Proof. 1. We note that if F' is closed, then

OF=FNnF'=FnF'cF. (o)

Since 0 F is closed, we must have d(0A) < 0A. Note that if A = Q n [0, 1], then 0A = [0, 1];
thus 0(0A) = {0,1} < JdA. Finally we show that 0(0A) = 0A if A is closed. Using (o), it
suffices to show that 0 A < d(0A). Using 2 of Problem B,

0(0A) = 0A A c((0A)Y) = 0A A (A U AT) = 0A (AL U cl(AT)
— (@A A) U (PANC(AT)) 2 (0A A7) = 0A.



2. Using 2 and 3 of Problem B,
J(AuB)=AuBnc((AuB)) = (AuB)ncl(A'nB") c
:(Amﬁmﬁ)u(BmEmBC) (AmAC) (B
On the other hand, since 0 A = A\A and A € A, we have
ACAVIAC AU (AA)=A
which implies that A U 0 A = A. Therefore,
ACAcAuB=AuBuUdAUDB)

(AU B) 0 (A" BY)
NBY) =0AuUdB.

and similarly 0B <€ A u B u d(A u B). Therefore,
0JAuvdB<d(AuB)uUAuB.
Note that if A =[-1,0] U (@ [0,1]) and B = [-1,0] U (Q" N [0,1]), then AU B = [-1,1],
0A = 0B = {-1} u [0,1] which implies that
J(AuB)={-1,1}cdAuvdBc AuB=0(AuB)UAUB.
3. By 2, it suffices to shows that JAUdB € 0(AUB)if AnB = . Letze 0AudB. W.L.O.G.,
assume that © € 0A. Then = € A; thus x ¢ B which further implies that there exists gy > 0
such that B(z,g0) " B = & or equivalently, B(z,¢¢) € Bt. Therefore, for given r > 0, if r < &,

then
B(z,r)n (AuB)2B(z,r)nA# J
and
B(z,r)n ((AuB)') = B(z,r) n (A" n B*) = B(z,r) n A" # &
while if » > ¢y, then
B(z,r)n (Au B) € B(x,e0) n (AU B) 2 B(x,e9) nA#
and
B(z,r) n ((Au B)") 2 B(z,e0) n (A" n BY) = B(x,50) n A" # ..
As a consequence, for each r > 0,
B(z,r)n(AuB)# & and B(z,r)n(AuB)";
thus z € AU B and z € cl((A U B)") which implies that = € (A U B).
4. Using 2 and 3 of Problem B,
(AnB)=AnBnc((AnB)")=AnBncd(A" uB)c (AnB)n (ACU@)
:[(AmB)mE]u[(AmB)mgﬁ]g(ﬁmAC)u( E)_aAuﬁB.
Note that if A=Q and B = Q°, then 0A = 0B = R but
C(AnB)=<R=0AnJB.
5. Since 0 A is closed, 1 implies that 0(0(0A)) = d(0A). o



