Problem 1. Let $\{a_n\}_{n=1}^{\infty}$ and $\{x_n\}_{n=1}^{\infty}$ be two sequences of real numbers, and $|x_n - x_{n+1}| < a_n$ for all $n \in \mathbb{N}$. Show that $\{x_n\}_{n=1}^{\infty}$ converges if $\sum_{n=1}^{\infty} a_n$ converges.

Proof. First we note that if n > m.

$$|x_n - x_m| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + \dots + x_{m+1} - x_m|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_{m+1} - x_m|$$

$$\leq a_{n-1} + a_{n-2} + \dots + a_m = \sum_{k=m}^{n-1} a_k.$$

Let $\varepsilon > 0$ be given. Since $\sum_{k=1}^{\infty} a_k$ converges, the Cauchy criterion implies that there exists N > 0 such that

$$\left| \sum_{k=n}^{n+p} a_k \right| = \left| a_n + a_{n+1} + \dots + a_{n+p} \right| < \varepsilon \quad \text{whenever} \quad n \ge N \text{ and } p \ge 0.$$

Therefore, if $n > m \ge N$, by the fact $a_k > 0$ for all $k \in \mathbb{N}$, we have

$$|x_n - x_m| \leqslant \sum_{k=m}^{n-1} a_k < \varepsilon.$$

This implies that $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence in \mathbb{R} . By the completeness of \mathbb{R} , $\{x_n\}_{n=1}^{\infty}$ converges.

Problem 2. Let $\sum_{k=1}^{\infty} a_k$ be a conditionally convergent series. Show that $\sum_{k=1}^{\infty} \left[1 + \operatorname{sgn}(a_k)\right] a_k$ and $\sum_{k=1}^{\infty} \left[1 - \operatorname{sgn}(a_k)\right] a_k$ both diverge. Here the sign function sgn is defined by

$$sgn(a) = \begin{cases} 1 & \text{if } a > 0, \\ 0 & \text{if } a = 0, \\ -1 & \text{if } a < 0. \end{cases}$$

Proof. Claim: Let $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ be sequences of real numbers. If $\{x_n\}_{n=1}^{\infty}$ converges and $\{y_n\}_{n=1}^{\infty}$ diverges, then $\{x_n \pm y_n\}_{n=1}^{\infty}$ diverges.

To see the claim, suppose the contrary that $\{x_n + y_n\}_{n=1}^{\infty}$ converges. Then Theorem 1.40 in the lecture note implies that $\{x_n + y_n - x_n\}_{n=1}^{\infty}$ converges, which contradicts the assumption that $\{y_n\}_{n=1}^{\infty}$ diverges. Similarly, $\{x_n - y_n\}_{n=1}^{\infty}$ also diverges.

Let $S_n = \sum_{k=1}^n a_k$ and $T_n = \sum_{k=1}^n |a_k|$. Then $\{S_n\}_{n=1}^\infty$ converges but $\{T_n\}_{n=1}^\infty$ diverges. Therefore, the claim above shows that $\{S_n \pm T_n\}_{n=1}^\infty$ diverges. By the fact that $|a| = \operatorname{sgn}(a)a$ for all $a \in \mathbb{R}$, we have

$$S_n \pm T_n = \sum_{k=1}^n (a_k \pm |a_k|) = \sum_{k=1}^n [1 \pm \operatorname{sgn}(a_k)] a_k$$

so we conclude the desired result.

Problem 3. Let $\{a_k\}_{k=1}^{\infty} \subseteq \mathbb{R}$ be a sequence. A series $\sum_{k=1}^{\infty} b_k$ is said to be a rearrangement of the series $\sum_{k=1}^{\infty} a_k$ if there exists a rearrangement π of \mathbb{N} ; that is, $\pi : \mathbb{N} \to \mathbb{N}$ is bijective, such that $b_k = a_{\pi(k)}$.

- 1. Show that if $\sum_{k=1}^{\infty} a_k$ converges absolutely, then any rearrangement of the series $\sum_{k=1}^{\infty} a_k$ converges and has the value $\sum_{k=1}^{\infty} a_k$.
- 2. Show that if $\sum_{k=1}^{\infty} a_k$ is conditionally convergent, then for each $r \in \mathbb{R}$, there exists a rearrangement $\sum_{k=1}^{\infty} a_{\pi(k)}$ of the series $\sum_{k=1}^{\infty} a_k$ such that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.
- *Proof.* 1. Suppose that $\sum_{k=1}^{\infty} a_k$ is an absolutely convergent series with limit a, and $\pi: \mathbb{N} \to \mathbb{N}$ is a rearrangement of \mathbb{N} . Let $\varepsilon > 0$ be given. Then there exists N > 0 such that

$$\left|\sum_{k=1}^n a_k - a\right| < \frac{\varepsilon}{2}$$
 and $\sum_{k=n+1}^\infty |a_k| < \frac{\varepsilon}{2}$ whenever $n \geqslant N$.

Choose K > 0 such that $\pi(n) > N$ if $n \ge K$. In fact, $K = \max\{\pi^{-1}(1), \dots, \pi^{-1}(N)\} + 1$ suffices the purpose. Then $K \ge N$ and if $n \ge K$, $\pi(\{1, 2, \dots, n\}) \supseteq \{1, 2, \dots, N\}$. Therefore, if $n \ge K$,

$$\left| \sum_{k=1}^{n} a_{\pi(k)} - a \right| \leqslant \left| \sum_{k=1}^{n} a_{\pi(k)} - \sum_{k=1}^{N} a_k \right| + \left| \sum_{k=1}^{N} a_k - a \right| \leqslant \sum_{k=N+1}^{\infty} |a_k| + \frac{\varepsilon}{2} < \varepsilon$$

which implies that $\sum_{k=1}^{\infty} a_{\pi(k)} = a$.

2. Suppose that $\sum_{k=1}^{\infty} a_k$ is conditionally convergent. Let $\{a_{k_j}\}_{j=1}^{\infty}$ denote the subsequence of $\{a_k\}_{k=1}^{\infty}$ so that $a_{k_j} \geq 0$ for all $j \in \mathbb{N}$ and $a_k < 0$ if $k \in \mathbb{N} \setminus \{k_1, k_2, \cdots\}$. In other words, $\{a_{p_j}\}_{j=1}^{\infty}$ is the maximal subsequence of $\{a_k\}_{k=1}^{\infty}$ with non-negative terms. Let $\{a_{n_j}\}_{j=1}^{\infty}$ be the maximal subsequence of $\{a_k\}_{k=1}^{\infty}$ with negative terms. Then

$$\sum_{j=1}^{\infty} a_{p_j} = \infty \quad \text{and} \quad \sum_{j=1}^{\infty} a_{n_j} = -\infty.$$

Let $r \in \mathbb{R}$ be given, and use the notation $\sum_{j=1}^{0}$ to denote summing nothing. Define $k_0 = 0$. Choose $k_1 \in \mathbb{N}$ be the unique natural number so that $\sum_{j=1}^{k_1-1} a_{p_j} < r$ but $\sum_{j=1}^{k_1} a_{p_j} > r$. Since $\sum_{j=1}^{\infty} a_{n_j} = -\infty$, there exists a unique $k_2 \in \mathbb{N}$ such that $\sum_{j=1}^{k_1} a_{p_j} + \sum_{j=1}^{k_2-1} a_{n_j} > r$ but $\sum_{j=1}^{k_1} a_{p_j} + \sum_{j=1}^{k_2} a_{n_j} < r$. We continue this process, and obtain a sequence $\{k_\ell\}_{\ell=0}^{\infty}$ such that for each $\ell \in \mathbb{N}$,

(a)
$$\sum_{j=1}^{k_{2\ell-1}-1} a_{p_j} + \sum_{j=1}^{k_{2\ell-2}} a_{n_j} < r.$$
 (b)
$$\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell-2}} a_{n_j} > r.$$

(c)
$$\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell}-1} a_{n_j} > r.$$
 (d)
$$\sum_{j=1}^{k_{2\ell-1}} a_{p_j} + \sum_{j=1}^{k_{2\ell}} a_{n_j} < r.$$

We then obtain a permutation of $\{a_n\}_{n=1}^{\infty}$:

$$\underbrace{a_{p_1}, \cdots, a_{p_{k_1}}}_{k_1 \text{ "} \geqslant 0 \text{" terms}}, \underbrace{a_{n_1}, \cdots, a_{n_{k_2}}}_{k_2 \text{ "} < 0 \text{" terms}}, \underbrace{a_{p_{k_1+1}}, \cdots, a_{p_{k_3}}}_{k_3 \text{ "} \geqslant 0 \text{" terms}}, \underbrace{a_{n_{k_2}+1}, \cdots, a_{n_{k_4}}}_{k_4 \text{ "} < 0 \text{" terms}}, \cdots.$$

Denote the permutation above by $\{a_{\pi(n)}\}_{n=1}^{\infty}$; that is, $\pi(1) = p_1, \dots, \pi(k_1) = p_{k_1}, \pi(k_1+1) = n_1, \dots, \pi(k_1+k_2) = n_{k_2}$, and so on. Next we show that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.

Let $\varepsilon > 0$ be given, and define $S_n = \sum_{k=1}^n a_{\pi(k)}$. Since $\sum_{n=1}^\infty a_n$ converges, $\lim_{n \to \infty} a_n = 0$; thus there exists N > 0 such that $|a_n| < \varepsilon$ for all $n \ge N$. By the construction of $\{k_\ell\}_{\ell=1}^\infty$,

$$|S_n - S_{n-1}| = |a_{\pi(n)}| < \varepsilon$$
 whenever $n \ge k_1 + k_2 + \dots + k_N$.

This implies that $S_n \in (r - \varepsilon, r + \varepsilon)$ whenever $n \ge k_1 + k_2 + \cdots + k_N$. Therefore,

$$\left|\sum_{k=1}^{n} a_{\pi(k)} - r\right| < \varepsilon$$
 whenever $n \ge k_1 + k_2 + \dots + k_N$

which shows that $\sum_{k=1}^{\infty} a_{\pi(k)} = r$.

Problem 4. Consider the function $f(x) = \sum_{k=1}^{\infty} \frac{\sin(kx)}{k}$.

- 1. Find the domain of f.
- 2. Show that for each $\varepsilon > 0$ and $0 < \delta < \pi$, there exists N > 0 and N depends only on ε and δ but is independent of x, such that

$$\left|\sum_{k=n}^{n+p} \frac{\sin(kx)}{k}\right| < \varepsilon \qquad \forall \, n \geqslant N, p \geqslant 0 \text{ and } x \in [\delta, 2\pi - \delta].$$

Proof. Let $S_n(x) = \sum_{k=1}^n \sin(kx)$.

- 1. (a) If $x = 2n\pi$ for some $n \in \mathbb{Z}$ (or $x = 0 \pmod{2\pi}$), then $S_n(x) = 0$ for all $n \in \mathbb{N}$; thus for each $x = 0 \pmod{2\pi}$, $\{S_n(x)\}_{n=1}^{\infty}$ is bounded by 1.
 - (b) If $x \neq 2n\pi$ for all $n \in \mathbb{Z}$ (or $x \neq 0 \pmod{2\pi}$), then

$$2\sin\frac{x}{2}S_n(x) = \sum_{k=1}^n 2\sin\frac{x}{2}\sin(kx) = \sum_{k=1}^n \cos\left(k - \frac{1}{2}\right)x - \cos\left(k + \frac{1}{2}\right)x$$
$$= \cos\frac{x}{2} - \cos\left(n + \frac{1}{2}\right)x$$

which implies that

$$\left| S_n(x) \right| \le \left| \frac{\cos \frac{x}{2} - \cos \left(n + \frac{1}{2} \right) x}{2 \sin \frac{x}{2}} \right| \le \frac{1}{\left| \sin \frac{x}{2} \right|} \quad \forall x \ne 0 \pmod{2\pi}.$$

In either cases, for each $x \in \mathbb{R}$ there exists $M = M(x) \in \mathbb{R}$ such that $|S_n(x)| \leq M$. Therefore, the Dirichlet test (with $a_k = \sin(kx)$ and $p_k = \frac{1}{k}$) implies that f is defined everywhere; thus the domain of f is \mathbb{R} .

2. We mimic the proof of the Dirichlet test. Let $\varepsilon > 0$ and $\delta \in (0, 2\pi)$ be given. Then $\csc \frac{\delta}{2} > 0$; thus the Archimedean property of \mathbb{R} implies that there exists $N > \frac{2}{\varepsilon} \csc \frac{\delta}{2}$. If $n \ge N$, $p \ge 0$ and $x \in [\delta, 2\pi - \delta]$ (thus $x \ne 0 \pmod{2\pi}$), then

$$\left| \sum_{k=n}^{n+p} \frac{\sin(kx)}{k} \right| = \left| \sum_{k=n}^{n+p} \left[S_{k+1}(x) - S_k(x) \right] \frac{1}{k} \right|$$

$$= \left| -S_n(x) \frac{1}{n} + S_{n+1}(x) \left(\frac{1}{n} - \frac{1}{n+1} \right) + \dots + S_{n+p}(x) \left(\frac{1}{n+p-1} - \frac{1}{n+p} \right) + S_{n+p+1}(x) \frac{1}{n+p} \right|$$

$$\leq \frac{1}{\left| \sin \frac{x}{2} \right|} \left[\frac{1}{n} + \left(\frac{1}{n} - \frac{1}{n+1} \right) + \dots + \left(\frac{1}{n+p-1} - \frac{1}{n+p} \right) + \frac{1}{n+p} \right]$$

$$= \frac{2}{n \left| \sin \frac{x}{2} \right|} < \frac{\sin \frac{\delta}{2}}{\left| \sin \frac{x}{2} \right|} \varepsilon.$$

Since $x \in [\delta, 2\pi - \delta]$, $\sin \frac{x}{2}$ attains its minimum at $x = \delta$ or $2\pi - \delta$; thus

$$0 < \sin \frac{\delta}{2} \le \sin \frac{x}{2}$$
 $\forall x \in [\delta, 2\pi - \delta]$.

Therefore,

$$\left|\sum_{k=n}^{n+p} \frac{\sin(kx)}{k}\right| < \varepsilon \quad \text{whenever} \quad n \geqslant N, p \geqslant 0 \text{ and } x \in [\delta, 2\pi - \delta].$$

In the exercise of Chapter 3, we first introduce the concepts of accumulation points, isolated points and derived set of a set as follows.

Definition 0.1. Let (M, d) be a normed vector space, and A be a subset of M.

- 1. A point $x \in M$ is called an **accumulation point** of A if there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in $A \setminus \{x\}$ such that $\{x_n\}_{n=1}^{\infty}$ converges to x.
- 2. A point $x \in A$ is called an *isolated point* (孤立點) (of A) if there exists no sequence in $A \setminus \{x\}$ that converges to x.
- 3. The **derived set** of A is the collection of all accumulation points of A, and is denoted by A'.

Problem 5. Let (M, d) be a metric space, and A be a subset of M.

- 1. Show that the collection of all isolated points of A is $A \setminus A'$.
- 2. Show that $A' = \bar{A} \setminus (A \setminus A')$. In other words, the derived set consists of all limit points that are not isolated points. Also show that $\bar{A} \setminus A' = A \setminus A'$.

Proof. 1. By the definition of isolated points of sets,

$$x \in A \backslash A' \Leftrightarrow x \in A \text{ and } x \text{ is not an accumulation point of } A$$

 $\Leftrightarrow x \in A \text{ and } \exists \varepsilon > 0 \ni B(x, \varepsilon) \cap A \backslash \{x\} = \emptyset$
 $\Leftrightarrow x \in A \text{ and } \exists \varepsilon > 0 \ni B(x, \varepsilon) \cap A \subseteq \{x\}$
 $\Leftrightarrow \exists \varepsilon > 0 \ni B(x, \varepsilon) \cap A = \{x\};$

thus x is an isolated point of A if and only if $x \in A \setminus A'$.

2. First we show that $\bar{A} = A \cup A'$. To see this, let $x \in \bar{A} \setminus A$. By the fact that $A = A \setminus \{x\}$, there exists $\{x_n\}_{n=1}^{\infty} \subseteq A \setminus \{x\}$ such that $\lim_{n \to \infty} x_n = x$. Therefore, $x \in A'$ which implies that

$$\bar{A} \backslash A \subseteq A' \subseteq \bar{A}$$
,

where we use the fact that $\bar{A} \supseteq A'$ to conclude the last inclusion. The inclusion relation above then shows that

$$\bar{A} = A \cup \bar{A} = A \cup (\bar{A} \backslash A) \subseteq A \cup A' \subseteq A \cup \bar{A} = \bar{A};$$

thus we establish that $\bar{A} = A \cup A'$. This identity further shows that

$$\bar{A} \cap A^{\complement} = (A \cup A') \cap A^{\complement} = A' \cap A^{\complement} \subseteq A$$
.

Now, using the identity $A \setminus B = A \cap B^{\complement}$ we find that

$$\bar{A} \setminus (A \setminus A') = \bar{A} \cap (A \cap (A')^{\complement})^{\complement} = \bar{A} \cap (A^{\complement} \cup A') = (\bar{A} \cap A^{\complement}) \cup (\bar{A} \cap A')
= (\bar{A} \cap A^{\complement}) \cup A' = A'.$$

Moreover, using $\bar{A} = A \cup A'$ we also have

$$\bar{A} \backslash A' = (A \cup A') \cap (A')^{\complement} = A \cap (A')^{\complement} = A \backslash A'.$$

Problem 6. Let A and B be subsets of a metric space (M, d). Show that

- 1. $\operatorname{cl}(\operatorname{cl}(A)) = \operatorname{cl}(A)$.
- 2. $\operatorname{cl}(A \cup B) = \operatorname{cl}(A) \cup \operatorname{cl}(B)$.
- 3. $\operatorname{cl}(A \cap B) \subseteq \operatorname{cl}(A) \cap \operatorname{cl}(B)$. Find examples of that $\operatorname{cl}(A \cap B) \subsetneq \operatorname{cl}(A) \cap \operatorname{cl}(B)$.

Proof. 1. Since cl(A) is closed, by the definition of closed set we have cl(cl(A)) = cl(A).

2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, we have $\operatorname{cl}(A) \subseteq \operatorname{cl}(A \cup B)$ and $\operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$; thus $\operatorname{cl}(A) \cup \operatorname{cl}(B) \subseteq \operatorname{cl}(A \cup B)$. On the other hand, if $x \in \operatorname{cl}(A \cup B)$, there exists a sequence $\{x_n\}_{n=1}^{\infty}$ in $A \cup B$ such that $\lim_{n \to \infty} x_n = x$. Since $A \cup B$ contains infinitely many terms of $\{x_n\}_{n=1}^{\infty}$, at least one of A and B contains infinitely many terms of $\{x_n\}_{n=1}^{\infty}$. W.L.O.G., suppose that $\#\{n \in \mathbb{N} \mid x_n \in A\} = \infty$. Let

$$\left\{ n \in \mathbb{N} \,\middle|\, x_n \in A \right\} = \left\{ n_k \in \mathbb{N} \,\middle|\, n_k < n_{k+1} \right\}.$$

Then $\{x_{n_k}\}_{k=1}^{\infty} \in A$. Since $x_n \to x$ as $n \to \infty$, we must have $x_{n_k} \to x$ as $k \to \infty$; thus $x \in cl(A)$. Therefore, $cl(A \cup B) \subseteq cl(A) \cup cl(B)$.

3. Let $x \in cl(A \cap B)$. Then

$$(\forall \varepsilon > 0)(B(x, \varepsilon) \cap (A \cap B) \neq \emptyset).$$

Therefore, by the fact that $B(x,\varepsilon) \cap A \subseteq B(x,\varepsilon) \cap (A \cap B)$ and $B(x,\varepsilon) \cap B \subseteq B(x,\varepsilon) \cap (A \cap B)$, we have

$$(\forall \varepsilon > 0)(B(x, \varepsilon) \cap A \neq \emptyset)$$
 and $(\forall \varepsilon > 0)(B(x, \varepsilon) \cap B \neq \emptyset)$.

This implies that $x \in \bar{A} \cap \bar{B}$. Note that if $A = \mathbb{Q}$ and $B = \mathbb{Q}^{\complement}$, then $\operatorname{cl}(A \cap B) = \emptyset$, while $\bar{A} = \bar{B} = \mathbb{R}$ which provides an example of $\operatorname{cl}(A \cap B) \subsetneq \bar{A} \cap \bar{B}$.

Problem 7. Let A and B be subsets of a metric space (M, d). Show that

- 1. int(int(A)) = int(A).
- 2. $int(A \cap B) = int(A) \cap int(B)$.
- 3. $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Find examples of that $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Proof. 1. Since int(A) is open, by the definition of open sets we have int(int(A)) = int(A).

2. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, we have $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A)$ and $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(B)$; thus $\operatorname{int}(A \cap B) \subseteq \operatorname{int}(A) \cap \operatorname{int}(B)$. On the other hand, let $x \in \operatorname{int}(A) \cap \operatorname{int}(B)$. Then $x \in \operatorname{int}(A)$ and $x \in \operatorname{int}(B)$; thus there exist $r_1, r_0 > 0$ such that

$$B(x, r_1) \subseteq A$$
 and $B(x, r_1) \subseteq B$.

Let $r = \min\{r_1, r_2\}$. Then r > 0, and $B(x, r) \subseteq B(x, r_1)$ and $B(x, r) \subseteq B(x, r_2)$. Therefore, $B(x, r) \subseteq A$ and $B(x, r) \subseteq B$ which further implies that $B(x, r) \subseteq A \cap B$; thus $x \in \inf(A \cap B)$.

3. Let $x \in \mathring{A} \cup \mathring{B}$. Then $x \in \mathring{A}$ or $x \in \mathring{B}$; thus there exists r > 0 such that $B(x,r) \subseteq A$ or $B(x,r) \subseteq B$. Therefore, there exists r > 0 such that $B(x,r) \subseteq A \cup B$ which shows that $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$. Note that if $A = \mathbb{Q}$ and $B = \mathbb{Q}^{\complement}$, then $\operatorname{int}(A \cup B) = \mathbb{R}$ while $\operatorname{int}(A) = \operatorname{int}(B) = \emptyset$; thus we obtain an example of $\operatorname{int}(A \cup B) \supseteq \operatorname{int}(A) \cup \operatorname{int}(B)$.

Problem 8. Let (M,d) be a metric space, and A be a subset of M. Show that

$$\partial A = (A \cap \operatorname{cl}(M \backslash A)) \cup (\operatorname{cl}(A) \backslash A).$$

Proof. By the definition of the boundary, $\partial A = \overline{A} \cap \overline{A^{\complement}}$; thus

$$\begin{aligned} \left(A \cap \operatorname{cl}(M \backslash A) \right) &\cup \left(\operatorname{cl}(A) \backslash A \right) = \left(A \cap \overline{A^{\complement}} \right) \cup \left(\overline{A} \cap A^{\complement} \right) \\ &= \left[A \cup \left(\overline{A} \cap A^{\complement} \right) \right] \cap \left[\overline{A^{\complement}} \cup \left(\overline{A} \cap A^{\complement} \right) \right] = \overline{A} \cap \left[\left(\overline{A^{\complement}} \cup \overline{A} \right) \cap \left(\overline{A^{\complement}} \cup A^{\complement} \right) \right] \\ &= \overline{A} \cap \left[\left(\overline{A^{\complement}} \cup \overline{A} \right) \cap \overline{A^{\complement}} \right] = \partial A \cap \left(\overline{A^{\complement}} \cup \overline{A} \right) = \partial A \,, \end{aligned}$$

where the last equality follows from that $\partial A \subseteq \overline{A}$ and $\partial A \subseteq \overline{A^{\complement}}$.

Problem 9. Recall that in a metric space (M,d), a subset A is said to be dense in S if subsets satisfy $A \subseteq S \subseteq \operatorname{cl}(A)$. For example, \mathbb{Q} is dense in \mathbb{R} .

- 1. Show that if A is dense in S and if S is dense in T, then A is dense in T.
- 2. Show that if A is dense in S and $B \subseteq S$ is open, then $B \subseteq \operatorname{cl}(A \cap B)$.
- *Proof.* 1. If A is dense in S and if S is dense in T, then $A \subseteq S \subseteq \overline{A}$ and $S \subseteq T \subseteq \overline{S}$. Since $S \subseteq \overline{A}$, we must have $\overline{S} \subseteq \overline{A}$; thus

$$A \subseteq S \subseteq T \subseteq \bar{S} \subseteq \bar{A}$$

which shows that A is dense in T.

2. Let $x \in B$. Since B is open, there exists $\varepsilon_0 > 0$ such that $B(x, \varepsilon_0) \subseteq B \subseteq S$. On the other hand, $x \in S$ since B is a subset of S; thus the denseness of A in S implies that

$$(\forall \varepsilon > 0)(B(x, \varepsilon) \cap A \neq \emptyset)$$
.

Therefore, for a given $\varepsilon > 0$, if $\varepsilon \geqslant \varepsilon_0$, then

$$B(x,\varepsilon) \cap (A \cap B) \supseteq B(x,\varepsilon_0) \cap (A \cap B) = B(x,\varepsilon_0) \cap A \neq \emptyset$$

while if $\varepsilon < \varepsilon_0$, then

$$B(x,\varepsilon) \cap (A \cap B) = B(x,\varepsilon) \cap A \neq \emptyset$$
.

This implies that

$$(\forall \varepsilon > 0)(B(x, \varepsilon) \cap (A \cap B) \neq \emptyset);$$

thus $x \in \operatorname{cl}(A \cap B)$.

Problem 10. Let A and B be subsets of a metric space (M, d). Show that

- 1. $\partial(\partial A) \subseteq \partial(A)$. Find examples of that $\partial(\partial A) \subseteq \partial A$. Also show that $\partial(\partial A) = \partial A$ if A is closed.
- 2. $\partial(A \cup B) \subseteq \partial A \cup \partial B \subseteq \partial(A \cup B) \cup A \cup B$. Find examples of that equalities do not hold.
- 3. If $cl(A) \cap cl(B) = \emptyset$, then $\partial(A \cup B) = \partial A \cup \partial B$.
- 4. $\partial(A \cap B) \subseteq \partial A \cup \partial B$. Find examples of the equalities do not hold.
- 5. $\partial(\partial(\partial A)) = \partial(\partial A)$.

Proof. 1. We note that if F is closed, then

$$\partial F = \overline{F} \cap \overline{F^{\complement}} = F \cap \overline{F^{\complement}} \subseteq F. \tag{\diamond}$$

Since ∂F is closed, we must have $\partial(\partial A) \subseteq \partial A$. Note that if $A = \mathbb{Q} \cap [0,1]$, then $\partial A = [0,1]$; thus $\partial(\partial A) = \{0,1\} \subsetneq \partial A$. Finally we show that $\partial(\partial A) = \partial A$ if A is closed. Using (\diamond) , it suffices to show that $\partial A \subseteq \partial(\partial A)$. Using 2 of Problem 6,

$$\partial(\partial A) = \partial A \cap \operatorname{cl}((\partial A)^{\complement}) = \partial A \cap \operatorname{cl}(A^{\complement} \cup \overline{A^{\complement}}^{\complement}) = \partial A \cap \left(\overline{A^{\complement}} \cup \operatorname{cl}(\overline{A^{\complement}}^{\complement})\right) \\
= (\partial A \cap \overline{A^{\complement}}) \cup (\partial A \cap \operatorname{cl}(\overline{A^{\complement}}^{\complement})) \supseteq (\partial A \cap \overline{A^{\complement}}) = \partial A.$$

2. Using 2 and 3 of Problem 6,

$$\partial(A \cup B) = \overline{A \cup B} \cap \operatorname{cl}((A \cup B)^{\complement}) = (\overline{A} \cup \overline{B}) \cap \operatorname{cl}(A^{\complement} \cap B^{\complement}) \subseteq (\overline{A} \cup \overline{B}) \cap (\overline{A^{\complement}} \cap \overline{B^{\complement}}) \\
= (\overline{A} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}) \cup (\overline{B} \cap \overline{A^{\complement}} \cap \overline{B^{\complement}}) \subseteq (\overline{A} \cap \overline{A^{\complement}}) \cup (\overline{B} \cap \overline{B^{\complement}}) = \partial A \cup \partial B.$$

On the other hand, since $\partial A = \bar{A} \backslash \mathring{A}$ and $\mathring{A} \subseteq A$, we have

$$\bar{A} \subseteq A \cup \partial A \subseteq \mathring{A} \cup (\bar{A} \backslash \mathring{A}) = \bar{A}$$

which implies that $A \cup \partial A = \overline{A}$. Therefore,

$$\partial A \subseteq \overline{A} \subseteq \overline{A \cup B} = A \cup B \cup \partial (A \cup B)$$

and similarly $\partial B \subseteq A \cup B \cup \partial (A \cup B)$. Therefore,

$$\partial A \cup \partial B \subseteq \partial (A \cup B) \cup A \cup B$$
.

Note that if $A = [-1,0] \cup (\mathbb{Q} \cap [0,1])$ and $B = [-1,0] \cup (\mathbb{Q}^{\complement} \cap [0,1])$, then $A \cup B = [-1,1]$, $\partial A = \partial B = \{-1\} \cup [0,1]$ which implies that

$$\partial(A \cup B) = \{-1, 1\} \subsetneq \partial A \cup \partial B \subsetneq A \cup B = \partial(A \cup B) \cup A \cup B.$$

3. By 2, it suffices to shows that $\partial A \cup \partial B \subseteq \partial (A \cup B)$ if $\overline{A} \cap \overline{B} = \emptyset$. Let $x \in \partial A \cup \partial B$. W.L.O.G., assume that $x \in \partial A$. Then $x \in \overline{A}$; thus $x \notin \overline{B}$ which further implies that there exists $\varepsilon_0 > 0$ such that $B(x, \varepsilon_0) \cap B = \emptyset$ or equivalently, $B(x, \varepsilon_0) \subseteq B^{\complement}$. Therefore, for given r > 0, if $r < \varepsilon_0$, then

$$B(x,r) \cap (A \cup B) \supseteq B(x,r) \cap A \neq \emptyset$$

and

$$B(x,r) \cap ((A \cup B)^{\complement}) = B(x,r) \cap (A^{\complement} \cap B^{\complement}) = B(x,r) \cap A^{\complement} \neq \emptyset$$

while if $r \ge \varepsilon_0$, then

$$B(x,r) \cap (A \cup B) \subseteq B(x,\varepsilon_0) \cap (A \cup B) \supseteq B(x,\varepsilon_0) \cap A \neq \emptyset$$

and

$$B(x,r) \cap ((A \cup B)^{\complement}) \supseteq B(x,\varepsilon_0) \cap (A^{\complement} \cap B^{\complement}) = B(x,\varepsilon_0) \cap A^{\complement} \neq \emptyset$$
.

As a consequence, for each r > 0,

$$B(x,r) \cap (A \cup B) \neq \emptyset$$
 and $B(x,r) \cap (A \cup B)^{\complement}$;

thus $x \in \overline{A \cup B}$ and $x \in \text{cl}\big((A \cup B)^{\complement}\big)$ which implies that $x \in \partial(A \cup B)$.

4. Using 2 and 3 of Problem 6,

$$\partial(A \cap B) = \overline{A \cap B} \cap \operatorname{cl}((A \cap B)^{\complement}) = \overline{A \cap B} \cap \operatorname{cl}(A^{\complement} \cup B^{\complement}) \subseteq (\overline{A} \cap \overline{B}) \cap (\overline{A^{\complement}} \cup \overline{B^{\complement}}) \\
= \left[(\overline{A} \cap \overline{B}) \cap \overline{A^{\complement}} \right] \cup \left[(\overline{A} \cap \overline{B}) \cap \overline{B^{\complement}} \right] \subseteq (\overline{A} \cap \overline{A^{\complement}}) \cup (\overline{B} \cap \overline{B^{\complement}}) = \partial A \cup \partial B.$$

Note that if $A = \mathbb{Q}$ and $B = \mathbb{Q}^{\complement}$, then $\partial A = \partial B = \mathbb{R}$ but

$$\partial(A \cap B) = \emptyset \subseteq \mathbb{R} = \partial A \cap \partial B$$
.

5. Since ∂A is closed, 1 implies that $\partial(\partial(\partial A)) = \partial(\partial A)$.